电子束液态曝光技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统的深入研究和快速发展,需要能够精确产生复杂曲面和各种形状微结构的加工方法与之相适应。当前能够制作三维微结构的技术主要有体硅微加工技术、LIGA(Lithographie,Galvanoformung andAbformung)技术和IH(Integrated Harden Polymer Stereo Lithography)三维光刻技术。体硅微加工技术和LIGA技术能够制作高精度、高深宽比的陡直微细结构,却难于加工含有各种微曲面和结构较为复杂的器件;IH三维光刻技术从理论上能够加工出含有任意曲面和任意高深宽比的复杂微结构,但因其工艺中x、y向的扫描是靠X/Y工作台的机械移动来完成的,所以加工精度较低,分辨率目前仅能达到亚微米级。因此这些微三维加工技术不能很好的适应将来微机电系统的高速发展,需要寻求更好的加工手段。
     电子束曝光技术是目前公认的最好的高分辨率图形制作技术,主要用于0.1~0.5μm的超微细加工。在实验室条件下,已能将电子束聚焦成尺寸小于2nm的束斑,实现了纳米级曝光。电子束具有波长短、易于控制、精度高、灵活性大等优点,目前主要用于精密二维掩膜制作,但还不能制作三维立体结构。因此本论文率先提出了一种国内外均未见报道的、能够将电子束曝光的高精度性能和IH工艺能加工任意复杂器件的性能结合起来,既能加工出任意复杂的微结构又能保证其亚微米级甚至更高精度的三维掩膜/模板加工新方法——电子束液态曝光技术(Electron Beam LiquidLithography,EBLL)。作为一项开创性的工作,本论文的主要工作是首次提出了基于电子束曝光机(Electron Beams Exposure System,EBES)的电子束固化曝光微三维成型技术,从理论和实验上对其可行性以及对电子束的能量和曝光剂量与固化厚度之间的关系进行了论证研究,并在SDS-II型电子束曝光机上完成了以液态TMPTA和Epoxy618为固化对象的电子束固化实验,得到了固化的十字型微结构,充分证明了电子束液态曝光技术是切实可行的。本论文的主要工作和创新点如下:
With the rapid progress and deep research of MEMS (Micro Electro Mechanical Systems), the technique to produce exactly complicated surface and arbitrary microstructure is needed. Now the methods of three-dimensional microfabrication are mainly bulk-silicon micromachining, LIGA (Lithographie, Galvanoformung and Abformung) and IH (Integrated Harden Polymer Stereo Lithography), etc. LIGA and bulk-silicon micromachining can produce steep microstructure with high-precision and high-aspect-ratio, but it is difficult for them to create micro devices which have complex curved surface and structure; theoretically, IH can produce devices with arbitrary curved-surface and high-aspect-ratio, but its scan in X-Y is finished by the moving of X-Y stations mechanically, the precision is low and only submicron resolution can be achieved . So these methods can not satisfy the real 3-D structures of MEMS, novel micro-fabrication methods should be developed.Electron beam lithography(EBL) is considered as the best technique to produce patterns with high resolution, and it is generally used to super microfabrication with resolution 0.1~0.5μm. In lab, Electron beam (EB) can be focused to less than 2 nm, and EBL has been used to exposure nanometer figures. EB has many advantages, such as short wavelength, easily be controlled, high precision and sensitivity, etc. Now it is mainly used to make precise masks and can't produce real 3-D microstructures. Combining the high-precision of EBL and arbitrary high aspect ratio of IH, we can develop a novel method of electron beam liquid lithography (EBLL). This method is liquid lithography of EB, which can not only fabricate arbitrary micro structures, but also can keep sub-micron precision ,or even more precise. For an initiate research, the main study works of this dissertation are that the EBLL is presented for the first time in the world, the feasibility of EBLL and
    the relations between curing depth and electron energy, exposure dose are investigated in detail. The curing experiments of liquid oligomer TMPTA and epoxy 618 are finished in SDS-II electron beam lithography system for the first time, and the cured structures, crosses, are got. All of above show that EBLL is feasible. The main study works and achievements are summed up as follows.1. Electron beam liquid lithography is presented. This technique combines the high-precision of EBL and arbitrary high aspect ratio of IH. It uses electron beams as the radiation source to cure liquid resist to create a complicated 3D structure of polymer by piling up the cured two-dimensional sliced structures. Its resist is liquid oligomer. Its main advantages are high-precision, high-resolution, arbitrary high aspect ratio and easily to be controlled. The disadvantage is low productivity. So it is optimum to produce 3-D microstructure templates.2. The lithography modes of EBLL are studied. The moving tracks of focused electron beams that come across metal film windows and the scattering process of the high-speed electrons in air are simulated by Monte Carlo method. The exposure method that educes the electron beam into the air to expose liquid resist is denied, and the method that exposes liquid resists in the electron beam lithography systems is chosen so that the focused thin beam-spot can be kept.3. The selective method of liquid resists suitable for liquid lithography is proposed. The step of the first method is as follows. First, we draw therelation curve between lnP and — through published reference data, thencalculate saturated vapor pressure values at different temperatures. Second, we consider these saturated vapor pressure values as references, and validate the valuse through experiments. At last we are able to decide whether the liquid ologomer is chosen to be used as the resist by the experiment results. The second method is different. We perform an experiment on vacuum
    volatilization in SDV-II directly, without reference data to look up. Then make an decision whether the liquid ologomer is suitable to EBLL. We can get the suitable liquid resist easily by the two methods.4. The relationships among mean free path, energy loss ratio of high-speed electron, and vacuum degree is studied. The lowest vacuum degree of the SDS-II lithography system is calculated firstly, and the lower limit lxlO"4 Torr (about 0.01 Pa) of the vacuum degree that SDS-II system can work well is got. Under above degree, the mean free path of the electron is 283cm which is 3 times longer than the length of the drawtube of the lithography system, and about 80% electrons from cathode can get to the center of the object lens without any collision, 98% electrons from object lens can get to the substrate without any collision. So these electrons can be focused into fine spot on the substrate.5. The gasification of kinds of resists at 0.005Pa (vacuum degree is a little higher than the lower limit lxlO"4 Torr of SDS-II) are experimented through SDV-II vacuum chamber made by ourselves. The results show that the volatilization ratios of TMPTA and Epoxy618 are lower than 0.5% and 0.1% respectively, and these two liquid resists do not destroy vacuum degree of the vacuum chamber. So they both can suit for the exposure and cure in the lithography system.6. Whether the energy and dose of the electron beam provided by the SDS-II can meet with the radiant and curing demand of the liquid resist is investigated. The result is that the electron beams provided by the SDS-II can fully meet with the curing demand, and it is validated by experiments.7. The applicability of the Monte Carlo simulation method and Grun formula to liquid resists is researched, and it is validated by experiment on TMPTA and Epoxy618. The result shows that we can forecast the valid penetrating depth of high energy electrons in liquid resists by using these two methods.8. The mechanism of liquid resist's spin-coating is studied. The relation
    among the resist thickness, viscosity and the rotating speed of motor is got qualitatively. Also we quantificationally studied the above relation through experiment on special liquid resists. The rule is as follows: the lower of the viscosity and the higher of the rotating speed, the thinner of the resist coating, and vice versa. The result provides the valid reference basis to obtain the coating thickness exactly.9. The impact of the electron's energy and radiant dose on curing thickness is researched experimentally and theoretically. The results show that either increasing initial energy of the electron beams (increasing accelerating voltage of the electron beams) or increasing the incident dose of the electron beams can increase the curing thickness. According to the results, we got the experimental relation curve of special liquid resists among electrons' energy, radiant dose and curing depth. It supplies the reference to cure different thick coating. Based on these, the exposure experiments on special liquid resists are finished firstly through the method of EBLL. The cured crisscross microstructure is got, which fully proves that the technique of curing and exposure with electron beam is feasible.At last, the main work of the paper is summarized, and the further research is proposed.
引文
[1] 黄良甫,贾付云.微机电系统的加工技术及其研究进展[J].真空与低温,2003年3月第9卷第1期:1-5.
    [2] I.Hiroshi. "CMOS downscaling"[R]. Technical Report of Tokyo Institute of Technology, Beijing 2002.
    [3] Semiconductor Industry Association, International Technology Roadmap for Semiconductors: 2003 update, http://public.itrs.net/files/2003ITRS/Home2003.htm.
    [4] 钟先信.微系统研究展望[J].中国工程科学,2000年1月第2卷第1期:81-84.
    [5] 李德胜,王东红,孙金玮,等.MEMS技术及其应用[M].哈尔滨:哈尔滨工业大学出版社,2002:5-10.
    [6] 吴冲若.微机电系统[J].真空科学与技术,1995年3月第15卷第2期:108-112.
    [7] 王阳元,张兴.21世纪及1999年微电子技术展望[J].电子商务,1999年第1期:2-6.
    [8] 温诗铸.关于微机电系统研究[J].中国机械工程,2003年1月下半月第14卷第2期:159-163.
    [9] Fluitman J. Microsystem Technology: Objectives [J]. Sensors and Actuators A, 56(1-2), 1996: 151-166.
    [10] Bell T E, Gennissen P TJ, Demunter D, et al. Porous silicon as a sacrificial material[J]. Micromech. Microeng. 2000,6 (4):361-369.
    [11] 田中群,孙建军.微系统与电化学[J].电化学,2000年2月第6卷第1期:1-9.
    [12] Ding H G. Micro-/nanotechnology —Looking on both the military and the civil technology in 21th century[J]. Chinese Journal of Scientific instrument, 1995, 16(1): 1.
    [13] Wang W Y. Semiconductor sensor and micro electro mechanical systems [M], Changsha: Hunan Science & Technology Press, 1999.
    [14] Zhang L G. The importance of developing MEMS. Symposium on Integreted Micro-optp-electro-mechanical Systems[C]. Shangahi, March 6, 1999.
    [15] Manz A, Becket H, Eds, Microsystem technology in chemistry and life Science [M]. Berlin: Springer, 1998, 51.
    [16] Motamedi M E, Wu M C, Pister K S J. Micro-opto-electro-mechanical devices and on-chip optical processing[J]. Optical Engineering, 1997, 36: 1282.
    [17] Wu M C. Micromachining for optical and Optoelectronic systems[J]. Proceeding of IEEE, 1997, 85: 1883.
    [18] Ma L. Biochips—A miraculous advance in biotechnology after PCR[J]. Modern Scientific instruments, 1999,3:3.
    [19] 王渭源.小如蚂蚁——半导体传感器与微电子机械系统[M].长沙:湖南科学技术出版社,1999年11月第1版:65.
    [20] 孙道恒,王明亮,郑剑铭等.微机电系统(MEMS)的研究进展[J].机电技术,2003年S1期:52-57.
    [21] 谢国章.微机械的制造和应用[M].北京:电子工业出版社,1991第1版.
    [22] Hirano T. Japanese activities of micromachine and its future prospects[J]. Microsystem Technologies.1997, 8:86-89.
    [23] 周兆英,王小浩,叶雄英,等.微型机电系统[J].中国机械工程,2000,11(1-2):163-1681.
    [24] 黄良甫,贾付云.空间微机电系统的研究与进展[J].真空与低温,2002年12月第8卷第4期:187-196.
    [25] 顾宁.生物微机电系统研究进展[J].航天医学与医学工程,2001年6月第14卷第3期:221-224.
    [26] Younse J M. Mirrors on a chip [J]. Spectrum, IEEE, Nov. 1993, 30(11):27-31.
    [27] 徐毓龙,徐玉成.微机电系统(MEMS)的应用[J].测控技术,1999年18卷第1期:13-15.
    [28] 林良明.微机电系统在医疗工程中的应用研究[J].中国医疗器械信息,2003年第9卷第5期:4-7.
    [29] D.J.Young. Micro electro mechanical Systems: Technology and Applications[J]. MRS Bull., 2001, (26):331-336.
    [30] 陈继生.国外超微机电系统研究现状及其应用前景展望[J].微特电机,1994年第2期:35-39.
    [31] 章吉良,杨春生等.微机电系统及其相关技术[M].上海:上海交通大学出版社,2000年第一版:前言.
    [32] 刘靖,石庚辰.微机电系统(MEMS)技术及在引信中的应用[J].现代引信,1997年第3期:20-26.
    [33] 白春礼.扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992年10月第1版:1.
    [34] 孔祥东,张玉林,宋会英.LIGA工艺的发展及应用[J].微纳电子技术,2004年第5期:13-18.
    [35] E. W. Becker, W. Ehrfeld, P. Hagmann, et al. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding(LIGA process)[J]. Microelectronic Engineering, 1986, Vol.4:35-56.
    [36] H. Guckel, T. R.Christenson, K. J. Skrobis, et al. Deep X-Ray and UV lithographies for micromechanics[C]. Solide-State Sensor and Actuator Workshop, Hilton Head, SC, USA, IEEE, June 1990: 118-122.
    [37] 孔祥东,张玉林,尹明.IH工艺的发展及应用[J].微纳电子技术,2003年第11期:34-39.
    [38] Ikuta K, Hirowatari K. Real three dimensional micro fabrication using stereo lithography and metal molding [C]. Proceedings of IEEE (MEMS'93):42-47.
    [39] 田昭武,林华水,孙建军等.微系统科技的发展及电化学的新应用[J].电化学,2001年2月第7卷第1期:1-9.
    [40] Tian Z W, Feng Z D, Tian Z Q, et al. Confined etchannt layertechnique for two-dimensional lithography at high resolution using electrochemical scanning tunneling microscope[J]. Faraday Discuss, 1992, 94: 37.
    [41] Tian Z W, Tian Z Q, Lin Z H, et al. Micro-(nano-) fabrication technique for three dimensional complex patterns—their common difficulties and solution[J]. Chinese Journal of Scientific Instrument, 1996,17(1): 14.
    [42] Huang Haigou, sin Jianjun, Tian Zhaowu, et al. Three dimensional microfabrication on GaAs using a regular patterns mold[J]. Electrochemistry(in Chinese), 2000, 3:253.
    [43] Zu YB, Xie L, Mao B W, et al. Studies on silicon etching using the confined etchant layer technique[J]. Electrochimica Acta, 1998, 43:1683.
    [44] Li J-F,Sugimoto S, Tanaka S, et al. Mechanics and Material Engineering for Science and Experiments[M].Science Press,2001:205-209.
    [45] Wang S N, Li J-F,Toda R, et al. Novel processing of high aspect ratio 1-3 structures of high density PZT[C]. MEMS98. Proceedings, The Eleventh Annual International Workshop on, Heidelberg, Germany, 25-29 Jan 1998:223-228.
    [46] Sugimoto, S Tanaka, S Jing-Feng Li, et al. Silicon carbide micro-reaction-sintering using a multilayer silicon mold[C]. MEMS 2000 Proceedings, The Thirteenth Annual International Conference on, Miyazaki, Japan, 23-27 Jan 2000: 775-780.
    [47] Tanaka S, Sugimoto S, Li J-F, et al. Silicon carbide micro-reaction-sintering using micromachined silicon molds[J]. Micro electro mechanical Systems, 2001, 10(1):55-61.
    [48] 陈迪,张大成,丁桂甫等.DEM技术研究[J].微细加工技术,1998年第4期:1-6.
    [49] 赵旭,陈迪,张大成.三维微加工新技术——DEM技术研究[J].高技术通讯,2000年第5期:107-109.
    [50] Cohen A et al. EFAB: Low-Cost, Automated Electrochemical Batch Fabrication of Arbitrary 3-D Microstructures. Micromachining and Microfabrication Process Technology, SPIE 1999 Symposium on Micromachining and Microfabrication [C]. Santa Clara, CA, September 22, 1999.
    [51] Cohen A, Zhang G, Tseng F G, et al. EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS[C]. Proceedings of MEMS'99. Twelfth IEEE International Conference on, Orlando, Florida, USA, 17-21 Jan. 1999:244 -251.
    [52] Cohen A et al. EFAB: Batch Production of Functional, Fully-Dense Metal parts with Micron- Scale Features[C]. Proceedings of Solid Freeform Fabrication Symposium 1998, The University of Texas at Austin, 1998.
    [53] 微机电系统(MEMS)发展战略研究报告[R].“十五”863计划MEMS发展战略研究专家组,2001年4月.
    [54] http://ieeexplore.ieee.org/xpl/conferences.jsp.
    [55] 綦希林,曲非非.SOC片上系统、MEMS微机电系统和Smart Dust智能微尘[J].微计算机信息,2003年第19卷06期:1-4.
    [56] 国家自然科学基金重大研究计划《半导体芯片集成化系统基础研究》2002年项 目申请指南[R].http://www.nsfc.gov.cn/nsfc/cen/02/htmlcreated/2002-5.htm
    [57] 微机电系统(MEMS)重大专项2003年度课题申请指南(第二批)[J].机器人技术与应用,2003年第2期:22-25.
    [58] http://www.nsfc.gov.cn/nsfc/cen/02/htmlcreated/2003ms/zdyjjh/zdyjjh.htm.
    [59] N C Tien. International Symposium on Computing and Microelectronics Technologies[M]. Beijing, 1998:53.
    [60] Hirano T. Japanese activities of micromachine and its future prospects[J]. Microsystem Technologies, 1997,3(2):86-89.
    [61] Schomburg W K. Assembly for micromechanics and LIGA[J]. Micro Mechanics Europe, 1994,(5):57-63.
    [62] Jager E W H, Inganas O, L undst rom I. Microrobots for micrometer- size objects in aqueous media: Potential tools for single-cell manipulation[J].Science, 2000, 288(5475): 2335-2338.
    [63] Soong R K, Bachand G D, Neves H P, et al. Powering an inorganic nanodevice with a biomolecular motor[J]. Science, 2000, 290 (5496): 1555-1558.
    [64] Huang Y, RubinskyB. M icrofabricated electroporation chip for single cell membrane permeabilization[J]. Sensors and Actuators A, 2001, 89(3):242-249.
    [65] 石庚辰.微机电系统技术[M].北京:国防工业出版社,2002年1月第1版:174-194.
    [66] Eddy D S, Sparks D R. Application of MEMS technology in automotive sensors and actuators[J]. Proceedings of the IEEE, 1998, 86(8):1747-1755.
    [67] http://www.allaboutmems.com/memsapplications.html.
    [68] David J N, Mona E Z. MEMS: micro technology, mega impact[J], CIRCUITS & DEVICES, MARCH 2001, 14-25.
    [69] 王春海,于杰等译.微系统技术(德)[M].北京:化学工业出版社,2003年9月第1版.
    [70] M Mao X Wang, J Xie, W Wang. Fully self-aligned nickel micromotor fabricated at low temperature[C]. Proc. of SPIE1 Micromaching and Microfabrication Process Technologies Ⅱ, Austin, Texas, USA, 1996:236.
    [71] G Wallis, D I Pomeranty. Field assisted glass-metal sealing[J]. J. Appl. Phys., 1990, Vol 40: 3946.
    [72] A D Brooks, R D Donovan. Low temperature electrostatic Si to Si seals using sputtered borosilicate glass[J]. J. Electrochem. Soc., 1972, Vol 119: 545.
    [73] Lasky J B. Silicon-on insulator by bonding and etch back[C]. Proc. Int. Electron Device Meeting, USA, 1985:684.
    [74] T. R. Ohnstein, J. D. Zook, J. A. Cox et al. Tunable IR filters using flexible metallic microstructures[C]. Proceedings of Micro Electro Mechanical Systems(MEMS'95), Amsterdam, the Netherlands, 1995, IEEE, 1995:170-174.
    [75] Young-Min Shin, Gun-Sik Park, Scheitrum, G P, et al. Novel coupled-cavity TWT structure using two-step LIGA fabrication[J]. Plasma Science, IEEE Transactions on, Volume:31, Issue:6, Dec. 2003:1317-1324.
    [76] Ahn S K, Kim J G, Perez-Mendez V, et al. GEM-type detectors using LIGA and etchable glass technologies[J]. Nuclear Science, IEEE Transactions on, June 2002,49(3):870-874.
    [77] Voigt S, Kufner S, Kufner A, et al. A refractive free-space microoptical 4/spl times/4 interconnect on chip level with optical fan-out fabricated by the LIGA technique[J]. Photonics Technology Letters, IEEE, Volume: 14, Issue:10, Oct. 2002: 1484- 1486.
    [78] Sadler D J, Gupta S, Ahn C H. Micromachined spiral inductors using UV-LIGA techniques[J]. Magnetics, IEEE Transactions on, Volume: 37, Issue:4, July 2001:2897-2899.
    [79] Takimoto S, Ueno H, Sugiyama S, et al. Fabrication of thick film magnetic cores for high frequency using LIGA process[J]. Magnetics, IEEE Transactions on, Volume:37, Issue:4, July 2001:2888-2890.
    [80] Pan L W, Lin L. Batch transfer of LIGA microstructures by selective electroplating and bonding[J]. Microelectromechanical Systems, March 2001,10(1) :25-32.
    [81] Kim H K, Jackson K, Hong W S, et al. Application of the LIGA process for fabrication of gas avalanche devices[J]. Nuclear Science, IEEE Transactions on, Volume:47, Issue:3, June 2000:923-927.
    [82] Sang-Jun Moon, Lee S S. Fabrication of microneedle array using inclined lisa process[C]. TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, Boston USA, IEEE, June 9-12,2003,2:1546- 1549.
    [83] Miyano N, Iwasa H, Matsumoto M, et al. Fabrication of TiNi shape memory alloy micro-structures and ceramic micro-mold by LIGA-MA-SPS process[C]. Micromechatronics and Human Science, 2002. MHS 2002. Proceedings of 2002 International Symposium on, Nagoya Japan, IEEE, 20-23 Oct. 2002:53-59.
    [84] Sung-Keun Lee, Dong Sung Kim, Sang Sik Yang, et al. Microlens fabrication by the modified LIGA process and its modeling and analysis[C]. Optical MEMs, 2002. Conference Digest. 2002 IEEE/LEOS International Conference on, Lugano, Switzerland, IEEE, 20-23 Aug. 2002:77-78.
    [85] Hirata Yoshihiro. LIGA process - micromachining technique using synchrotron radiation lithography - and some industrial applications [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume: 208, August, 2003: 21-26.
    [86] Yang Hsiharng, Kang Shung-Wen. Improvement of thickness uniformity in nickel electroforming for the LIGA process[J]. International Journal of Machine Tools and Manufacture, Volume: 40, Issue: 7, May, 2000: 1065-1072.
    [87] Grigore, Luminita. Metallic microstructures by electroplating on polymers: an alternative to LIGA technique [J]. Materials Science and Engineering: B, Volume: 74, Issue: 1-3, May 1, 2000: 299-303.
    [88] Cheng Y, Shew B Y, Chyu M K, et al. Ultra-deep LIGA process and its applications [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume: 467-468, Part 2, July 21,2001: 1192-1197.
    [89] Malek Chantal Khan, Saile Volker. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review [J]. Microelectronics Journal, Volume: 35, Issue: 2, Feb. 2004: 131-143.
    [90] Munnik F, Benninger F, Mikhailov S, et al. High aspect ratio, 3D structuring of photoresist materials by ion beam LIGA [J]. Microelectronic Engineering, Volume: 67-68, June, 2003:96-103.
    [91] Bauer Hans-Dieter, Ehrfeld Wolfgang, Harder Michael, et al. Polymer waveguide devices with passive pigtailing: an application of LIGA technology [J]. Synthetic Metals, Volume: 115, Issue: 1-3, November 1, 2000: 13-20.
    [92] Hormes J, Gottert J, Lian K, et al. Materials for LiGA and LiGA-based Microsystems [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume:199, January,2003: 332-341.
    [93] Tabata.O, Terasoma.K, AGAWA.N, et al. Moving mask LIGA(M~2LIGA)process for control of side wall inclination[C]. Proceedings of Micro Electro Mechanical Systems(MEMS'99), Orlando, FL, USA, 1999, IEEE, 1999:252-256.
    [94] Tabata.O, Matsuzuka N, Yamaji T, et al. 3D fabrication by moving mask deep X-ray lithography(M~2DXL) with multiple stages[C]. Proceedings of Micro Electro Mechanical Systems(MEMS'2002), Las Vegas, NV, USA, 2002, IEEE, 2002:180-183.
    [95] Sung-Keun Lee, Kwang-Cheol Lee, Seung S.Lee. Microlens fabrication by the modified LIGA process[C].Proceedings of Micro Electro Mechanical Systems(MEMS'2002), Las Vegas, NV, USA,2002, IEEE, 2002:520-523.
    [96] Ehrfeld.W, Abraham.M, Ehrfeld.U, et al. Materials for LIGA products[C]. Proceedings of the Micro Electro Mechanical System(MEMS' 94), Oiso, Japan, 1994,IEEE, 1994:86-90.
    [97] W.Ehrfeld, F.Gotz, D.Muncheyer, et al. Microfabrication of sensors and actuators for microrobots[C].Proceedings of International Workshop on Intelligent Robots and Systems, Tokyo, Japan, 1988, IEEE, 1988:3-7.
    [98] W.Ehrfeld, F.Gotz, D.Muncheyer, et al. LIGA Process: sensor construction techniques via x-ray lithography[C].Proceedings of Solide-State Sensor and Actuator Workshop, Hilton Head, SC, USA, 1988, IEEE, 1988:1-4.
    [99] W.Ehrfeld, H.Lehr. Deep x-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramic[J]. Radiation Physics and Chemistry, 1995, 45(3): 349-365.
    [100] M.Abraham, W.Ehrfeld, V.Hessel, et al. Microsystem technology: between research and industrial application[J]. Microelectronic Engineering, 1998, 41/42: 47-52.
    [101] J. Arnold, U.Dasbach, W.Ehrfeld et al. Combination of excimer laser micromachining and replication processes suited for large scale production[J]. Applied Surface Science, 1995, 86: 251-258.
    [102] J. Elders, H.V.Jansen, M. Elwenspoek et al. DEEMO:a new technology for the fabrication of microstructures[J].Proceedings of Micro Electro Mechanical Systems(MEMS'95), Amsterdam, the Netherlands, 1995,IEEE, 1995:238-243.
    [103] 罗均,谢少荣,龚振邦.面向MEMS的微细加工技术[J].电加工与模具,2001,5:1-6.
    [104] V. Kudryashov, X.-C. Yuan, W. -C. Cheong, et al. Grey scale structures formation in SU-8 with e-beam and UV[J]. Microelectronic Engineering,2003,(67-68):306-311.
    [105] K.Elgaid, D.A.Mccloy, I.G.Thayne. Micromachined SU8 negative resist for MMIC applications on low resistivity CMOS substrates[J]. Microelectronic Engineering, 2003, (67-68):417-421.
    [106] H.Guckel. Micromechanics via synchrotron radiation[C]. Proceedings of Micro Electro Mechanical Systems(MEMS'96), San Diego, California, USA, 1996,IEEE, 1996,1:63-66.
    [107] H. Guckel. High-aspect-ratio micromachining via deep X-ray lithography[C]. Proceedings of the IEEE, 1998,86(8): 1586-1593.
    [108] T. R. Christenson, H. Guckel, K.J.Skrobis et al. Preliminary results for a planar microdynameter[C]. Proceedings of Solid-State Sensor and Actuator Workshop(5th Technical Digest), Hilton Head Island, SC, USA, 1992,IEEE, 1992:6-9.
    [109] Ikuta K, Ogata T, Tsubio M. Development of mass productive micro stereo lithography (Mass-IH process) [C]. Proceedings of IEEE(MEMS'96): 301-306.
    [110] Ikuta K, Maruo S, Kojima S. New micro stereo lithography for freely movable 3D micro structure—super IH process with submicron resolution [C]. Proceedings of IEEE(MEMS'98):290 -295.
    [111] Maruo S, Ikuta K. New micro stereo lithography (Super-IH process) to create 3D freely movable micro mechanism without sacrificial layer technique[C]. Proceedings of IEEE(MEMS'98): 115-120.
    [112] Maruo S, Ikuta K. Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization[J]. Sensors and Actuators A, 2002, 100: 70-76.
    [113] Ikuta K, Maruo S, Fujisawa T. Micro concentrator with opto-sense micro reactor for biochemical IC chip family. 3D composite structure and experimental verification [C]. Proceedings of IEEE(MEMS'99): 376-381.
    [114] Ikuta K, Hirowatari K, Ogata T. Three dimensional micro integrated fluid systems (MIFS) fabricated by stereo lithography [C]. Proceedings of IEEE(MEMS'94): 1-6.
    [115] Maruo S, Ikuta K, Ninagawa T. Multi-polymer micro stereo lithography for hybrid opto-MEMS [C]. Proceedings of IEEE(MEMS'2001): 151-154.
    [116] 刘明,陈宝钦,梁俊厚等.电子束曝光技术发展动态[J].微电子学,2000,30(2):117-120.
    [117] J. Kretz, L. Dreeskornfeld, J. Hartwich, et al. 20nm electron beam lithography and reactive ion etching for the fabrication of double gate FinFET devices[J]. Microelectronic Engineering, 67-68 (2003): 763-768.
    [118] F. Lehmann, G. Richter, T. Borzenko, et al. Fabrication of sub-10-nm Au-Pd structures using 30 keV electron beam lithography and lift-off[J]. Microelectronic Engineering 65 (2003): 327-333.
    [119] Robert Juhasz, Jan Linnros. Silicon nanofabrication by electron beam lithography and laser-assisted electrochemical size-reduction[J]. Microelectronic Engineering 61-62 (2002): 563-568.
    [120] M. De Vittorio, M. T. Todaro, V.Vitale, et al. Nano-island fabrication by electron beam lithography and selective oxidation of Al-rich A1GaAs layers for single electron device application[J]. Microelectronic Engineering 61-62 (2002): 651-656.
    [121] J. Kretz, L. Dreeskornfeld. Process integration of 20 nm electron beam lithography and nanopatterning for ultimate MOSFET device fabrication[J]. Microelectronic Engineering 61-62 (2002): 607-612.
    [122] T. R. Groves, D. Pickard, B. Rafferty. Maskless electron beam lithography: prospects, progress, and challenges[J]. Microelectronic Engineering 61-62 (2002):285-293.
    [123] C. Gourgon, C. Perret, G. Micouin. Electron beam photoresists for nanoimprint lithography[J]. Microelectronic Engineering 61-62 (2002) :385-392.
    [124] F. Carcenac, L.Malaquin, C.Vieu. Fabrication of multiple nano-electrodes for molecular addressing using high-resolution electron beam lithography and their replication using soft imprint lithography[J]. Microelectronic Engineering 61-62 (2002): 657-663.
    [125] T.R. Bedson , R.E. Palmer, J.P. Wilcoxon. Electron beam lithography in passivated gold nanoclustersfJ]. Microelectronic Engineering 57-58 (2001): 837-841.
    [126] H. Eisner, H.-G. Meyer. Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist[J]. Microelectronic Engineering 57-58 (2001): 291-296.
    [127] T.T. Piotrowski, A.Piotrowska, E.Kaminska, etal. Electron beam lithography and reactive ion etching of nanometer size features in niobium films[J]. Materials Science and Engineering C, 2001,15: 171-173.
    [128] C. Vieu), F. Carcenac 1, A. Pepin, et al. Electron beam lithography: resolution limits and applications[J]. Applied Surface Science , 2000,164: 111-117.
    [129] Ampere A. Tseng, Kuan Chen, Chii D. Chen et al. Electron Beam Lithography in Nanoscale Fabrication: Recent Development[J].Electronics Packaging Manufacturing, IEEE Transactions on, VOL.26, NO.2, APRIL 2003.
    [130] Wenchuang Hu, Bernstein G H, Sarveswaran k, et al. Low temperature development of PMMA for sub-10nm electron beam lithography[C]. Nanotechnology, 2003. IEEE-NANO 2003,San Francisco, CA USA. 2003 Third IEEE Conference on, Volume: 2, 12-14 Aug. 2003:602-605.
    [131] Fred Williamson, Eric A.Shields. SU-8 as an electron beam lithography resist[C]. University/Government/Industry Microelectronics Symposium, 2003. Proceedings of the 15th Biennial, IEEE, Boise, Idaho, USA, June 30-July 2, 2003: 57-60.
    [132] H L Chen, F H Ko, L S Li, et al. Thermal flow and chemical shrink techniques for sub-100 nm contact hole fabrication in electron beam lithography[C]. Microprocesses and Nanotechnology Conference, 2001 International, IEEE, Shimane Japan, 31 Oct.-2 Nov.2001: 228-229.
    [133] G.Mollenstedt, R.Speidel. Elektronoptischer mikroschreiber unter elektronenmikroskopischer arbeitskontrolle [J]. Phys. Blatter, 1960,16:192.
    [134] A. N. Broers. Micromachining by sputtering through a mask of contamination laid down by an electron beam[C]. Proceedings of the 1st International Conference on Electron and Ion Beam Sciences and Technology. ed. R.Bakish, John Wiley & Sons. Inc., New York, 1964.
    [135] 顾文琪.电子束曝光微纳加工技术[M].北京工业大学出版社,2004年7月第1版,11-14,224-249.
    [136] 任黎明.电子束曝光的Monte Carlo模拟及临近效应校正技术研究[D].2002年6月:12-16.
    [137] 顾振军主编.抗蚀剂及其微细加工技术[M].上海交通大学出版社,1989年3月第1版:156.
    [138] 孔祥东,张玉林,尹明.电子束三维光刻技术的研究[J].微细加工技术,2003,(4):9-13.
    [139] 王勇,尉伟.大尺寸电子束引出窗[J].真空科学与技术,2001年5月,21(3):182-184.
    [140] G.K.布鲁尔(美).电子束刻蚀技术[M].国防工业出版社,1986年10月第一版:93-94.285.
    [141] 哈鸿飞.高分子辐射化学—原理与应用[M].北京大学出版社.2002年4月第1版:112-185.
    [142] 郭宗连,秦宝荣主编.机械制造工艺学[M].北京:中国建材工业出版社,1997年3月第1版:251-252.
    [143] 张振厚,李云奇.第一讲 真空及其应用.http://www.sky.ac.cn/jiangzuo/2.doc.
    [144] A.罗思.真空技术[M].机械工业出版社,1980年10月第1版:1-7.
    [145] 达道安.真空设计[M].国防工业出版社,1991年11月第一版:1.
    [146] 高本辉,崔素言.真空物理[M].北京:科学出版社,1983年12月第1版:1.
    [147] 张树林.真空技术物理基础[M].沈阳:东北工学院出版社,1988年7月第1版:1-7.
    [148] 樊丽秋主编.真空设备设计[M].上海科学技术出版社,1990年1月第1版:1-2.
    [149] 华中一.真空实验技术[M].上海科学技术出版社.1986年7月第1版:2,20-30.115-129.
    [150] 刘玉魁.真空知识[M].北京:原子能出版社,1987年12月第1版:77-92.
    [151] 曹萱龄等编.物理学(上册)[M].北京:高等教育出版社,1979年3月第1版:249-250.
    [152] 陈呸瑾编著.真空技术的科学基础[M].北京:国防工业出版社,1987年3月第一版:51-60.
    [153] 袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,1999年7月第1版:171.
    [154] 张玉民.热学[M].科学出版社/中国科学技术大学出版社,2000年5月第一版:267-274.
    [155] 邹冠生.纯液体饱和蒸气压测定的改进[J].佛山大学学报,1996年8月第14卷第4期:95-98.
    [156] 刘光启.化学化工物性数据手册(有机卷)[M].北京:化学工业出版社,2002:475.
    [157] 孔祥东,张玉林,宋会英等.电子束液态光刻技术的研究[C].2004年全国博士生学术论坛机械工程分论坛会议论文集,哈尔滨,2004年8月14-16日:104-110.
    [158] 张玉林,孔祥东,孙晓军等.电子束光刻固化液态树脂技术研究[C].国家自然科学基金重大研究计划“半导体集成化芯片系统基础研究”2003年度学术交流活动论文集,北京,2004年1月:99-101.
    [159] 陈用烈.辐射固化材料及其应用[M].北京:化学工业出版社,2003年10月第1版:前言,398-402.
    [160] 周兴宝.辐射固化技术的进展[J].中国涂料,1996年第4期:20-23.
    [161] 居学成,哈鸿飞,金有铠等.电子束固化技术的现状和发展[J].大学化学,1999年10月第14卷第5期:21-25.
    [162] 李柏松,王宇光.电子束固化树脂基复合材料[J].航空制造技术,2002年第9期:30-33.
    [163] 王宇光,黎观生.张庆茂等.电子束固化技术及可电子束固化环氧树脂体系[J].绝缘材料,2002年No.6:27-31.
    [164] 周其凤,胡汉杰.高分子化学[M].北京:化学工业出版社,2001年10月第1版:31-43.
    [165] 幕内惠三[日].聚合物辐射加工[M].科学出版社,2003年3月第1版:139.
    [166] 孔祥东,孙晓军,张玉林等.电子束真空辐射固化技术基础研究[J].微细加工技术.2004年9月第3期:10-13.
    [167] 柯成恩.辐射固化技术与印刷[J].印刷世界,2001(5):42-43.
    [168] 唐承垣,董建华.辐射固化涂料[J].涂料工业,1998年第1期:32-36.
    [169] 张曼维.辐射化学入门[M].安徽合肥:中国科学技术大学出版社,1993年5月第1版:38-40,121-146.
    [170] 居学成,哈鸿飞.电子束固化机理[J].涂料工业,1999,(1):35-36.
    [171] 张和善.树脂基复合材料的电子束固化[J].航空制造工程,1998,(6):23-24.
    [172] 居学成,哈鸿飞.电子束固化高分子复合材料[J].高科技纤维与应用,2000,25(1):21-23.
    [173] 张佐光,隋刚,仲伟虹.电子束辐射固化环氧树脂的反应过程分析[J].高等学校化学学报,2003年8月,24(8):1506-1510.
    [174] 毛淑莉,隋刚,仲伟虹等.电子束固化技术及在复合材料制造领域的应用[J].北京航空航天大学学报,2000年12月,第26卷第6期:628-632.
    [175] 隋刚,仲伟虹,张佐光等.电子束固化环氧树脂混合体系的研究[J].辐射研究与辐射工艺学报,2000年11月,第18卷第4期:252-256.
    [176] 孟怀东,阴金香,林天舒等.用于立体光刻技术的阳离子及混杂光聚合体系的研究[J].辐射研究与辐射工艺学报,2000年2月,第18卷第1期:19-23.
    [177] 孔祥东,张玉林,魏守水.基于电子束光刻的LIGA技术研究[J].微细加工技术.2004年3月,第1期:18-22.
    [178] 蒋欣荣编.微细加工技术[M].电子工业出版社,1990年第一版:46-57.
    [179] 陈卓如.工程流体力学[M].高等教育出版社,2004年1月第2版:13-30.
    [180] 归柯庭,汪军,王秋颖编.工程流体力学[M].科学出版社,2003年7月第一版:26.
    [181] THOMPSON LF, KERWIN RE. POLYMER RESIST SYSTEMS FOR PHOTOLITHOGRAPHY AND ELECTRON LITHOGRAPHY[J]. ANNUAL REVIEW OF MATERIALS SCIENCE, 1976, (6):267-301.
    [182] Michael Quirk,Julian Serda(美)著,韩郑生等译.半导体制造技术[M].北京-电子工业出版社,2004年1月第一版:332.
    [183] K. Murata, H. Kawata, and K. Nagami, et al. Studies of energy dissipation in resist films by a Monte Carlo simulation based on the Mott cross section[J]. J.Vac.Sci. Technol.B 5 (1),Jan/Feb 1987:124.
    [184] Adesida, R. Shimizu, and T.E.Everhart. A study of electron penetration in solids using a direct Monte Carlo approach[J]. J.Appl. Phys. 51(11), November 1980: 5062.
    [185] Kenji Murata, David F.Kyser, and Chiu H.Ting. Monte Carlo simulation of fast secondary electron production in electron beam resist[J]. J.Appl.Phys. 52(7), July 1981:4396.
    [186] 宋会英,张玉林,孔祥东.低能电子束对抗蚀剂曝光的Monte Carlo模拟[J].微细加工技术,2004年第4期:1-7.
    [187] D.C.Joy, S.Lou. An empirical stopping power relationship for low-energy electron[J]. Scanning, 1989, 11(4):176.
    [188] V.V. Ivin, M. V. Silakov, G. A. Babushkin, et al. Modeling and simulation issues in Monte Carlo calculation of electron interaction with solid targets[J]. Microelecteonic Engineering, 69(2003):594.
    [189] D.F.Kyster. Spatial resolution limits in electron beam nanolithography[J]. J. Vac. Sci. Techol. B,1983,1(4):1391.
    [190] Heidenreich R D, Thompson L F, Feit E D, et al. Fundamental aspects of electron beam lithography. I. Depth-dose response of polymeric electron beam resists[J]. J. Appl. Phys. Sep.1973,44(9):4039-4047

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700