常用装饰木材表面特性及美感度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材具有大自然赋予的独特美感以及优越的材料特性,在室内环境装饰及家具制作等方面发挥举足轻重的作用。本论文借鉴心理物理学方法进行装饰木材美感度单因素分析,并构建了装饰木材美感度模型。比较分析了筒状非洲楝、古夷苏木、水曲柳、杉木4种常用装饰木材素材表面特性的差异;系统分析了微波处理前后4种常用装饰木材表面特性的差异以及4种常用装饰木材素材与微波处理材在加速老化过程中表面特性的变化规律;应用红外光谱法测定分析装饰木材微波处理和加速老化处理前后表面特性变化的机理。
     4种常用装饰木材素材表面特性分析表明,在CIE(1976)L*a*b*色空间中,筒状非洲楝和古夷苏木明度L*平均值较低,这两种木材属于深材色树种,其独有的高雅华贵色调,营造出一种法式宫廷的韵味,给人予深沉、稳重、肃雅之感;杉木明度L*平均值为70.28,属于较高明度。浅色系的水曲柳和杉木作为家具和室内装饰材料让人感到明快、整洁、高雅和舒畅。从整体分布情况来看,4种常用装饰木材的a*和b*都分布在0以上的范围,明度分布在40以上的范围,色调标号都分布在YR的区间。单位时间内4种常用装饰木材表面接触角的变化率可知,古夷苏木和水曲柳的表面润湿性大于筒状非洲楝和杉木。
     装饰木材美感度单因素分析,结果表明:深暗色的装饰木材美感度平均值最高,无色至浅的装饰木材美感度最小;不同硬度的装饰木材美感度表现为:硬>中等>软,表面硬度较高的装饰木材大众喜好度最高;表面光滑的装饰木材的美感度最高,表面粗糙的装饰木材大众喜好度最低。借鉴心理物理学方法,用表面粗糙度、表面硬度、颜色、年轮宽度、年轮明显度、结构细致度、剖面和色差8个项目构建的装饰木材美感度多元数量化模型为: Z=-0.391-0.364X1-1-0.294X1-2-0.175X1-3-0.15X2-1-0.097X2-2-0.114X4-1-0.232X4-2+0.089X5-1 -0.039X5-2-0.065X6-1+0.097X6-2+0.291X8-1+0.061X8-2+0.546X10-1+0.342X10-2+0.438X11-1+0.262X11-2;通过复相关系数检验可知,筛选出的8个因子和装饰木材喜好度之间具有极显著相关性。人们对装饰木材的喜好度随着表面硬度的增大而增大,随着表面粗糙度的增大而减小;对深暗色装饰木材的喜好度高于其它三种颜色,色差略明显或结构细致的装饰木材大众喜好度较高。年轮明显且宽度中等的木材斜切面最受大众推崇。
     经不同强度、不同时间微波处理后,4种常见装饰木材微波处理材的明度L*、红绿轴色品指数a*和饱和度C值均有降低,其材色向低明度且低饱和度的方向变化;微波处理使深材色树种(筒状非洲楝和古夷苏木)的黄蓝轴色品指数b*值降低,浅材色装饰木材(水曲柳和杉木)的黄蓝轴色品指数b*值升高。微波强度、微波时间对材色变化均有影响。除黄蓝轴色品指数b*外,同一微波强度处理下,材色各参数值随微波处理时间的延长而降低,低强度长时间微波处理相比高强度短时间微波处理对4种常见装饰木材材色影响更显著。经不同强度、不同时间微波处理后,4种常见装饰木材表面润湿性显著降低。微波强度、微波时间对木材表面润湿性均有影响。同一微波强度处理下,木材表面润湿性随微波处理时间的延长而降低,高强度短时间微波处理相比低强度长时间微波处理对4种常见装饰木材表面润湿性的影响更显著。
     随着老化时间的延长,4种常见装饰木材表面明度呈现增加的趋势,红绿轴色品指数随着老化周期的增加而降低,黄蓝轴色品指数随着老化周期的增加而增加,老化处理后木材表面的颜色向偏白、偏绿和偏黄的角度变化。高强度短时间微波处理材和低强度长时间微波处理材同一老化周期后的表面材色参数变化规律无明显差异,其变化趋势基本保持一致。加速老化使得微波处理材表面的润湿性增加。同一个老化周期后,微波处理材表面动态接触角始终大于未处理材表面动态接触角。同微波强度处理下,短时间微波处理材表面动态接触角小于长时间微波处理材动态接触角;高强度短时间微波处理材和低强度长时间微波处理材同一老化周期后表面润湿性变化规律无明显差异。
     应用红外光谱法测定分析了4种常用装饰木材素材及经过微波和加速老化处理后木材官能团变化情况。微波处理后,木材表面羟基数目减少,高强度短时间微波处理比低强度长时间微波处理对木材表面羟基数目的减少影响更显著,这可能是由于微波改性处理使得木材表面的活性基团相互结合而丧失了相互吸引的能力,这种的结合难以破坏或者极性难以恢复,导致其表面润湿性降低;微波处理材的特征吸收峰相对强度比值均低于素材,乙酰基和纤维伯羟基的吸收减弱,此时木材可能已发生脱乙酰基、脱水和热分解现象。高强度短时间微波处理材的吸收峰相对强度比值大于低强度长时间微波处理材的吸收峰相对强度比值,这就佐证了微波改性处理使木材表面颜色发生变化,降低了微波处理材表面的润湿性,微波改性处理的强度和时间均对木材的颜色和表面润湿性有影响,高强度短时间微波处理对木材润湿性影响更显著;低强度长时间微波处理对木材颜色影响更显著的结论。各个老化周期后,微波处理材的特征吸收峰相对强度比值小于素材,低功率长时间微波改性处理材特征吸收峰相对强度比值小于高功率短时间微波改性处理材。各个老化周期中木材素材、低功率长时间微波改性处理材和高功率短时间微波改性处理材各自的特征吸收峰相对强度比值略有差别,但总体上变化趋势无明显差异。这就佐证了高强度短时间微波处理材和低强度长时间微波处理材在同等的老化条件下,表面材色参数和润湿性变化趋势无明显差异,基本保持一致的结论。
Wood played an important role in indoor environment decoration and furniture manufacture because of its unique beauty and superior material properties granted by the nature.This paper conducted single factor analyses of decorative wood for reference to psychophysical method and constructed aesthetic perception model of decorative wood. This paper analyzed the difference of surface properties between Entandrophragma cylindricum、Guibourtia tessmannii、Fraxinus mandshurica and Cunninghamia lanceolata comparatively, analyzed not only the difference of surface properties between 4 common decorative wood before and after microwave processing but also the variation regularity of surface properties of 4 original decorative wood and microwave processing wood during accelerated aging systematically. Finally, this paper alalyzed the variation mechanism of decorative wood’surface properties before and after microwave processing and accelerated aging by FT-IR.
     Analyses of the surface properties for 4 original decorative wood indicated that in CIE(1976)L*a*b* color dimension, Entandrophragma cylindricum and Guibourtia tessmannii had lower brightness which belonged to deep-color woods. Their unique elegant and grand hue constructed a kind of french palace appeal that made people feel deep、prudent and elegant. The average of Cunninghamia lanceolata’s brightness was 70.28 which belonged to higher brightness. Fraxinus mandshurica and Cunninghamia lanceolata with light color made people feel bright、neat、elegant and satisfied when they were used as furniture and indoor decoration materials. Taken as a whole, the values of a* and b* of 4 common decorative wood were above 0, the brightness were above 40 and the values of H were within YR region. The surface wettability of Guibourtia tessmannii and Fraxinus mandshurica were better than those of Entandrophragma cylindricum and Cunninghamia lanceolat according to the variance rate of 4 decorative wood‘s surface wettability per unit time.
     Single factor analyses of the aesthetic perception for decorative wood indicated that the average value of aesthetic perception of dark-colored decorative wood was the highest, the average value of aesthetic perception of colorless to light-colored decorative wood was the lowest. The rank of decorative wood aesthetic perception of different hardness was: hard>middling>soft, the public approval of decorative wood with higher surface hardness was the highest. The aesthetic perception of decorative wood with smooth surface was the highest and the public approval of decorative wood with rough surface was the lowest. Eight main factors such as surface roughness, surface hardness, color, width of growth ring, clearness of growth ring, fineness of architecture, section, color difference were used to establish aesthetic perception model of decorative wood by using psychophysical method:
     Z=-0.391-0.364X1-1-0.294X1-2-0.175X1-3-0.15X2-1-0.097X2-2-0.114X4-1-0.232X4-2+0.089X5-1-0.039X5-2-0.065X6-1+0.097X6-2+0.291X8-1+0.061X8-2+0.546X10-1+0.342X10-2+0.438X11-1+0.262 X11-2; There was extremely significant correlation between the eight factors which were screened out and the decotative wood’s public approval by multiple correlation coefficient test. The public approval of decorative wood increased with the increase of surface hardness and decreased with the increase of surface roughness. The public approval of dark-colored decorative wood was higher than that of other three colors. The decorative wood with little color difference or fine architecture had higher public approval. Scarf of the wood with clear and middling width growth ring was well praised by the public.
     The values of three color parameters such as L*、a* and C of 4 common decorative wood all decreased after microwave processing either by different power or by different time and also the surface color changed into low-brightness and low-saturation. Microwave processing decreased the values of b* of dark-colored wood (Entandrophragma cylindricum and Guibourtia tessmannii) but increased the values of b* of light-colored wood (Fraxinus mandshurica and Cunninghamia lanceolata). Both microwave power and microwave time had some influence on the change of surface color. Most parameters of surface color except b* decreased with the prolongation of microwave processing time. Microwave processing by low-power and long-time had more significant influence on the surface color of 4 common decorative wood than microwave processing by high-power and short-time did. The wettability of 4 common decorative wood decreased significantly after microwave processing by different processing power and processing time. Both microwave power and microwave time had some influence on the surface wettability of wood. The surface wettability of wood decreased with the prolongation of microwave time by the same microwave processing power, moreover, microwave processing by high-power and short-time had more significant influence on the surface wettability of 4 common decorative wood than microwave processing by low-power and long-time did.
     Along with the prolongation of aging time, the surface brightness of 4 common decorative wood increased, the value of a* decreased and the value of b* increased. The surface color of wood became a little more white、a little more green and a little more yellow after aging processing. There was no significant difference in all parameters of surface color between microwave processing by high-power, short-time and microwave processing by low-power, long-time after same accelerated aging period and both preserved the similar variation trend. Accletated aging increased the surface wettability of microwave processing wood. The dynamic contact angles of microwave processing wood were always bigger than those of unprocessing wood after same accelerated aging period. The dynamic contact angles of short-time microwave processing wood were smaller than those of long-time microwave processing wood by the same power. There was no significant difference in variation regularity of surface wettability between microwave processing wood by high-power, short-time and microwave processing wood by low-power, long-time.
     This paper analyzed the functional groups variation conditions of 4 common original decorative wood, microwave processing wood and acclerated aging processing wood by infrared spectroscopic method. The number of hydroxyl groups decreased after microwave processing. Microwave processing by high-power, short-time had more significant influence on the decrease of hydroxy groups than microwave processing by low-power, long-time did, because the active groups mutual combined after microwave processing and lost the ability of interattraction. Because the combination was hard to deatroy or the polarity was hard to recovered, the wettability of microwave processing wood decreased. Deacetylation、dehydration and thermal decomposition of microwave processing wood might happened because the relative strength ratios of characteristic absorption peak of microwave processing wood were all lower than those of original wood and the absorption of acrtyl groups and fiber primary hydroxyl groups decreased. The relative strength ratios of characteristic absorption peak of microwave processing wood by high-power, short-time were higher than those of microwave processing wood by low-power, long-time, which confirmed that microwave processing changed the surface color of wood and decreased the surface wettability of microwave processing wood. Both power and time of microwave processing had some influence on the surface color and the wettability of wood, moreover, microwave processing by high-power, short-time had more significant influence on the wettability of wood and microwave processing by low-power, long-time had more significant influence on the surface color of wood. The relative strength ratios of characteristic absorption peak of microwave processing wood were lower than those of original wood , moreover, the relative strength ratios of characteristic absorption peak of microwave processing wood by low-power, long-time were lower than those of microwave processing wood by high-power, short-time after every aging period. There was a slightly difference in respective relative strength ratios of characteristic absorption peak of original wood, microwave processing wood by low-power, long-time and microwave processing wood by high-power, short-time after every aging period, but the variation trend showed no obvious difference generally which confirmed that there were no significant difference in the variation trend of surface color and wettability between microwave processing wood by high-power, short-time and microwave processing wood by low-power, long-time under the same aging condition.
引文
[1]于海鹏,刘一星,刘迎涛.国内外木质环境学的研究概述[J].世界林业研究.2003,16(6):20-22.
    [2]李永祥,高志华.我国木材加工产品在室内装饰工程中应用概况与发展[J].木材加工机械,1999,(1):9-10.
    [3]Sony-Yung Wang.The conditioning effect of wooden interior finish on room temperature and relative humidity in Taiwan.木材学会志,1996,42(1).
    [4]山天正编.住ぃと木材[M].京都:海青社出版社,1990.
    [5]曹金珍,赵广杰.木质室内装饰材料对环境湿度的调节功能Ⅰ,Ⅱ,Ⅲ[J].林业科学,1998,34(5);103-111;1999,35(5):87-93;2000,36(4):55-58.
    [6]陈载永.木质壁板隔音性之研究(一)——声音透过损失之测定与分析[J].林产工业(台),1996,14(1).
    [7]刘一星.木材视觉环境学[M].哈尔滨:东北林业大学出版社,1994.
    [8]Sullivan J.D.Color characterization of wood:spectrophotometry and wood color[J].Forest Prod.J.,l967.17(7).
    [9]Moslemi A.A.Quantitative color measurement for loblolly pine veneer[J].Wood Sci.,l969,2(1).
    [10]Nelson N.D.& Coppock W.A.Quantitative color values of the heart—wood of various Australian species[J].Australian Forestry,l970,(4).
    [11]Vetter R.E., Coradin,Martino et al 1990 Wood color determination[J].IAW A Bulletin,l1(4):429-439.
    [12]大庭喜八郎.ヌキの心材材色の育种につぃて[J].林木の育种.1977(105):25-30.
    [13]王雁,陈鑫峰.心理物理学方法在国外森林景观评价中的应用[J].林业科学,1999,35(5):116-117.
    [14]张翔,申宗圻.木材材色的定量表征[J].林业科学.1990,26(4):344-352.
    [15]刘一星,李坚,徐子材,等.我国110个树种木材表面视觉物理量的综合统计分析[J].林业科学,1995,31(4):353-359.
    [16]刘一星,李坚,郭明辉,等.中国110种木材表面视觉物理量分布特征[J].东北林业大学学报,1995,23(1):52-57.
    [17]段新芳.人工毛白杨木材材色测定及其株间变异[J].东北林业大学学报,1999,27(6):26-30.
    [18]刘元.木材光变色及其防治方法[J].木材工业,1995,9(4):94-97.
    [19]朱林峰,刘元,罗玉华.粗皮桉不同家系木材的表面视觉特性[J].中南林学院学报,2004,24(4):41-43.
    [20]罗玉华,朱林峰,刘元,等.巨桉不同家系木材表面视觉性质的研究[J].林业科技开发,2005,19(2):26-28.
    [21]何江,吴书泓.木材的液化及其高分子材料中的应用[J].木材工业,2002,16(2):9.
    [22]何江,吴书泓.木材的液化及其高分子材料中的应用[J].木材工业,2002,16(2):11.
    [23]Morita M,Yamawaki Y,Shigematsu M,et al Preparation and properties of a cyanoethylated latex[J].Mokuai Gakkaishi,1990,36(8):659-664.
    [24]李小兵,刘莹.固体表面润湿性机理及模型[J].功能材料,(38):3919-3921.
    [25]Gray, V.R.1962.The wettability of wood[J].For Prod J.12(9),452-461.
    [26]Wenzel, R.N.1936.Resistence of solid surface to wetting by water[J].Ind Eng Chen.28,988-994.
    [27]Hse,C.Y.1971.Properties of phenolic adhesives as trelated to bong quality in southern pine plywood[J].For Prod. J.21(1),44-52.
    [28]Hse,C.Y.1972.Wettability of southern pine vennr by phenol formaldehyde wood adhesive[J].For Prod J.12(9),452-461.
    [29]Freeman,H.A.1959.Relation between physical and chemical properties of wood adhesion[J].For Prod J.9(12),451-458.
    [30]Herczeg,A.1965. Wettability of wood[J].For Prod.J.12(9):492-461.
    [31]Chen,C.1970.Effect of extractive removal on adhesion and wettability of some tropical woods[J].For Prod J.20(1),451-458.
    [32]Kajita,H.1992.Wettability of the surface of some American sofewoods species[J].Monkuzai Gakk,38,516-521.
    [33]Young R.A.et al.Bond formation by wood surface reaction[J].Wood Sic,1982,14(3):110-119.
    [34]Hodgson,K.T.1988.Dynamic wettability properties of single wood pulp fibers and their relationship to absorbency[J]. Wood fiber science,20,3-7.
    [35]Lee,S.B.and P.Luner.1972.The wetting and interfacial properties of lignin in[J].Tappi 55,116-121.
    [36]Hemingway,R.W.1969.Thermal instability if fats relative to surface wettability of yellowbirth[J].Tappi 52(11),2149-2155.
    [37]江泽慧,于文吉,余养伦.竹材表面润湿性研究[J].竹子研究汇刊,2005,24(4):31-33.
    [38]程瑞香,顾继友.落叶松、桦木和柞木木材表面的润湿性[J].东北林业大学学报,2002,30(3):29-31.
    [39]吕悦孝,薛振华,薛利忠.微波改性木材的超微观察[J].内蒙古林业科技,2001,4:31-32.
    [40]王喜明,薛振华,石丽惠,等.微波改性木材的初步研究[J].木材工业,2002,16(6):16.
    [41]李贤军,傅峰,周永东,等.木材微波改性技术研究进展[J].材料导报,2007,21(11A):295-297.
    [42]P.Vinden,Torgovnikov.Technique of Wood Microwave Modification[J].林产化工,2001,15(5).
    [43]王喜明,薛振华,张卫华.微波改性木材的初步研究[J].木材工业,2002,(6).
    [44]杨琳,刘洪海,王清文.微波辐射应用于改善落叶松木材渗透性的初探[J].中国林学会木材科学分会第九次学术研讨会论文集,哈尔滨,2003:559.
    [45]江泽慧,王喜明.桉树人工林木材干燥与皱缩[J].北京中国林业出版社,2003:42.
    [46]费本华,江泽慧,王喜明,等.预处理按树人工林木材干燥特性的比较研究[J].第九次全国木材干燥学术讨论会论文集,哈尔滨,2003:49.
    [47]赵荣军,王喜明,江泽慧,等.按树人工林微波处理材干燥特性和干燥基准[J].第九次全国木材干燥学术讨论会论文集,哈尔滨,2003:62.
    [48]牟群英,李贤军,盛忠志.木材微波加热厚度的确定[J].中南林学院学报,2006,26(1):101-102.
    [49]戴代兴,周铁军.室内装修材料的天然设计——论木材在现代室内设计中的运用[J].室内设计,1999,(3):41-44.
    [50]侯春花.居室装修材料的分类、特性及使用原则[J].河北建筑工程学院学报,2008,26(2):18-20.
    [51]宋志春.设计.材料.艺术魅力——浅谈材料在现代室内设计中的运用[J].辽宁师专学报,2003,(5):115.
    [52]郎维宏.试论室内设计中装饰材料的质感运用[J].贵州大学学报,2002,31(6):66-68.
    [53]罗建举.开展木材木材美学研究拓宽木材解剖学的应用[J].中国林业教育,2008,(4):25-27.
    [54]于海鹏,刘一星,刘镇波.应用心理生理学方法研究木质环境对人体的影响[J].东北林业大学学报,2003,31(6):70-72。
    [55]于海鹏,刘一星,刘镇波,等.基于改进的视觉物理量预测木材的环境学品质[J].东北林业大学学报,2004,32(6):39-41
    [56]刘一星.木材视觉环境学[M].哈尔滨:东北林业大学出版社,1994.
    [57]佐健道.机器にょろ测定值かろ视觉值への换算——Lab表色系かろヌンセル表色系への换算[J].木材工业(日),1985,40(12):19-20.
    [58]Mchale G,Newtom M I.[J].Colloids and Surfaces A,2002,206:193-201.
    [59]陈鑫峰,王雁.国内外森林景观的定量评价和经营技术研究现状[J].世界林业研究,2000,13(5):31-38.
    [60]Echelberger,H.E.The visual impact of wood harvests on forest aesthetics[J].(Doctoral dissertation).Syracuse, NY:SUNYCollege of Environmental Science and Foresty.1976:232.
    [61]Oka,K.,and Y.Ueno.Landscape management and selective cutting system in the Imasu District[J].Japan.Forest Recreation Research,1982,6:1-14.
    [62]Paquet J,Belanger L.Public acceptability thresholds of clear cutting to maintain visual quality of boreal balsam fie landscape[J].Forest Science,1977,43(1):46-55.
    [63]ROY S.BERNS编著.李小美,马如,陈立荣等译.颜色技术原理[M].北京:化学工业出版社,2002.
    [64]胡成发.印刷色彩与色度学[M].北京:印刷工业出版社,1993.
    [65]郑志峰.木材的颜色是如何产生[J].云南林业,2005,26(2):32.
    [66]刘一星,于海鹏,赵荣军.木质环境学[M].北京:科学出版社,2007.
    [67]王超,瞿明普,金莹杉.国内外风景林研究现状及趋势[J].林业调查规划,2006,31(5):48-52.
    [68]韦翠鸾,瞿明普,阎海平,等.风景林抚育研究进展[J].内蒙古农业大学学报,2004,25(1):116-117.
    [69]瞿明普,张荣,阎海平.风景评价在风景林建设中应用研究进展[J].世界林业研究.
    [70]陈鑫峰,贾黎明.京西山区森林林内景观评价研究[J].林业科学,2003,39(4):61-63.
    [71]陈鑫峰.京西山区森林景观评价和风景游憩林营建研究——兼论太行山区的森林游憩业建设[D].北京林业大学,2000
    [72]Davis K. P.Forestmanagement[M ].McGraw-Hill Book,Co.1966.
    [73]Daniel T C, Boster R S .Measuring landscape esthetics:The scenic beauty estimation method.USDA Forest Serv Res Rap RM—167,66 P. Rocky Mtn Forest and Range Exp Stn, Fort Collins, Colo,1976.
    [74]董文泉,周光亚.数量化理论及其应用[M].长春:吉林人民出版社,1979:1-48.
    [75]陈鑫峰,贾黎明.京西山区森林林内景观评价研究[J].林业科技,2003,39(4):64.
    [76]张文辉.杉木微波干燥工艺的研究[J].福建师范大学学报:自然科学版,2007,23(3):21-25.
    [77]EN927-6.Paints and varnishes-Coating materials and coating systems for exterior wood-Part6:Exposure of wood coatings to artificial aeathering using fluorescent UV and water[S].
    [78]池玉杰.6种白腐菌腐朽后的山杨木材和木质素官能团变化的红外光谱分析[J].林业科技,2005,41(2):730-732.
    [79]尹思慈.木材学[M].三河市:中国林业出版社,2002.
    [80]王清文,李坚,李淑君.用FTIR法研究木材阻燃剂FRW的阻燃机理[J].林业科学,2005,41(4):150-151.
    [81]Sarkanen K V.Species variation inlignins.Tappi,1967,50(12):583-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700