中国高原型细毛羊种质特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物的种质应该指该物种的全套遗传物质,即其基因组。每个物种都有其种质特征,从而使得一种生物有别于另一种生物。甘肃高山细毛羊和青海细毛羊是中国育成的高原型细毛羊品种,它们都繁育在海拔3000 m左右的地区,已成为当地农牧民的重要经济收入来源之一。为了阐明高原型细毛羊的部分分子遗传标记特征,阐述高原型细毛羊品种间的遗传相关和遗传差异,为国内外评价细毛羊品种种质特征和遗传多样性提供基础数据,选择甘肃高山细毛羊和青海细毛羊作为研究对象,选择藏羊、滩羊、湖羊、小尾寒羊、岷县黑裘皮羊5个国内绵羊品种共7个群体及国外引进品种无角陶赛特羊和特克赛尔羊2个品种为比较研究对象,共11个群体采集血样432份,运用15个微卫星座位,对绵羊群体的微卫星DNA标记开展研究。实验数据采用相关的软件通过计算机处理。结果如下:(1)11个绵羊群体的15个微卫星座位共发现201个等位基因,青海细毛羊和甘肃高山细毛羊群体中的等位基因数均为128个。每个微卫星座位上都有占有优势的等位基因,且对于不同群体在相同座位上的优势基因是不同的,如青海细毛羊和甘肃高山细毛羊在HSC座位上的优势基因分别是281 bp(频率为23.86%)和279 bp(频率为21.59%);在ILSTS005座位上的优势基因均为196 bp(频率分别为34.44%和51.11%)。在15个微卫星座位上,在甘肃高山细毛羊和青海细毛羊群体中所发现的等位基因平均数相同,均为8.53个。(2)在11个绵羊群体中,2个引进绵羊品种的遗传多样性相对于中国9个绵羊群体较低。青海细毛羊和甘肃高山细毛羊的观察杂合度分别为0.7465和0.7435,期望杂合度分别为0.7577和0.7565。(3)在准确性检验、杂合子缺失检验和杂合子增加检验中,分别有25个、
The germplasm for each species means its whole genetic material, i.e. its genome. There is different germplasm in the character for every species. The germplasm is very important for every species because it is a nameplate for animal, plant or microorganism. The breeds of Gansu Alpin Merino (GSM) and Qinghai Merino (QHM) have been developing by China. They both are plateau-type merino breeds. The breeds are living and feeding at the region of the sea level of 3000 m or so in China. The fine-wool sheep husbandry is a traditional industry in Qinghai and Gansu. It is an important income for the local farmer. In order to clarify the molecular markers of the Alpin merino, to elucidate the genetic relationship and the genetic difference between GSM and QHM, and to provide the fundamental data on evaluating the germplasm and biodiversity of livings, the characterization of the microsatellite DNA markers of GSM and QHM populations was carried out. The control groups include the other native sheep breeds, i.e. Tibeten sheep (from the southern Gansu, Huangchen sheep farm of Gansu and Sanjiaochen sheep farm of Qinghai, respectively), Tan sheep, Hu sheep, Small-tailed Han sheep and Minxian Black fur sheep, and two imported exotic sheep breeds, i.e. Texel and Dorset. The total of 11 populations was sampled. All the populations were assessed for germplasm characterization or genetic diversity using 15 microsatellite loci. A wide range of statistical analyses were performed on the data to answer questions on population genetic diversity, relationship and differentiation. The results are as follows: (1) A total of 201 alleles were detected at 15 microsatellite loci in 432 sheep individuals of 11 populations. There are 128 alleles in the populations of QHM and GSM, respectively. There is the dominant allele at each microsatellite locus. And the dominant allele at each microsatellite is different for each population, for example, the dominant allele size at locus HSC is 281 bp and 23.86% of allele frequency for QHM, the size 279 bp and 21.59% of allele frequency for GSM. The
引文
[1] 中国大百科全书总编辑委员会《生物学》编辑委员会.《中国大百科全书.生物学》遗传学[M]. 北京、上海:中国大百科全书出版社. 1983:246-248
    [2] 门正明,詹铁生. 动物遗传学[M]. 兰州:兰州大学出版社. 1993:2
    [3] 方宗熙. 普通遗传学(修订本)[M]. 北京:科学出版社. 1979:16-20
    [4] 《简明不列颠百科全书》中美联合编审委员会. 简明不列颠百科全书(第九分册)(concise encyclopadia britannica)[M]. 北京、上海:中国大百科全书出版社. 1986:501
    [5] 上海复旦大学生物系遗传教研组编译. 遗传学词典[M]. 北京:科学出版社. 1979:288
    [6] 孙勇如主编. 遗传学手册[M]. 长沙:湖南科学技术出版社. 1989:19
    [7] 中国大百科全书总编辑委员会《农业》编辑委员会. 中国大百科全书-农业[M]. 北京、上海:中国大百科全书出版社. 1990:1788;1776-1777
    [8] 《简明不列颠百科全书》中美联合编审委员会. 简明不列颠百科全书(第八分册)(concise encyclopadia britannica)[M]. 北京、上海:中国大百科全书出版社. 1986:244
    [9] 农牧渔业部畜牧局. 畜牧名词术语标准[M]. 北京:农业出版社. 1987: 68
    [10] 许振英. 中国地方猪种种质特性[M]. 杭州:浙江科学技术出版社. 1989:(前言)1-2
    [11] 张仲葛. 中国猪种的未来(提纲)[J]. 甘肃畜牧兽医. 1992(专辑):3-4
    [12] 辞海编辑委员会. 辞海(1999 年版缩印本)[M]. 上海:上海辞书出版社. 2000:2105
    [13] Embryo K. Manipulation of the Germplasm [J]. Poultry Science. 1997, 76:1093-1100
    [14] 中国大百科全书. 生物学[M]. 北京、上海:中国大百科全书出版社. 1991:1500
    [15] 中国农业百科全书编辑委员会,中国农业百科全书(生物学卷)[M]. 北京:农业出版社. 1991:700-701
    [16] 董玉琛. 我国作物种质资源的现状与展望. http://icgr.caas.net.cn(中国作物种质资源资源信息网,CGRIS——Chinese Crop Germplasm Information Network)
    [17] 刘 旭. 作物种质资源与农业科技革命. http://icgr.caas.net.cn
    [18] 王天云,黄亨履. 抢救种质资源 保护生物多样性. http://icgr.caas.net.cn
    [19] 贾继增. 应用植物基因组学的理论与方法开发我国丰富的作物种质资源. http://icgr.caas.net.cn
    [20] 卢新雄,曹永生. 作物种质资源保存现状及发展方向. http://icgr.caas.net.cn
    [21] 中国大百科全书总编辑委员会《农业》编辑委员会. 中国大百科全书-农业[M]. 北京、上海:中国大百科全书出版社. 1990:1720
    [22] 常洪. 家畜遗传资源学纲要[M]. 北京:中国农业出版社. 1995 年 5 月:1-2
    [23] 徐刚. 畜禽遗传资源及其管理[J]. 畜牧兽医杂志. 1994(3):19-21
    [24] 孟千湖,项可宁,吴晓林. 中国家禽遗传资源与家禽育种[J]. 中国家禽. 1999,21(3):38-44
    [25] 孙伟. 中国畜禽遗传资源保护与开发的研究进展[J]. 畜牧兽医杂志. 2001,20(1):8-10
    [26] 吴克亮,吴常信,杨长锁. 畜禽遗传资源保存的计算机模拟研究[J]. 畜牧兽医学报. 1992,23(3):207-212
    [27] Russell E. S. Germplasm conservation [J]. Science. 1981, 214(4525): 1074-1075
    [28] Brown M. A., Tharel L. M., Brown A. H., et al. The effect of United States versus New Zealand Augus germplasm characteristics of crossbred calves[J]. J Amin Sci. 1993, 71(5): 1117-1122
    [29] Cundiff L. V., Gregory K. E., Koch R. M. Germplasm evaluation in beef cattle—Cycle IV: birth and weaning [J]. J. Amin Sci. 1998, 76(10): 2528-2535
    [30] Thallman R. M., Cundiff L. V., Gregory K. E., et al. Germplasm evaluation in beef cattle—Cycle IV: postweaning puberty of heifers [J]. J. Amin Sci. 1999, 77(10): 2651-2659
    [31] 王敏强. 大通牦牛部分种质特性研究[D]. 西北农林科技大学博士学位论文. 2000.5:14
    [32] 张英汉. 秦川牛种质特性研究及选育进展[J]. 黄牛杂志. 1995,22 ( 1 ):43-45
    [33] 涂正超. 血液蛋白多态性在牛种质特征研究中的应用[J]. 黄牛杂志. 1993,19(4):42-43
    [34] 陈润生. 民猪种质特性研究. 见:许振英主编. 中国地方猪种种质特性[M]. 杭州:浙江科学技术出版社. 1989:9-42
    [35] 徐士清,王水华,翁经强,等. 嘉兴黑猪种质特性研究[J]. 甘肃畜牧兽医. 1992(专辑):269-270
    [36] 龙天厚,刘君锡,邓廷惠,等. 成华猪的种质特性研究[J]. 甘肃畜牧兽医,1992(专辑):41-45
    [37] 张国汉. 内蒙黑猪种质特性[J]. 内蒙古农牧学院学报. 1993,14(2):23-29
    [38] 边连全,张永泰,马宁,等. 辽宁省本地黑猪种质特性评价[J]. 沈阳农业大学学报. 1995,26(4):385-391
    [39] 施金元,陆震方,华金弟,等. D7 系(新太湖猪)的若干种质特性[J]. 畜牧与兽医. 1995,27(5):200-201
    [40] 郭宗义,欧秀琼,龙世发,等. 新荣昌猪 I 系的若干种质特性[J]. 四川畜牧兽医. 1996(1):27-28
    [41] 姚国强. 嘉兴黑猪新品系若干种质特性[J]. 上海畜牧兽医通讯. 1998(4):20-21
    [42] 王建民,于宗贤,李福昌,等. 青山羊种质特性及利用情况的调查[J]. 山东畜牧兽医. 1992(3):14-18
    [43] 李积友. 滩羊种质及血液遗传标记的研究[J]. 草与畜杂志. 1995(3):25-26
    [44] 王维春. 南江黄羊的一些种质特性[J]. 中国养羊. 1997,17(4):1-2
    [45] 王建民,秦孜娟,曲绪仙,等. 山东小尾寒羊种质特性及利用途径的研究进展(上)[J]. 草食家畜. 1997(3):6-10
    [46] 王建民,秦孜娟,曲绪仙,等. 山东小尾寒羊种质特性及利用途径的研究进展(下)[J]. 草食家畜. 1997(4):5-8
    [47] 王建民,孙明川,吕惠序,等. 牙山黑绒山羊种质特性及选育研究[J]. 中国畜牧杂志. 1997,33(5):27-29
    [48] 王元兴,王城,程瑞禾,等. 江苏吴县东山湖羊保护区湖羊种质特性及提高措施[J]. 家畜生态. 1998,19(3):26-28
    [49] 武和平,周占琴,陈小强. 布尔(Boer)山羊种质特性的研究——生理常值及血液生化[J]. 西北农业学报. 1998,7(1):4-6
    [50] 储明星,马月辉,于汝梁,等. 小尾寒羊种质特性的研究进展[J]. 中国草食动物. 1999,1(3):38-41
    [51] Ehling C., Niemann H. Establishment of embryo banks to maintain endangered sheep breeds [J]. Zuchtungskunde. 2000, 72(2): 140-152
    [52] 赵淑娟,庞有志,赵芙蓉. 河南大尾寒羊的种质特性与保种对策[J]. 洛阳农业高等专科学校学报. 2001,21(1):30-32
    [53] 班兆侯,刘若余,肖超能,等. 中国白兔种质特性研究[J]. 中国养兔杂志. 1996(6):21-26
    [54] 谢金防,李房全,程光潮,等. 从血型因子分析我省两个乌鸡品种的种质特性[J]. 江西农业学报. 1994,6(2):100-104
    [55] 王光瑛,冯玉兰,王纪茂,等. 贵妇鸡若干种质特性的研究[J]. 福建畜牧兽医. 1997(6):1-3
    [56] 郑兴涛,马艳玲,赵蒙,等. 马鹿人工选育品系品种种质特性分析[J]. 经济动物学报. 2000,4(1):20-22
    [57] 施启顺. 主基因研究与畜禽遗传资源开发[J]. 自然资源学报. 1998,13(3):282-285
    [58] 吴常信,张沅,李宁. 畜禽遗传育种的分子生物学基础研究——对我国农业重大基础研究项目的建议[J]. 中国畜牧杂志. 1998,34(3):52-54
    [59] 吴常信. 对建立“农业动物分子遗传育种与种质资源保存工程中心”的建议[J]. 中国畜牧杂志. 1999,35(5):3-4
    [60] 吴常信. 畜禽遗传资源保存的学术思想与技术[J]. 中国家禽. 2000,22(7):4-5
    [61] 吴常信. 畜禽遗传资源保存的理论与技术[J]. 家畜生态. 2001,22(1):1-4
    [62] 吴常信. 家禽遗传资源与地方鸡种在家禽生产中的利用[J]. 中国家禽. 2001,23(23):3-7
    [63] 耿荣庆. 对我国家禽遗传资源保存和利用的建议[J]. 中国家禽. 2000,22(9):3-4
    [64] 常万存,贾青,路兴中. 以冷冻配子和胚胎保存动物遗传资源的可行性[J]. 中国畜牧杂志. 1998,34(1):49-50
    [65] 于希江. 畜禽遗传资源的地理信息系统[J]. 中国畜牧杂志. 1999,35(3):3-5
    [66] 陈幼春. 中国家畜多样性保护的意义[J]. 生物多样性. 1995,3(3):143-146
    [67] Yoshida M. Conservation of sperms: current status and new trends. Animal Reproduction Science, 2000, 60/61: 349-355
    [68] 《中国畜禽遗传资源状况》编委会. 中国畜禽遗传资源状况[M]. 北京:中国农业出版社. 2004:12-35
    [69] http://www.ars-grin.gov/
    [70] World Bank. Terms of Reference for a Desk Study of the Genetic Base of Fine Wool Sheep in Gansu Province and Xinjiang Autonomous Region in China. 2001
    [71] 赵有璋主编. 羊生产学[M]. 北京:中国农业出版社. 2000:79-85
    [72] 雷良煜,王萍,关却扎西. 试论青海细毛羊业可持续发展战略[J]. 青海畜牧兽医杂志. 2000,30(5):33-34
    [73] 孟学平,任振湖,宋彩琴,等. 兴安细毛羊血液生化指标及羊毛氨基酸含量的测定[J]. 中国养羊. 1994(2):23-25
    [74] 单振福. 敖汉毛肉兼用细毛羊[J],中国养羊,1984(2):1-2
    [75] 《青海省家畜家禽品种志》编辑委员会. 青海省畜禽品种志[M],1983:21-26
    [76] 青海省地方标准. 青海细毛羊[J]. 中国养羊,1995(3):47
    [77] 会讯. 新疆细羊毛生产者协会[J]. 总第 11 期
    [78] 新疆优质细羊毛“萨帕乐”品牌企业标准[S]. 2001
    [79] 中国养羊编辑部. 甘肃高山细毛羊品种简介[J]. 中国养羊. 1996(3):封三
    [80] 中国农业科学院兰州畜牧研究所. 我国高寒山区第一个绵羊新品种——甘肃高山细毛羊[J]. 中国半细毛羊. 1983(1):12-17
    [81] 马海正. 甘肃高山细毛羊选育提高及推广利用研究总结报告[J]. 中兽医医药杂志. 1989(专辑):10-18
    [82] 文志强. 甘肃优质羊毛现代生产技术管理体系的研究工作总结[J]. 中兽医医药杂志. 2000(增):68-70
    [83] 文志强. 皇城羊场剪毛分级操作规程[J]. 中兽医医药杂志. 2000(增):70-71
    [84] 马海正. 中国美利奴高山型细毛羊新类群的培育项目可行性研究报告[J]. 中兽医医药杂志. 2000(专辑),附件 2
    [85] 马海正. 甘肃高山细毛羊选育提高及推广利用研究总结报告[J]. 中兽医医药杂志. 1989(专辑):10-18
    [86] 关于 8456 号项目的谅解备忘录[Z]. 中国养羊. 1989(增):1-17
    [87] 王荣鑫,马森,张才骏,等. 青海毛肉兼用细毛羊的 24 项生理、生化参数研究报告[J]. 青海畜牧兽医杂志. 1985,(6):1-6
    [88] 马森,王荣鑫,张才骏,等. 青海高原家畜生理生化参数[J]. 青海畜牧兽医杂志. 1994,24(4):36-41
    [89] 朱海,热西旦,张扬,等. 中国美利奴(新疆型)羊血红蛋白多态性与生产性能的关系[C]. 第三届全国畜禽遗传标记研讨会论文汇编. 1992:101
    [90] 贺林. 解码生命——人类基因组计划和后基因组计划[M]. 北京:科学出版社. 2000: 3-175
    [91] 杨金水. 基因组学[M]. 北京:高等教育出版社. 2002:21-36
    [92] 林侠,李彦,张秀清,等译. 人类基因组——我们的 DNA[M]. 北京:科学出版社. 2003
    [93] 张细权,吴显华. 关于遗传标记的定义与种类的讨论[C]. 第三届全国畜禽遗传标记研讨会论文汇编. 1992:7~8
    [94] 李明刚. 高级分子遗传学[M]. 北京:科学出版社. 2004:19-196
    [95] Falconer D. S. Introduction to quantitative genetics [M]. Longman. London 1981
    [96] Hubby J. L., Lewontin R. C. A molecular approach to the study of genetic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobseura [J]. Genetics. 1966,54: 577-594
    [97] Harris H. Enzyme polymorphism in man. Proc Soc Lond B. 1966,184:298-310
    [98] 杨晓军. 藏系绵羊遗传多样性及其品种(系)分化的研究[D]. 甘肃农业大学博士毕业论文. 2001
    [99] 根井正利(王家玉译). 分子群体遗传学与进化论[M]. 北京:农业出版社. 1975
    [100] Nei M. Molecular Evolution Genetics [M]. New York:Colombia University Press. 1987
    [101] Grodijker T. Cold Spring Harbor Symp Quant Biol. 1974, 39: 436-439
    [102] Mullis K. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction [J]. Methods in Enzymology. 1987, 155:338-350
    [103] William J.G.K. DNA polymorphism amplified by arbitrary primers are usefulgenetics markers [J]. Genomics. 1990, 21: 63-70
    [104] Welsh J, Mccleu M. Fingerprinting genome using PCR with arbitrary primers [J]. Nuc. Aci. Res. 1990, 18:1213-1218
    [105] Skinner D. M. The sequence of a hermit crab satellite DNA is (TAGG)n-(ATCC)n [J]. Biochemistry. 1974, 13: 3930-3937
    [106] Zabean M.,Vos P. European patent 0535858 A1[P]. 1993-03-31
    [107] Jeffreys A. J. Hypervariable minisatellite region in human DNA [J]. Nature. 1985, 314:67-73
    [108] Brien S. J. Mammalian genome mapping: Lesson and prospects [J]. Current Opinion in Genetics and Development. 1991.105-111
    [109] 刘长国. DNA 标记技术研究进展[J]. 黄牛杂志. 2001,27(6):41-45
    [110] 秦国庆,常洪. 家畜 DNA 分子标记及其研究进展(上)[J]. 黄牛杂志. 1999,25(2):40-45
    [111] 秦国庆,常洪. 家畜 DNA 分子标记及其研究进展(下)[J],黄牛杂志. 1999,25(2):39-44
    [112] 沈富军,王杰. 应用 DNA 多态性进行杂种优势预测的方法[J]. 草食家畜. 1999,3:16-18
    [113] 孙超,杜森有. 家畜遗传多样性及其检测方法[J]. 黄牛杂志. 1999,25(3):4-8
    [114] 宋铭晶. 动物种群遗传多态性研究中的 PCR 技术[J]. 动物学杂志. 2003,38(1):93-97
    [115] 吕慎金. 微卫星标记对绵山羊品种资源的评价[J]. 黑龙江畜牧兽医. 2002,10:11-12
    [116] Beckmann J. S., Weber J. L. Survey of human and rat microsatellites [J]. Genomics. 1992, 12: 627-631
    [117] Primmer C. R., Raudsepp T., Chowdhary B. P., et al. Low frequency of microsatellites in the avian genome [J]. Genome Res. 1997, 7: 471-482
    [118] Temnykh S., Declerck G., Lukashova A., et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential [J]. Genome Res. 2001, 11: 1441-1452
    [119] Bruford M. W., Bradley D. G., Luikart G. DNA markers reveal the complexity of livestock domestication [J]. Nat. Rev. Gen. 2003, 4: 900-910
    [120] Nei M., Kumar S. Molecular Evolution and Phylogenetics(吕宝忠,钟扬,高莉萍,等译. 分子进化与系统发育)[M]. 北京:高等教育出版社. 2002,204-207
    [121] Barendse W., Armitage S. M., Kossarek L. M., et al. A genetic linkage map of the bovine genome [J]. Nat. Genet. 1994, 6: 227-235
    [122] Crawford A. M., dodds K. G., Ede A. J., et al. An autosomal genetic linkage map of the sheep genome [J]. Genetics. 1995, 140: 703-724
    [123] Dib C., Faure S., Fizames C., et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites [J]. Nature. 1996, 380: 152-154
    [124] Vaiman D., Schibler L., Bourgeois F., et al. A Genetic Linkage Map of the Male Goat Genome [J]. Genetics. 1996, 144: 279-305
    [125] Kappes S., Keele J., Stone R., et al. A second –generation linkage map of the bovine genome [J]. Genome Res. 1997, 7: 235-249
    [126] Lindgren G., Sandberg K., Persson H., et al. A primary male autosomal linkagemap of the horse genome [J]. Genome Res. 1998, 8: 951-966
    [127] Steen R. G., Kwitek-Black A. E., Glenn C., et al. A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat [J]. Genome Res. 1999, 9: 1AP-8
    [128] Farnir F., Coppieters W., Arranz J-J., et al. Extensive genome-wide linkage disequilibrium in cattle [J]. Genome Res. 2000, 10: 220-227
    [129] Woods I. G., Kelly P. D., Chu F., et al. A comparative map of the Zebrafish genome [J]. Genome Res. 2000, 10: 1903-1914
    [130] Breen M., Jouquand S., Renier C., et al. Chromosome-specific single-locus FISH probes allow anchorage of an 1800-marker integrated radiation-hybrid/ linkage map of the domestic dog genome to all chromosomes [J]. Genome Res. 2001, 11: 1784-1795
    [131] Kong A., Gudbjartsson D. F., Sainz J., et al. A high-resolution recombination map of the human genome [J]. Nat. Genet. 2002, 31: 241-247
    [132] Slate J., Vanstijn T. C., Anderson R. M., et al. A deer (subfamily cervinae) genetic linkage map and the evolution of ruminant genomes [J]. Genetics. 2002, 160: 1587-1597
    [133] Pariset L., Savarese M. C., Cappuccio I., et al. Use of microsatellites for genetic variation and inbreeding analysis in Sarda sheep flocks of central Italy [J]. J. Anim. Breed. Genet. 2003, 120: 425-432
    [134] Koskinen M. T., Bredbacka P. A convenient and efficient microsatellite-based assay for resolving parentages in dogs [J]. Anim. Genet. 1999, 30: 148-149
    [135] Luikart G., Biju-duval M.-P., Ertugrul O., et al. Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus)[J]. Anim. Genet. 1999, 30: 431-438
    [136] Denise S., Johnston E., Halverson J., et al. Power of exclusion for parentage verification and probability of matck for identity in American kennel club breeds using 17 canine microsatellite markers [J]. Anim. Genet. 2004, 35: 14-17
    [137] Bjornstad G., Gunby E., Roed K. H. Genetic structure of Norwegian horse breeds [J]. J. Anim. Breed. Genet. 2000, 117: 307-317
    [138] Mburu D. N., Ochieng J. W., Kuria S. G., et al. Genetic diversity and relationships of indigenous Kenyan camel (Camelus dromedaries) populations: implications for their classification [J]. Anim. Genet. 2003, 34: 26-32
    [139] Akamizu T., Sale M. M., Rich S. S., et al. Association of autoimmune thyroid disease with microsatellite markers for the thyrotropin receptor gene and CTLA-4 in Japanese patients [J]. Thyroid. 2000, 10: 851-858
    [140] Berzina L., Shtauvere-brameus A., Rumba I., et al. Microsatellite allele A5.1 of MHC class I chain-related gene A is associated with latent autoimmune diabetes in adults in Latvia [J]. Ann. N. Y. Acad. Sci. 2002, 958, 353-356
    [141] Kohn M. H., York E. C., Kamradt D. A., et al. Estimating population size by genotyping faeces [J]. Pro. R. Soc. Lond. B. Biol. Sci. 1999, 266: 657-663
    [142] Eggert L. S., Eggert J. A., Woodruff D. S. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana [J]. Mol. Ecol. 2003, 12: 1389-1402
    [143] Machugh D. E., Loftus R. T., Cunningham P., et al. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers [J]. Anim. Genet. 1998, 29: 333-340
    [144] Barker J. S. F., Tan S. G., Moore S. S., et al. Genetic variation within and relationships among populations of Asian goats ( Capra hircus) [J]. J. Anim. Breed. Genet. 2001, 118: 213-233
    [145] Hillet J., Groenen M. A. M., Tixier-Boichard M., et al. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools [J]. Genet. Sel. Evol. 2003, 35: 533-557
    [146] Yang S.-L., Wang Z.-G., Liu B., et al. Genetic variation and relationships of eighteen Chinese indigenous pig breeds [J]. Genet. Sel. Evol. 2003, 35: 657-671
    [147] Roy M. S., Geffen E., Smith D., et al. Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci [J]. Mol. Biol. Evol. 1994, 11: 553-570
    [148] Machugh D. E., Shriver M. D., Loftus R. T., et al. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos Taurus and Bos indicus) [J]. Genetics. 1997, 146: 1071-1086
    [149] Beaumong M., Barratt E. M., Gottelli D., et al. Genetic diversity and introgression in the Scottish wildcat [J]. Mol. Ecol. 2001, 10: 319-336
    [150] Nijman I. J., Otsen M., Verkaar E. L., et al. Hybridization of banteng (Bos javanicus) and zebu (Bos idicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites [J]. Heredity. 2003, 90: 10-16
    [151] Pierpaoli M., Biro Z. S., Herrmann M., et al. Genetic distinction of wildcat (Felis silvestris) populations in Europe and hybridization with domestic cats in Hungary [J]. Mol. Ecol. 2003, 12: 2585-2598
    [152] Vila C., Walker C., Sundqvist A. K., et al. Combined use of maternal, paternal and bi-parental genetic markers for the idendification of wolf-dog hybrids [J]. Heredity. 2003, 90: 17-24
    [153] Rits L. R., Glowatzki-Mullis M. L., Machugh D. E., et al. Phylogenetic analysis of the tribe bovini using microsatellites [J]. Anim. Genet. 2000, 31: 178-185
    [154] Klukowska J., Strabel T., Mackowski M., et al. Microsatellite polymorphism and genetic distances between the dog, red fox and arctic fox [J]. J. Anim. Breed. Genet. 2003, 120: 88-94
    [155] 陆建身. 中国生物资源[M]. 上海:上海科技教育出版社. 1999,283-317
    [156] Machugh D. E., Loftus R. T., Bradley D. G., et al. Microsatellite DNA variation within and among European cattle breeds [J]. Proc. R. Soc. Lond. B. Biol. Sci. 1994, 256: 25-31
    [157] Hanotte O., Bradley D. G., Ochieng J. W., et al. African pastoralism: genetic imprints of origins and migrations [J]. Science. 2002, 296: 336-339
    [158] Maudet C., Luikart G., Taberlet P. Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis [J]. J. Anim. Sci. 2002, 80: 942-950
    [159] Beja-Pereira A., Alexandrino P., Bessa I., et al. Genetic characterization of southwestern European bovine breeds: a historical and biogeographical reassessment with a set of 16 microsatellites [J]. Hered. 2003, 94: 243-250
    [160] Diez-Tascon C., Littlejohn R. P., Almeida P. A., et al. Genetic variation within the Merino sheep breed: analysis of closely related populations using microsatellites [J]. Anim. Genet. 2000, 31: 243-251
    [161] Tapio M., Miceikiene I., Vilkki J., et al. Comparison of microsatellite and blood protein diversity in sheep: inconsistencies in fragmented breeds [J]. Mol. Eco. 2003, 12: 2045-2056
    [162] Saitbekova N., Gaillard C., Obexer-Ruff G., et al. Genetic diversity in Swiss goat breeds based on microsatellite analysis [J]. Anim. Genet. 1999, 30: 36-41
    [163] Li M. H., Zhao S. H., Bian C., et al. Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis [J]. Genet.Sel. Evol. 2002, 34: 729-744
    [164] Laval G., Iannuccelli N., Legault C., et al. Genetic diversity of eleven European pig breeds [J]. Genet. Sel. Evol. 2000, 32: 187-203
    [165] Lemus-Flores C., Ulloa-Arvizu R., Ramos-Kurl M., et al. Genetic analysis of Mexican hairless pig populations: J. Anim. Sci. 2001, 79: 3021-3026
    [166] Fan B., Wang Z. G., Li Y. J., et al. Genetic variation analysis within and among Chinese indigenous swine populations using microsatellite markers [J]. Anim. Genet. 2002, 33: 422-427
    [167] Takahashi H., Nirasawa K., Nagamine Y., et al. Genetic relationships among Janapese native breeds of chicken based on microsatellite DNA polymorpisms [J]. J. Hered. 1998, 89: 543-546
    [168] Bjornstad G., Roed K. H. Breed demarcation and potential for breed allocation of horses assessed by microsatellite markers [J]. Anim. Genet. 2001, 32: 59-65
    [169] Cunningham E. P., Dooley J. J., Splan R. K., et al. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses [J]. Anim. Genet. 2001, 32: 360-364
    [170] Tozaki T., Takezaki N., Hasegawa T., et al. Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup [J]. J. Hered. 2003, 94: 374-380
    [171] Kimura M., Crow J. F. The number of alleles that can be maintained in a finite population [J]. Genetics. 1964, 49: 725-738
    [172] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative sutdyes of nucleotide sequences [J]. J. Mol. Evol. 1980, 16: 111-120
    [173] Haldane J. B. S. An exact test for randomness of mating [J]. Genetics. 1954, 52: 631-635
    [174] Guo S. W., Thompson E. A. Performing the exact test of hardy-Weinberg proportion for multiple alleles [J]. Biometrics. 1992, 48: 361-372
    [175] Chakrabort R., Zhong Y. Statistical power of an exact test of Hardy-Weinberg propottions of genotypic data at a multiallelic locus [J]. Hum. Hered. 1994, 44: 1-9
    [176] Raymond M., Rousset F. GENETOP: population genetics software for exact tests and ecumenicism [J]. J. Hered. 1995, 86: 248-24
    [177] Wilson, A. C., Carlson S. S., White T. J. Biochemical evolution[J]. Annu. Rev.Biochem. 1977, 46: 573-639.
    [178] Dayhoff M. O., Schwartz R. M., Orcutt B. C. A model of evolutionary change in proteins. In Atlas of protein sequence and structure (M.O.Dayoff, et.), 1978 : 345-352. National Biomedical Research Foundation, Silver Spring, MD.
    [179] Atchley W. R., Fitch W. M., Bronner-Fraser M. Molecular evolution of the MyoD family of transcription factors [J]. Proc.Natl. Acad. Sci. 1994, USA. 91: 11522-11526.
    [180] Goodwin R. L, Baumann H., Berger F. G. Patterns of divergence during evolution of α1 proteinase inhibition in mammals [J]. Mol. Biol. Evol. 1996, 13: 346-358.
    [181] Jermann T. M., Opitz J. G., Stackhouse J., et al. Reconstructing the evolutionary history of the artiodactyls ribonuclease superfamily [J]. Nature. 1995, 347: 57-59.
    [182] Chandrasekharan U. M., Sanker S., Glynias M. J., et al. Angiotensin II-forming activity in a reconstructed ancestral chymase [J]. Science. 1996, 271: 502-505.
    [183] Sokal R. R., Sneath P. H. A. Principles of numerical taxonomy. Freeman, San Francisco, CA.
    [184] Cavalli-Sforza L. L., Edwards A. W. F.Analysis of human evolution. In Proc. 11th Intl. Cong. Genet., 1964: 923-933. Pergamon, New York.
    [185] Cavalli-Sforza L. L., Edwards A. W. F. Phylogenetic analysis: models and estimation procedures [J]. Am. J. Hum. Genet. 1967, 19: 233-257
    [186] Satou N. Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Mol. Biol. Evol. 1987, 4: 406-425
    [187] 盛志廉. 论保护家畜多样性[M]. 见:杨茂成主编. 第八次全国动物遗传育种学术会议论文集. 北京:中国农业科技出版社. 1995:1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700