长白山天然水曲柳林木根系呼吸动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索根系功能、科学合理划分根系径级,本论文以长白山地区自然条件下水曲柳为研究对象,对水曲柳的根系呼吸特性、根系呼吸对温度和湿度以及养分的短期反映进行了研究。主要研究结果如下:
     1.水曲柳整体根系呼吸速率在林木根系生长和生理活动较为活跃的7月份达到最高水平,在测定时间内16、25、29和47年生水曲柳根系呼吸速率最小值均出现在11月份,其次是5月份。
     2.水曲柳不同径级单位根系表面积呼吸速率随着直径的增加而提高,不同根系径级间呼吸速率差异极显著(P<0.01),单位根系体积呼吸速率(P=0.048)和比呼吸速率(P=0.11)随根系直径的增加降低。
     3.基于根系表面积及干重测定的水曲柳的维持呼吸、生长呼吸和根系径级之间的关系与根系总呼吸速率和径级的关系一致,即:单位根系表面积呼吸速率随着根系径级的增加而提高,而单位根系干重呼吸速率则随着根系径级的增加降低。基于根系体积测定的水曲柳的生长呼吸和根系径级之间的关系与此一致,但维持呼吸变化规律相反。水曲柳的根系维持呼吸所占比例随着根系直径的加大而提高。
     4.水曲柳根系呼吸速率均随着测定温度的升高显著加强,同一温度下,单位根系表面积呼吸速率随着根系径级的增加而加强,单位根系体积和干重呼吸速率则随着根系径级的增加而降低。
     5.养分供给量对水曲柳根系呼吸有极显著的影响。氮供给量对单位体积呼吸速率和比呼吸速率的影响显著程度比对单位表面积根系呼吸速率的影响更加强烈,二者均达到了极显著水平(P<0.001)。
     6.根系径级<2mm、2-5mm和>5mm根系呼吸速率整体上与土壤温度、土壤湿度和土壤氮含量之间呈正相关趋势,即水曲柳不同径级根系呼吸随着土壤温度、土壤湿度和土壤氮含量在一定范围的提高而增加。不同土壤深度对水曲柳根系呼吸产生了极显著的作用。
To explore root function, scientifically and reasonably classifying root diameter, root respiration of natural Fraxinus mandshurica trees grown in the Changbai Mountain and its short-term responses to temperature, humidity and nutrient availability were studied in the paper. And the main results were as follow:
     1. The highest total root respiration rate of Fraxinus mandshurica occurred in July when the forest root growth and physiological activity is more active. The minimum value of root respiration rate of the trees of 16、25、29 and 47year-old appeared on May, and followed by November. The most possible reasons may be related to the low soil temperature and the physiologically unactive root.
     2. The root respiration rate of different root diameter would increase with the root diameter, and was obviously diffrenet among the root in different diameter(sP<0.01). But, the root respiration rate per root volume was significantly decrease with the increase of root diameter (P=0.048) while the specific root respiration rate was not significantly increase with diameter (P = 0.11).
     3. Based on the root surface area and root mass, the relationship is consistent with total root respiration rate, which are between maintenance root respiration rate, growth respiration rate and different root diameter relations. That is basing on root surface area , root respiration rate of different root diameter was increase with diameter ; and basing on dry root biomass , it reduces with diameter. The relation between growth respiration rate and different root diameter which is determined in the base of root volume, is also consistent with total root respiration rate, but is opposite with maintenance respiration. And the proportion that maintenance respiration ccounting for is increased with the increasing of the diameter.
     4. Root respiration rate of Fraxinus mandshurica was obviously increase with temperature. At the same temperature, root respiration rate based on root surface increases with the increase of root diameter while root respiration rate based on volume and mass changed oppositely.
     5. Root respiration rate of Fraxinus mandshurica was obviously affected by the fertilization of nitrogen.The sensitivity of root respiration based on root volume and mass response to the fertilization of nitrogen was higher than root respiration based on root surface area, but the difference of N treatment between them were both significantly (P <0.001).
     6. Respiration rate of root in diameter of <2mm, 2~5mm and >5mm positively correlated to the soil temperature, soil moisture and soil nitrogen, namely, root respiration rate of different root diameter increased with soil temperature, soil moisture and soil nitrogen contents in a certain extent.
引文
1. 白 克 智 , 钟 泽 璞 , 等 . 大 豆 对 大 气 CO2 倍 增 的 一 些 生 理 反 应 [J]. 科 学 通 报 .1996, 41(2):164–166.
    2. 崔克辉,何之常,等. 模拟污水中氮、磷对水稻幼苗根系呼吸作用的影响[J].武汉植物学研究.1996,14(4):323–328.
    3. 陈光水,杨玉盛,等. 格氏栲天然林与人工林根系呼吸季节动态及影响因素.生态学报. 2005,25(8): 1941 –1947.
    4. 贾丙瑞,周广胜,王风玉,等. 土壤微生物与根系呼吸作用影响因子分析[J].应用生态学报. 2005,16(8):1547–1552.
    5. 李存东,董海荣,李金才. 不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响[J].棉花学报.2003,15(2):87–90.
    6. 李春俭,张福锁. 植物的缺氮胁迫及适应调节. 见:植物营养研究进展与展望[M]. 北京:中国农业大学出版社. 2002,12–24.
    7. 林文,李义珍,郑景生,等. 施氮量及施肥法对水稻根系形态发育和地上部生长的影响[J]. 福建稻麦科技.1999,17(3): 21–24.
    8. 梁银丽. 土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J].生态学报.1996, 16(3): 258–264.
    9. 李之林,R. S. Sarkar,等. 施氮对香稻某些生理效应的研究[J].南农业人学学报.1997, 8(3):13–17.
    10. 邹春琴,杨志福. 氮素形态对春小麦根际pH变化的影响[J].土壤通报.1994,4: 175–177.
    11. 上 官 周 平 , 邵 明 安 . 土 壤 中 山 毛 榉 根 系 呼 吸 的 碳 素 损 失 [J]. 土 壤 通 报 .2000, 37(4):549–552.
    12. 王政权,张彦东,王庆成.氮、磷对胡桃揪幼苗根系生长的影响[J].东北林业大学学报,1999, 27 (1): 1–4.
    13. 许 强 , 王 彦 才 等 . 夏 春 小 麦 缺 氮 导 致 减 产 的 生 理 机 理 研 究 [J]. 干 旱 地 区 农 业研究.1999,7(3):56–61.
    14. 易志刚,蚁伟民. 森林生态系统中土壤呼吸研究进展[J].生态环境. 2003,12(3): 361–365.
    15. 杨玉盛,董彬,谢锦升,陈光水,等. 林木根系呼吸及其测定方法进展[J].植物生态学报.2004,28(3):426–434.
    16. 杨玉盛,董彬,谢锦升,等. 森林土壤呼吸及其对全球变化的响应[J].生态学报. 2004, 24(3):583–591.
    17. Adamas, M.B,ampbell, R.G, Allen, H.L, and Davey, C.B. Root and foliar nutrient concentrations in loblolly pine: effects of season, site and fertilization[J]. Forest Science. 1987,33:984–996.
    18. Amthor J S. The McCree-dewit-penning devries-thornley respiration paradigms:30 years later[J]. Annals of Botany. 2000, 86: 1–20.
    19. Atkin O K, Edwards E J, Loveys B. Response of root respiration to changes in temperature and its relevance to global warming[J]. New phytologist. 2000, 147: 141–154.
    20. Atkin O K, Tjoelder M G. Thermal acclimation and the dynamic response of plant respiration to temperature[J]. Trends in PlantScience. 2003, 8: 343–351.
    21. Attiwill P M and Adams M A. Nutrient cycling in forests [M]. New Phytol. 1993, 124: 561–582.
    22. Beets P N, Whitehead D. Carbon partitioning in Pinus radiata stands in relation to foliage nitrogen status[J]. Tree Physiology. 1996, 16: 131–138.
    23. Berntson G M, Bazzaz F A. Belowground positive and negative feedbacks on CO2 growth enhancement[J]. Plant Soil. 1996,187:119–131.
    24. Bhaskar V , Berlyn G P, Connolly J H. Root hairs as specialized respiratiory cells:a new hypothesis. Journal of Sustainable Forestry, 1993,1:107–125.
    25. Bide L P R,Renault P,Pages L,Riviere L M. Mapping meristem respiration of pinus persica(L.) batsch seedlings: potential respiration of meristems,O2 diffusional constraints and combined effects on root growth[J]. Journal of Experimental Botany. 2000,51(345):755–768.
    26. Biswas J C, Ladha J K,Dazzo F B. Rhizobia inoculation improves nutrient uptake and growth of lowland rice[J].Soil Sci AmJ. 2000,64(5):1644–1650.
    27. Bijlsma R J, Lambers H. A dynamic whole-plant model of integrated metabolism of nitrogen and carbon[J]. Plant and Soil, 2000, 220: 71–87.
    28. Bloom A J, Sukrapanna S S. Warner R L. Root respiration associated with ammonium and nitrate absorption by barley[J]. Plant Physiol, 1992, 99(4): 1294–1301.
    29. Bolstad P V, Reich P, Lee T. Rapid temperature acclimation of leaf respiration rates in Quercusalba and Quercus- rubra[J]. Tree Physiology.2003, 23: 969–976.
    30. Bouma T J, Nielsen K L, Eissenstat D M, et al. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content[J]. Plant and Soil. 1997, 195:
    221–232.
    31. Bouma T J, Yanai R D, Elkin A D et al. Estimating age-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges. New Phytologist, 2001.150: 685–695
    32. Brouwer R. Nutritive influences on the distribution of dry matter [J]. Plant and Soil. 1962,32: 424–438.
    33. Brume R. Mechanisms of carbon and nutrient release and retention in beech forest gaps [J ] . Plant and Soil. 1995,168/ 169 : 593–660.
    34. Bryla D R, Bouma T J, Hartmond U, et al. Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field [J]. Plant Cell and Environment. 2001, 24: 781–790.
    35. Bryla D R, Bouma T J, Eissenstat D M. Root respiration in citrus acclimates to temperature and slows during drought. Plant, Cell and Environment, 1997, 20: 1411–1420
    36. Burton A J, Pregitzer K S. Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field[J]. Tree Physiology, 2002, 22(1): 67–72.
    37. Burton A J, Pregizer K S, Ruess RW, et al. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes [J]. Oecologia, 2002,131: 559–568.
    38. Burton A J, Pregitzer K S. Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine[J]. Tree Physiology. 2003, 23(4): 273–280.
    39. Burton A J, Pregitzer K S, Zogg G P, et a1. Drought reduces root respiration in sugar maple forests[J]. Ecolog Appl, 1998, 8: 771–778.
    40. Burton, A.J, K.S.Pregitzer, G.P.Zoggeta1. Latitudinal variation in sugar maple fine root respiration [J]. Canadian Journal of Forest Research.1996.26 : 1761–1768.
    41. Cannell MGR and Thornley JHM. Modelling the Components of Plant Respiration: Some Guiding Principles [J]. Annals of Botany. 2000,85: 45–54
    42. Chapin FS III, Bloom AJ, Field CP and Waring RI1. Plant responses to multiple environmental factors [J]. Bio Science. 1987, 37:49–57.
    43. Chen Q S, Li L H, Han X G, et al. Acclimatization of soil respiration to warming [J]. Acta Ecologica Sinica.2004, 24(11): 2649–2655
    44. Chen Q S, Li L H, Han X G, et al. Responses of soil respiration to temperature in eleven communities in Xilingol grassland [J]. InnerMongolia Acta Phytoecologica Sinica.2003, 27(4): 441–447
    45. Clinton B D, Vose J M. Fine root respiration in mature eastern white pine (Pinus strobus L.) in situ: the impo- rtance of CO2 controlled environments[J]. Tree Physiology, 1999, 19: 475–479.
    46. Desrochers A, Landhausser S M, Lieffers V J. Coarse and fine root respiration in aspen (Populus tremuloides)[J]. Tree Physiology, 2002, 22: 725–732.
    47. Devisser R, Spitters CJT, Bouma TJ. Energy costs of protein turnover: theoretical and experimental estimateion from regression of respiration on protein concentration of full-grown leaves. –In Molecular, Biochemical and Physiological Aspects of Plant Respiration (Lambers H and van de Plas LHW eds). SPB Academic Publishing, The Hague, 1992, pp 493–508.
    48. Dixon R K, Houshton R A. Carbon pools and flux of global forest ecosystems [J]. Science.1994,263:185–190.
    49. Ebert G,Lenz F.Annual course of root respiration of apple trees and its contribution to the CO2 balance. Garten bauwissens chaft,1991,56:130– 133.
    50. Edwards NT. Root and soil respiration responses to ozone in Pinus taeda L. seedlings[J ].New Phytol . 1991,118: 315–321
    51. Ericsson T. Growth and shoot:root ratio of seedlings in relation to nutrient availability[J]. Plant and Soil, 1995, 168-169: 205–214.
    52. Espeleta J F, Eissenstat D M, Graham J H. Citrus root responses to localized drying soil: A new approach to studying mycorrhizal effects on the roots of mature trees[J]. Plant Soil, 1998, 206(1): 1–10.
    53. Ewe1 K C, Cropper W P Jr , Gholz H L. Soil CO2 evolution in Florida slash pine plantations. II. Importance of root respiration[J]. Canadian Journal of Forest Research, 1987, 17: 330–333.
    54. Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biol Biochem, 2001, 33: 155–165.
    55. Fahey T J, J W Hughes. Fine Root Dynamics in a Northern Hardwood Forest Ecosystem, Hubbard Brook Experimental Forest, NH J Ecol. 1994, 82: 533–548.
    56. Friend A L, Coleman M D, Bebrands J G. Biology of adventitious root formation, Edited by TD Davisand BE Haissig[M]. Plenum Press. New York. 1994.
    57. Friend A.D., H.H. Shugart, S.W. Running. A physiology-based model of forest dynamics[J]. Ecology. 1993, 74: 792–797.
    58. Gansert D. Root respiration and its importance for the carbon balance of beech saplings ( Fagus sylvatica L. ) in a montane beech forest[J]. Plant and Soil, 1994, 167: 109–119.
    59. George E, Marschner H. Nutrient and Water uptake by roots of forest trees[M]. Zeitschrift fuP flanzenernahrung and Bodenkulture, 1996, 159: 11–21.
    60. George N B, Jemel N, Fiori B. Renault. Face and Shape Repetition Effects in Humans : a Spatiotemporal ERP Study[J]. Neuro Report. 1997, 8(6): 1417–1423.
    61. George K, Norby R J, Hamilton J G and DeLucia E H. Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2[J]. New Phytologist, 2003,160: 511–522
    62. Goyal S S and Huffaker R C. The uptake of N03-,NO2- and NH4+ by intact wheat(Tritium aestivum)seedlings[J]. Plant Physiol, 1986.82: 1051–1056.
    63. Harris D G, Bavel C H M van. Root respiration of tobacco, corn and cotton plants[J]. Agron J, 1957, 49: 182–184.
    64. Hogberg P, Nordgren A, Agren G I. Carbon allocation between tree root growth and root respiration in boreal pine forest[J]. Oecologia, 2002, 132: 579–581.
    65. Ingestad T, Agren G I. The influence of plant nutrition on biomass allocation[J]. Ecology Appl, 1991, 1(2): 168–174.
    66. Jiang L F, Shi F CH, Wang H T, et al. Root respiration in Larix gmelinii plantations in Northeast China [J]. Plant Physiol Commun. 2004,40: 27–30.
    67. Jones H E, Hdgberg P, Ohlsson H. Nutrient assessment of a forest fertilization experiment in northern Sweden by root bioassays[J]. Forest Ecology and Management. 1991, 64: 59–69.
    68. Keltjens WG, Van Ulden PSR. Effects of Al on nitrogen (NH+4 and NO3-) uptake, nitrate reductase activity and proton release in two sorghum cultivars differing in Al tolerance.Plant and Soil. 1987,104:227–234.
    69. Kncepp JD, Turner DP, Tingey DT. Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hemlock[J]. Forest Ecology and Management. 1993, 59:179–191.
    70. Kuzyakov YV. 2001.Tracer Studies of Carbon Translocation by Plants from the Atmosphere into the Soil (A Review) [J]. Eurasian Soil Science,.34(1):28–42
    71. Lambers H. Respiration in intact plants and tissues and dependence on environmental factors, metabolism and invaded organisms. In: Douce R, Day DA(eds). Encyclopaedia of Plant physiology[M]. Berlin: Springer-Verlag, 1985, 418–473.
    72. Lambers H, Scheurwater I, Atkin O K. Respiratory patterns in roots in relation to their functioning[J]. Marcel Dekker, 1996, 323–362.
    73. Lauchli A, Bieleski R L著. 张礼中,毛知耘译. 植物的无机营养[M]. 北京:农业出版社, 1992, 104–106.
    74. Lavigne MB and Ryan MG. Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites[J]. Tree Physiology. 1997,17: 543–551
    75. Lenton, T M, Huntingford C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simplemodel[J]. Global Change Biology. 2003, 9: 1333–1352.
    76. Levang Brilz N, Biondini M E. Growth rate, root development and nutrient uptake of 55 plant species from the Great Plains Grasslands[J]. Plant Ecology, 2002, 165: 117–144.
    77. Li M F, Dong Y S, Qi Y C, et al. Analysis of diurnal variation of CO2 flux in Leymus chinensis grassland of Xilin River watershed [J]. Grassl China. 2003,25(3): 9–14
    78. Lin G, Ehleringer JR, Rygiewicz, P T,et al. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-firterracosms. GlobalChange Biology, 1999, 5: 157–168.
    79. Martínez F, Lazo YO, Fernández-Galiano, Merino J. Root respiration and associated costs in deciduous and evergreen species of Quercus. Plant, Cell and Environment. 2002,25: 1271–1278
    80. Maier C A, Zamoch S J, Dougherty P M. Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation[J]. Tree Physiology, 1998, 18(1): 11–20.
    81. Meyer F H. The role of the root system in forest dieback[M]. Forst-und Holzwirt. 1985,40 (13 ):351–358.
    82. Moren, A.S, A.Lindroth. Co2 exchange at the floor of a boreal forest[J]. Agriculture ForestMeteorology. 2000.101:1–14.
    83. Nakane,K,KohnoT.& Horikoshi.T. Root respiration before and just after clear-felling in a mature deciduous,broad-leaved forest[J].Ecological Research. 1996. 11: 111–119
    84. PregitzerK S, Zak D R, Maziasz J et al. Interactive effects of atmospheric CO2 and soil N availability on fine roots of populus tremuloides. Ecological Applications, 2000, 10: 18–33
    85. Rakonczay Z, Seiler J R, Kelting D L. Carbon efflux rates of fine roots of three tree species decline shortly after excision[J]. Environmental and Experimental Botany, 1997. 38: 243–249.
    86. Poorter H, van der Werf A, Atkin OK, Lambers H. Respiratory energy requirements of roots vary with the potential growth rate of a plant species[J]. Physiologia Plantarum, 1991, 83: 469–475
    87. Rey A, Peoraro E, Tedesch I V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biol, 2002,8(9): 851–866
    88. Roberntz P, and Stockfors J. Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees[J]. Tree Physiology, 1998,18: 233–241
    89. Ryan MG. Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content[J]. Plant Cell Environment. 1995,18: 765–772
    90. Ryan M G, Hubbard R M, Pongracic S, et al. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status[J]. Tree Physiology, 1996,16: 333–343.
    91. Salisbury F B, Ross C W. Plant Physiology. 4thed. Belmont[M]:Wadsworth Publishing Company. 1992.
    92. Sattelmacher B, Gerendas J, Thorns K, et a1. Interaction between root growth and mineral nutrition[J]. Environ Exp Bot, 1993, 33: 63–73.
    93. Schubert C, Komor E. Amino acid uptake by Ricinus Commanis roots: characterization and physiological significance[J]. Plant and Cell Enivir, 1987, 10: 493–500.
    94. Schiefelbein J W,Benfey P N.The development of plant root:new approaches to underground problem[J].Plant Cell.1994,3:l147–l154.
    95. Spitters CJT, van Keulen H, van Kraalingen DWG. A simple and universal crop growth simulator: SUCROS87[A] . In:Rab2binge R , et al . Simulation and Systems Mangement in CropProtection[C]. Pudoc,Wageningen, 1989,147–181.
    96. Stockfors J, and Linder S. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees[J]. Tree Physiology, 1998,18: 155–166
    97. Stoyan, H, H. De-Polli. S.B hm. G.P. Robertson, A.P. Eldor. Spatialheterogeneity of soil respiration and related properties at the plant scale[J]. Plant and soil. 2000.222:203–214.
    98. Thierron V ,Laudelout H. Contribution of root respiration to total CO2 efflux from the soil of a deciduous forest [J ] . Can. J . For.Res . 1996.26 :1142–1148
    99. Thomley J H M. A balanced quantitative model for root:shoot ratios in vegetative plants[J ]. Ann Bot. 1974,36:431–441.
    100. Tjoelker M G, Oleksyn J, Reich P B. Modelling respiration of vegetation: evidence for a general temperature-dependentQ10[J ]. Global Change Biology, 2001, 7: 223–230.
    101. To land ,D.E, D. R. Zak . Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests[J ]. Canadian Journal of Forest Research. 1994. 24: 1711–1716.
    102. Vogel J G, Valentine D W, Ruess R W. Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates. Canadian Journal of Forest Research, 2005, 35: 161–174.
    103. Voldeb A, Smsbt D R, Bloom J,et al. Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape: implications for root efficiency and competitive effectiveness [J].NewPhytol, 2005,165: 493–502
    104. Vollbrecht P, Kasemir H I. Effects of exogenously supplied Ammoniumon root development of Scotspine(Pinus sylvestrisL.) seedlings[J]. Bot Acta, 1992,105(4):306–312.
    105. Vose , J . M., M. G. Ryan. Seasonal respiration of foliage ,fine roots , and woody tissues in relation to growth , tissue N , and photosynthesis[J ]. Global Change Biology , 2002. 8 :164–175.
    106. Walton E F, Fowke P J. Estimation of the annual cost of kiwifruit vine growth and maintenance[J]. Annals of Botany, 1995, 76(6): 617–623.
    107. Wiant HV. Contribution of roots to forest soil respiration [J ] . A dv . Front Pl . Sci. 1967,18 :163–167
    108. Widén B, Majdi H. Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation[J]. Canadian Journal of Forest Research, 2001, 31: 786–796.
    109. Wullschleger SD, Norby RJ, Hanson PJ. Growth and maintenance respiration in stems of Quercus alba after four years of CO2 enrichment. Physiologia Plantarum, 1995, 93: 47–54
    110. YangY S, DongB, Xie.JS, etal. A review of tree root respiration: significance andmethodologies. Acta Phytoecologica Sinica, 2004, 28(3):426–434
    111. Yin X, Perry J. Factors affecting nitrogen concentration of fine roots in forest communities: regression analysis of literature data[J]. For Sci, 1991, 37: 374–382.
    112. Zhang H, Brian G,Forde B.An Arabidopsis MADS box gene that controls nutrient—induced changes in root architecture[J]. AmA$S0C Adv Sci. 1998,279(16):407–409.
    113. Zhang H, Forde B. Regulation of Arabidopsis root development by nitrate availability[J]. Exp Bot. 2000, 51: 51–59.
    114. Zogg G P, Zak D R, Burton A J, et al. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability[J]. Tree Physiology. 1996, 16: 719–725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700