自由曲面分片研抛与轨迹规划的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对模具自由曲面自动研抛加工精度和效率以及大型曲面自动研抛难以实现的问题,本文对大型自由曲面、片内轨迹规划、片域间的光顺过渡和分片研抛专家系统的构建等问题展开了研究工作。论文取得的主要创新性成果有:根据计算机图形信息构造特点,提出了基于曲率的和模糊C 中值分区法相结合的自由曲面自适应分片算法,利用此算法将自由曲面分成若干曲面片,并按相似性准则将这些曲面片分类归族,即聚类曲面片族,并按片族进行加工轨迹的规划。对具体实例应用分片算法进行编程,并通过Matlab对其做了计算机仿真,结果表明:此分片算法能够实现自由曲面的分片。通过实验,证实了分片研抛对加工效率提高的效果。
    论文提出了空间环绕等残留高度研抛加工轨迹法,通过具体实例对其进行了计算机仿真,仿真结果表明,此轨迹规划方法能够实现其等残留高度研抛加工。针对曲面片间光顺的特殊性,采用了基于点的离散能量法对曲面片域间的光顺性进行了处理。建立了光顺模型,给出了其求解方式,并针对具体实例进行了仿真处理。结果表明:基于点的离散能量法的光顺模型是正确的,能够实现曲面片域间的光顺过渡加工。
    建立了自由曲面研抛的专家系统,揭示了自动化研抛的关键是如何确定组合研抛顺序和条件使其达到最优化,通过解析熟练研抛工人的研抛技巧、研抛工艺过程和研抛智能,本文采用宽度优先搜索方法,确定了最佳研抛顺序,为集成力传感器的曲面分片研抛专家系统的构建提供了理论支撑。
    本课题为吉林省科技发展计划项目(编号:20040510)
With the development of the aviation, the shipbuilding, the automobile, the electrical appliances as well as the industry product more and more to the multi-varieties, small batch, high quality, the low cost direction, free curved surface of mold processing quality and the efficiency are put forward up to high request. As a result of the computer aided geometry design,mic-roelectronic technology and the numerical control technology rapid development, the free curved surface shape processing automation has already been realized basically. But its finishing processing has not been realized the automation, namely the free curved surface polishing is completed by manual mainly. The handwork polishing wastes time and its efficiency is low. At the same time the good shape precision and the surface quality is difficult to obtain. Therefore polishing technique has already become the bottleneck of restraining the high quality mold manufacture technological development. The domestic and foreign scholars positively are carrying on automatically polishing processing system development and the practical research in order to overcome question which exist low efficiency universal existence in the processing mold free curved surface. They have yielded many important results through exploring new polish method and technology. Specially in the recent 20 years, a series of autom-atically polishing method and system are successively constructed by the co-mputer technology, for example Japan developed the numerical control miller, which can realize the three dimensional curved surface polishing automatically in mold processing.
    It is very imperative for improving efficiency while guaranteed the mold free curved surface finishing processing precision because mold finish
    man-hour accounts for the high proportion in the entire mold manufacture. Polishing tool not only require proper motion according to the path ahead but also maintain the specific posture and the stable pressure necessarily as the same time. The certain working space is expensed inevitably as maintaining specific posture, the robot precision and the rigidity insufficiency is caused for increasing the robot the arm length in order to increase the working space. Therefore purely adopting the robot realization large-scale mold’s free curved surface automation processing will have the working space and the precision, the rigidity contradiction. Moreover, in very many situations the mold the cavity surface is the irregular free curved surface. It brings very greatly troublesome to the automated finishing processing tool path and feed because these curved surface shapes complex. As a result of the mold free curved surface complexity, the polishing tool has the good self-regulating, namely the so-called compatibility. The polishing tool must change the tool type along with the free curved surface processing outline. Based on this, the large-scale mold free curved surface highly effective finishing processing was still a world difficult problem in particular regarding the mold free curved surface. So it is imperative for carrying on theory and technique research deeply in highly effective finishing processing. Based on “subdivision planning of the mold curved surface polishing in the virtual machine tool”to the Jilin Province science and technology hall fund project research, some questions and technique about mold free-form surface automatically highly efficiency finish are carried on developing deeply and comprehensive synthesis narration on the basis of reading and analysis the domestic and foreign literature material in the paper. Selection a topic academic and the practical application background as well as the necessity are discussed in the paper. Free-form surface characters through adopting the NURBS description mold free-form surface are researched. Subdivision planning method of artificially polishing process is analyzed and free-form surface boundary as well as adaptive subdivision planning algorithm is put forward base on curvature and fuzzy C according to the computer graph information and the NURBS curved surface
    construction feather. Free-form surface is divided into certain curved surface pieces through the algorithm. Those curved surface pieces are turned over classification and the race. Namely clustering curved surface piece race. The concrete example (free-form surface practicality photo see Figure 1) is carried on programming through applying for subdivision algorithm. It is simulated through Matlab. The simulation result indicated that subdivision algorithm could realize the free-form surface subdivision. The simulation result sees Figure 2: The effect factors to surface roughness are analyzed through constant scallop height of the NURBS curved surface studying in the processing polishing path topology. The formula of constant scallop height is given based on parallel polishing. The formula can forecast surface roughness. The finish idea of whole curved surface equal error and uniformity roughness is put forward through researching on free-form surface polishing path and motion and improving space parallel constant polishing. Adaptive trajectory planning is advanced base on free-form surface equal precision polishing. Row spacing and stepping of free-form surface polishing finish is inferred. So it not only can realize free-form surface equal precision processing but also can guarantee finish quality of free-form surface. Algorithm based on space parallel constant scallop height adaptive polishing finish path is inferred. The algorithm is simulated by concrete example. The simulation results (see Figure 3) indicate
    that the method of trajectory planning can realize its constant scallop height adaptive polishing finish. Fig.3 Trajectory of space parallel constant scallop height Because the free-form surface subdivision algorithm produces boundary between the curved surface piece territories is the straight edge convex polygon, it is hard to produce the fair polishing trajectory within pieces. Not smooth boundary problem exists which after the mold free-form surface piece processing,it has carried on processing based on the discrete energy method of point to process the fair of the pieces. It has established fair polishing model, produced its solution way, and aimed at the concrete example to carry on simulation processing . The simulation result indicated that the fair polishing model based on the separate energy method is correct, it can realize the fair polishing between the curved surface pieces. At present ,it can realize the mold shape processing automation, but as for its final automatic finishing processing, the experience and the expert skill are also needed, its automated standard is difficult to formulate, Through analyzing the polishing skill of the skilled grinding worker,polishing processing and polishing theories, can we know, the key to establish the expert system of polishing die free-form surface, and realize automatic polishing is to determine the combination polishing order and the condition, and enables it to achieve the optimization. Through the concrete example, it has constructed the base frame of expert system of the integrated force sensor mold free-form surface subdivision polishing. According to the free form surface
    piece information, the starting value and the target value of surface roughness, it has established the expert system knowledge libraries, and according to the knowledge libraries established the smooth inference step of polishing processing and the inference process to reconcile the subsystem. At the same time this article used the breadth-first search method to determine the best order of polishing. The simulation and the experiments to the mold free-form surface work pieces have been made,the simulation result indicated that the subdivision processing efficiency had been enhanced truly. Meanwhile, the mountain animal-drawn cart cushion has rough grinds and polishing processing, and throws has performed the contrast experiment to rough grinds and polishing,the subdivision and no subdivision grinds, the subdivision and no subdivision polishing.The result indicated that the roughness value range along the curved surface work piece polishing planning is0.23μm~0.42μmand0.26μm~0.46μm.In the situation of surface roughness basic maintenance stable, the time used subdivision rough grinds is less than that of subdivision polishing.The specifically scope is: η抛=18.63%,η磨=15.19%,η抛?η磨.This indicated that the subdivision processing algorithm is feasible and the efficiency will be more obvious in use of polishing processing.
引文
[1] 詹建明.机器人研磨自由曲面时的作业环境与柔顺控制研究.博士学位论文,长春:吉林大学,2002
    [2] 施法中.计算机辅助几何设计与非均匀有理B 样条. 北京:北京航空航天大学出版社,1994
    [3] Vergeest S M. CAD Surface data exchange using STEP.CAD, 1991,23(1):269-281
    [4] 朱心雄等.自由曲线曲面造型技术. 北京:科学出版社,2000
    [5] 王国谨,汪国昭,郑建民. 计算机辅助几何设计高等教育出版社. 北京:施普林格出版社,2001
    [6] 陈正鸣. 基于局部特征识别的特征有效性维护和特征模型转换研究. 博士学位论文,浙江:浙江大学,2001. 7
    [7] 王国谨. 曲面造型技术的现状和发展趋势. 浙江大学CAD&CAM 国家重点实验室,浙江大学应用数学系
    [8] 孙家广等. 计算机图形学. 北京:清华大学出版社,1995
    [9] Eelco van den Berg, Willem F. Bronsvoort, Joris S.M. Vergeest. Techniques for Freeform Feature Modelling. Tools and Methodsof Competitive Engineering(TMCE) 2002 Symposium
    [10] Eelco van den Berg, Hilderick A. van der Meiden and Willem F. Bronsvoort. Specification of Freeform Features. Proceeding of ACM Solid Modeling. 2003: 56-64
    [11] Ratnakar S, Girish K, Rajit G. Shape Feature Determination using the Curvature Region Representation. Proceeding of ACM Solid Modeling. 1997: 285-296
    [12] 崔秀芬.过渡特征识别与抑制方法研究. 硕士学位论文,浙江:浙江大学,2004
    [13] P. Broomhead, M. Edkins, Generation of NC data at the machine tool for the manufacture of free-form surfaces. International Journal of Production Research. 1986,24 (1) :1–14
    [14] Z.C. Chen, Z. Dong, G.W. Vickers. Steepest-directed tool path in 3-axis CNC machining—the most efficient machining scheme and its mathematical proof, in: Proceedings of the ASME 2001 Design Engineering Technical
    Conferences and Computers and Information in Engineering Conference.
    9–12 September 2001, Pittsburgh, PA, USA
    [15] Z.C. Chen, Z. Dong, G.W. Vickers. Optimal 3 1212axis CNC machining of sculptured parts using fuzzy pattern clustering, in: Proceedings of the International ICSC Congress on Soft Computing and Intelligent Systems for Industry Symposium on Intelligent Systems for Industry. 26–29 June 2001, Scotland, UK
    [16] Z.C. Chen, G.W. Vickers, Z. Dong. A new tool path generation method for 3-axis sculptured part machining, Transactions of NAMRI/SME. vol. XXXI, 2003
    [17] G.W. Vickers, K.W. Quan. Ball mill versus end-mill for curved surface machining. ASME Journal of Engineering for Industry. 1998, 111 :22–26
    [18] 杨德武,彭芳瑜,周云飞.基于主曲率的五坐标刀位轨迹优化. 华中科技大学学报,2001,29(12):8-11
    [19] 陈涛,钟毅芳,周济.自由曲面5 轴数控加工刀位轨迹的生成算法. 机械工程学报,2001,37(12):100-103
    [20] S. Bedi, S. Gravelle, Y.H. Chen. Principal curvature alignment technique for machining complex surfaces. Transactions of the ASME. 1997, 119:756–765
    [21] H.D. Cho, Y.T. Jun, M.Y. Yang. Five-axis CNC milling for effective machining of sculptured surfaces, International Journal of Production Research. 1993, 31 (11) : 2559–2573
    [22] C.G. Jensen, D.C. Anderson. Accurate tool placement and orientation for finish surface machining, Journal of Design and Manufacturing. 1993, 3 :251–261
    [23] Y.S. Lee. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining, Computer Aided Design. 1998, 30 (7):559–570.
    [24] Y. Tekeuchi, T. Idemura. 5-Axis control machining and grinding based on solid model. Annals of the CIRP. 1991 , 40 (1) :455–458.
    [25] K. Morishige, K. Kase, Y. Takeuchi. Collision free tool path generation using 2-dimensional C-space for 5-axis control machining. International Journal of Advanced ManufacturingTechnology. 1997, 13:393–400.
    [26] Zezhong C. Chenm, Zuomin Dong, Geoffrey W. Vickers. Automated surface subdivision and tool path generation for 3 1212axis CNC machining of sculptured parts. Computer in Industry. 2003,50:319-331
    [27] S. Yeh. P. Hsu, Adaptive-feedrate interpolation for parametric curves with a confined chord error. Comprter-Aided Design. 2002,34: 229-237
    [28] M. Shpitalni, Y. Koren, C.C Lo. Real time curve interpolator.[J] Computer-Aided Design. 1994,26(11):832-838
    [29] R. S. Lin, Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools, International Journal of Machine Tools ﹠Manufacture 2000,40 :1513-1526
    [30] D.C.H. Yang, T. Kong. Parametric interpolator versus linear interpolator for precision CNC machining. Computer-Aided Design.1994, 26(3): 225-234
    [31] J. T. Huang, D.C.H. Yang. A generalized interpolator for command generation of parametric curves in computer-controlled machines. Japan/USA Symposium on Flexible Automation. 1992,1:393-399
    [32] J. J. Chou, D.C. H. Yang. Command generation for three axis CNC machining.Journal of Engineering for Industry1991,113:305-310
    [33] R. T. Farouki, C. Manni, A. Sestini. Real-time interpolators for Bezier conics. Computer Aided Geometric Design. 2001,18 : 639-655
    [34] C. Lartigue, F. Thiebaut,T. Maekawa. CNC tool path in terms of B-spline curves. Computer-Aided Design. 2001,33:307-319
    [35] B. Bahr, X. Xiao, K. Krishnan. A real time scheme of cubic parametric curve interpolations for CNC systems. Computers in Industry.2001,45 : 309-317
    [36] R. Farouki, J. Manjunathaiah, G. G. Yuan. G code for the specification of Pythagorean-hodograph tool paths and associated federate functions on open-architecture CNC machines. International Journal o Machine Tools ﹠Manufacture. 1999,39:123-142
    [37] Namba Y.. Mechanism of float polishing. Technical Digest at Topical Meeting on Science of Polishing, OSA, TuB-A2, 1984
    [38] Kasai T., Kobayashi A., et al. Newly develop fully automatic polishing machines for obtainable super-smooth surfaces of compound semiconductor wafers. Annals of CIRP, Vol.37, No.1, 1988
    [39] Zhao Wankang, Yu Siyuan, Peng Zemin. Mechanical and chemical polishing of ceramics. Chinese Journal of Mechanical Engineering, Vol.8, No.2, 1995
    [40] 渡边纯二. 非接触加工技术. 机械と工具(日), 1984 年8 月
    [41] 汪劲松,段广洪,杨向东等.VAMTIY 虚拟轴机床.制造技术与机床,1998,2:42-43
    [42] 于淼.虚拟轴混联研抛机床多柔体动力学研究.博士学位论文,吉林:吉林大学,2004
    [43] 张代治.串-并混联研抛机床的运动与控制研究. 博士学位论文,吉林:吉林大学,2005
    [44] 三好隆志. 金型の磨き加工——现状と今后の课题. 型技术(日), Vol.6, No.9,1991
    [45] Weule H., Timmermann S.. Automation of the Surface finishing in the Manufacturing of Dies and Moulds. Annals of the CIRP 39 ( 1992 ) 299-302
    [46] Bogdan Nowicki. The New Method of Free form surface Honing. Annals of the CIRP 42 ( 1993 ) 425-428
    [47] 肖作义,赵玉刚,吴文权. 模具精加工综述. www.SIPMexpo.com
    [48] A.K.Srivastava, D.B. Rogers and M.A.Elbestawi. Workpiece Burn and Surface Finish during Controlled Force Robotic Disk Grinding. Int. J. Mach. Tools Manuf., Vol.32, No.6, 1992
    [49] M.Shoham et al. Neural Network Control of Robot Arms. Annals of the CIRP, Vol.41, 1992
    [50] Aoyama N.. Die-polishing Robot System. ASME 1992,2
    [51] D.E.Whitney, A.C.Edsall, A.B.Todtenkopf, T.R.Kurfess and A.R.Tate. Trans ASME J. Dyn. Syst. Means. Control, 1990
    [52] 佐佐木哲夫,齐藤胜政等. 金型磨き作业の知识获得と自动化に関する研究(第1 报). 精密工学会志(日), Vol.57, No.3,1991
    [53] 佐藤善治. 金型メ—カ—は技能集积形から知识集约形に移行してぃる. 机械と工具(日),1993 年5 月
    [54] Srivastava A. K. et al. Workpiece burn and surface finish during controlled force robotic disk grinding. Int. J. Mach. Tools Manufact., Vol.32, No.6, 1992
    [55] Acme M., et al. Integrated buffing and grinding system. 美国专利US0269473,1988,11,9,国际专利分类号:IPC.B65G04700
    [56] Poop P., et al. Two-stage grinding process for robotic application. 德 国专利DE4101150,1991,11,4,国际专利分类号:IPC.B24B00100
    [57] Bordt C., et al. Abrasive belt finishing tool for robotic production line with belt changing device. 法国专利FR0006780,1991,6,5,国际专利分类号:IPC.B23D07912
    [58] Izukhara N., et al. Component grinding machine. 俄国专利SU203069,1987,7,29,国际专利分类号:IPC.B24B03100
    [59] 赵继,近藤司等. アルミ合金曲面の自动磨きに関する研究. 日本精密工学会93 北海道学术演讲会论文集,1993 年9 月
    [60] Zhao Ji, Kondo T., et al. Study on automatic polishing of mould curved Surface at constant pressure intensity, Chinese Journal of Mechanical Engineering(机械工程学报英文版). Vol.7, No.4, 1994
    [61] 赵继,五十岚悟等. 金型磨き作业の自动化に関する研究. 砥粒加工学会志(日),Vol.39, No.4, 1995
    [62] Zhao Ji, Saito K., et al. A new method of automatic polishing on curved aluminium alloy surfaces at constant pressure. Int. J. Mach. Tools Manufact., Vol.35, No.12,1995
    [63] Tae Jo Ko, Hee Sool Kim, sung Ho Park. Machineability in NURBS interpolator considering constant material removal rate. International Journal of Machine Tools & Manufacture, 2004,5: 1-7
    [64] Piegl L, Tiller W. Computing the derivative of NURBS with respect to a knot. Computer Aided Geometric Design. 1998, 15(9)
    [65] Piegl L, Tiller W. Geometry-based triangulation of trimmed NURBS surfaces. Computer-aided Design. 1998, 30(1)
    [66] M. E. Mortenson. Geometric Modeling. Wiley, New York, 1987
    [67] 张凤莲. 基于投影、法矢和主曲率的自由曲面造型. 硕士学位论文,西安:西北工业大学,2003
    [68] Piegl L. On NURBS: A survey. IEEE Computer Graphics and Applications. 1991,11(1): 55 -71
    [69] Rogers D. Earnshaw R (editors). State of the Art in Computer Graphics –Visualization and Modeling. New York, Springer –Verlag, 1991, 225 -269.
    [70] Piegl L, Tiller W. Computing the derivative of NURBS with respect to a knot. Computer Aided Geometric Design, 1998, 15(9)
    [71] Piegl L, Tiller W. Geometry-based triangulation of trimmed NURBS surfaces. Computer-aided Design. 1998, 30(1): 11 -18.
    [72] B. Choi, C. Lee, J. Hwang, C. Jun, Compound surface modeling and machining. Computer-Aided Design. 1988, 20(3): 127-136
    [73] S. Kawabe, F. Kimura, T. Sata, Generation of NC commands for sculptured surface machining form 3-coordinate measuring data, CIRP Ann. 1999,30(1)
    [74] G. Loney, T. Ozsoy. NC machining of free form surfaces. Computer-Aided Design. 1987,19 (2) :85-90
    [75] D. Wsocki, J. Oliver, E. Goodman, Gouge detection algorithms for sculptured surface NC generation, in: ASME Winter Annual Meeting, Computer-aided Design and Manufacture of Cutting and Forming Tools, 1989, pp. 39-44.
    [76] H.T. Yau, C.H. Meng, Automated CMM path planning for dimensional inspection of dies and molds having complex surfaces, International Journal of Machine Tools and Manufacture 1995, 35 (6)
    [77] J.M. Zhan, J. Zhao, S.X. Xu, P.X. Zhu. Study of the contact force in free form-surfaces compliant EDM polishing by robot. Journal of Materials Processing Technology. 2002,129:186-89
    [78] 周济,周艳红,周云飞. 自由曲面的CNC 直接插补加工技术.高技术通讯,1998, 11:30-35
    [79] 邬义杰,柯映林,夏冠华. 非圆回转曲面CNC 磨削加工轨迹直接插补技术研究. 工程设计,2000, 4:117-119
    [80] 金建新. 机床CNC 系统中任意空间曲线的可控步长插补方法. 机械工程学报,2000, 36(4): 12-14
    [81] 黄翔,曾荣等. NURBS 插补技术在高速加工中的应用研究. 南京航空航天大学学报, 2002,34 (1):82-85
    [82] 周艳红. 自由曲面CNC 直接加工理论与技术的研究. 博士学位论文,上海:华中理工大学,1997
    [83] 王哲. 面向并联机床的复杂曲面数控加工编程技术的研究. 博士学位论文,哈尔滨:哈尔滨工业大学,2000
    [84] 李世杰,田少华.数控铣削中刀具路径的拓扑分析.河北工业大学学报,1998,27(3):70-74
    [85] 李世杰,孙立新,郭兰申.数控铣削中曲面加工的粗糙度预测.机械设计与制造工程,2000,29(4):35-37
    [86] Alyn P. Rockwood. The Displacement Method for Implicit Blending Surfaces in Solid Models. ACM Transactions on Graphics.Volume 8, Number 4. 1989: 279-297
    [87] Anshuman R, MyungSoo B. A Hybrid Approach to Feature Segmentation of Triangle Meshes. Computer-Aided Design. 35(9). 2003: 783-789.
    [88] Gao S, Shah JJ. Automatic Recognition of Interacting Machining Features based on Minimal Condition Subgraph.Computer-Aided Design. 30(9). 1998: pp.75-87
    [89] Mould manufacturing technology. Beijing: Publishing House of Electronics Industry. 2004,1:138-139
    [90] Cai Zi-xing. Intelligent Control. Beijing: Publishing House of Electronics Industry, 2004.1
    [91] 周志雄,邓朝晖,陈根余,宓海青. 磨削技术的发展及关键技术.中国机械工程, 2000, 11(1-2)
    [92] 王都. 模具工业发展中的几个问题. 模具工业, 2000,2:3-6
    [93] 王永章.机床的数字控制技术.哈尔滨:哈尔滨工业大学出版社,2000
    [94] 于春生,韩昊.数控机床编程及应用.北京:高等教育出版社,2000
    [95] A.K.Srivastava, D.B. Rogers and M.A.Elbestawi. Workpiece Burn and Surface Finish during Controlled Force Robotic Disk Grinding. Int. J. Mach. Tools Manuf. 32 ( 1992 ) 797-809
    [96] A.K.Srivastava, K. M. Yuen and M. A, Elbestawi. Int. J. Mach. Tools Manuf.32 ( 1992 ) 269
    [97] M.Shoham et al. Neural Network Control of Robot Arms. Annals of the CIRP 41( 1992 ) 407-411
    [98] Miao Yu, Ji Zhao et al. Collision Prediction in Robotic Ultrasonic Polishing of Moulds with Curved Surfaces . CIRP International Symposium,August 21 22 ( 1997 )
    [99] Jia Zhixin, Zhang Jianhua and Ai Xing. Study on a new kind of combined machining technology of ultrasonic machining and electrical discharge machining. Int. J. Mach.Tools Manuf. 37 (1997) 193-199
    [100] K. Suzuki et al. A New Grinding Method for Ceramics Using a Biaxially Vibrated Non-rotational Ultrasonic Tool. Annals of the CIRP 42 ( 1 ) ( 1993 )375-378
    [101] 模具设计与制造技术教育丛书编委会编.模具钳工工艺. 北京:机械工业出版社,2003
    [102] S. Marshal, A new cuter-path topology for milling machines, Computer-Aided Design, 1994,26(3): 204-214
    [103] 高三得等.组合自由曲面数控加工中的自适应策略.Vo1.23, 1995, 11-15.
    [104] 张大卫,张永等. 自由曲面数控加工刀具路径的自适应算法. 天津大学学报, Vol.30, 1997, 607-612
    [105] K. K. wang, Application of solid modeling to automate machining parameter for complex parts, proc. of manufacturing seminar, Petm State. U. S. A. 1987pp33-37
    [106] Cui Zhu, Tool-Path Generation in Manufacturing Sculptures Surface with a Cylindrical End-Milling Cutter, Computer in Industry, 1991,17(4): 385-389
    [107] J. J. Cox, Space-filling curves in tool-path applications, Computer-Aided Design, 1994,26(3): 215-224
    [108] Maddox R, Knesek J. A Glimpse at Rapid prototyping Technologies, Aerospace American, 1993,6: 28-32
    [109] Chen Y.D, Ni J, wu S M, Real-time CNC Tool Path Generation for Machining IGES surface, Trans. of the ASME. Joamal of Engineering for Industry, 1993, 115(11):480-486.
    [110] J.G.Griffiths, Table-Driven Algorithms for Generating Space-Filling Curves, Computer-Aided Design, 17(l): 3741, 1985
    [111] 孙延奎,朱心雄. B 样条曲线的小波光顺法.工程图学学报,No.4,1998,51-58
    [112] 孙延奎,朱心雄. 任意B 样条曲面的多分辨率表示及光顺.工程图学学报, No.3,1998,49-54
    [113] Sun Yankui,Zhu Xinxiong,Ma Lin. The Applications of Wavelets in Hierarchical Representations and Smoothing of Curves and Surfaces. CADDM, Vol.7, No.2,1997,35-42
    [114] Kjellander, J.A.P. Smooth of Cubic Parametrics Spline, CAD, Vol.15, No.3, 1983, 175-179
    [115] Kjellander, J.A.P. Smooth of Cubic Parametrics Surface, CAD, Vol.15, No.5,1983, 288-293
    [116] Farin, G., Rein, G., Sapidis, N. and Worsey, A.J. Fairing Cubic B-Spline Curve, CAGD, Vol.4,1987,91-103
    [117] Sapidis, N. and Farin,G. Automatic fairing Algorithm for B-Spline Curve, CAD, Vol.22,No.,1990,121-129
    [118] Pigounakis, K. G. and Kaklis, P. D. Convexity-Preserving fairing, CAD, Vol.28, No.12, 1996, 981-994
    [119] 经玲.用有限元法整体构造B 样条曲面的理论与应用研究. 博士学位论文,北京:北京航空航天大学,1997
    [120] 宁涛.NURBS 曲面造型应用技术研究. 博士学位论文,北京:北京航空航天大学,1996
    [121] Guan Zhidong, Jin Ling, Ning tao, Zi Ping, Tang Tongxi. Study and Application of Physics-Based Deformable Curves and Surfaces, C&G, Vol.21, No.3, 1997, 305-313
    [122] 穆国旺,涂侯杰,朱心雄.参数三次B 样条曲线的一种整体光顺方法.工程图学学报,No.1,1998,1,28-34
    [123] Mu Guowang, Zhu Xinxiong, Lei Yi, Tu Houjie. Fairing of Parametric Cubic B-spline Curves and Bicubic B-splineSurfaces,CADDM,Vol.7,No.2,1997,9-16
    [124] 穆国旺,雷毅,涂侯杰,朱心雄.一种离散型值点列的光顺方法. Chinagraph’98会议论文集,桂林,1998
    [125] Pottmann, H. Smooth Curves under Tension. CAD,Vol.23,No.4,1990,241-245
    [126] Hoschek. Smoothing of Curves and surfaces, CAGD Vol.2,1985,97-105
    [127] Meier,H. and Nowacki, H. Interpolating Curves with Gradual Changes in Curvature. CAGD, Vol.4,1987,297-305
    [128] Peters, j., Local Cubic and Bicubic C1 Surface Interpolation with Linearly Varying Boundary Normal. CAGD, Vol.7, 1990,499-516
    [129] Hagen, H. and Schulze, G. Automatic Smoothing with Geometric Surface Patches. CAGD, Vol.4, 1987,231-235
    [130] Nowacki, H., Liu, D. Y. and Lyu, X.M. Fairing Bezier Curves with Constraints. CAGD, Vol.7,1990,43-55
    [131] Kallay, M. and Ravani, B. Optimal Twist Vectors as a Tool for Interpolating a Network of Curves with a Minimum Energy Suface. CAGD, Vol.7,1990,465-473
    [132] Hagen,H. Variational Design of Smooth Rational Vezier Curves. CAGD, Vol.8,1991, 393-398
    [133] Rando, T. and Roulier, J.A. Designing Faired Parametric Surfaces. CAD, Vol.23,No.7, 492-497
    [134] Welch, W. and Witkin, A. Variational Surface Design. Computer Fraphics,Vol.26, No.2,1992,157-166
    [135] Moreton, H. P. and Sequin, C. H. Functional optimization for Fair Surface Design. Computer Graphics, Vol.26,NO.2,1992 167-175
    [136] Wang, X.F., Cheng, F. H. and Barsky, B. a. Energy and B-spline Interproximation. CAD, Vol.29, No.7, 1997,485-496
    [137] Rong Huanzong, Chen Gang, Zhang Weirong. Non-Uniform B-spline Mesh fairing Method. CADDM, Vol.1,No.1.1991,20-28
    [138] 李安平,蒋大为.三次均匀有理B 样条曲线的权因子优化光顺算法.计算机辅助设计与图形学学报,Vol.9,No.6,1997,562-567
    [139] 陈金成. 多轴联动高性能数控加工的运动优化与复杂轨迹实时控制策略研究.博士学位论文,上海:上海交通大学,2001
    [140] Eelco van den Berg, Willerm F. Bronsvoort, Joris S. M. Vergeest. Freeform feature modeling:concepts and prospects. Computer in Industry. 2002,49:217-233
    [141] Syh-Shiuh Yeh, Pau-Lo Hsu. Adaptive-feedrate interpolation for parametric curves with a confined chord error. Computer-Aided Design. 2002,34:229-237
    [142] M. Y. Yang, H.C. Lee. Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die. Journal of Materials Processing Technology.2001,116:298-304
    [143] J. H. Ahn, Y. F. Shen, H. Y. Kim, et al. Development of a sensor information integrated expert system for optimizing die polishing. Robotics and Computer integrated Manufacturing. 2001,17:268-276
    [144] 蔡自兴.智能控制.北京:电子工业出版社,2004
    [145] 邢会民,周永宏,陈毅红,郭四代. 专家系统原型概述. 西南民族大学学报(自然科学版),2004.8
    [146] 席中洋. 专家系统开发工具的研究与应用.南京理工大学,2003.3.1
    [147] 杨继志,张家泰,郭敬. 用C++和Access 数据库实现专家系统外壳. 应用科技, 2004,31(8)
    [148] 张雷,袁楚明,陈幼平,周祖德. 模具曲面抛光工艺知识的获取. 中国机械工程, 2001,12(4)
    [149] 施鸿宝,王秋荷.专家系统.西安:西安交通大学出版社,1990
    [150] 诸静.模糊控制原理与应用.北京:机械工业出版社,1999
    [151] Sasaki T, Miyoshi T, Saito K, et al. Knowledge acquisition and automation of polishing operations for injection mold (1st report): Hand polishing properties of a skilled machinist. J Jpn Soc Precision Eng 1991, 57(3): 497-503 (in Japanese)
    [152] Sasaki T, Miyoshi T, Saito K, et al. Knowledge acquisition and automation of polishing operations for injection mold (2nd report): Expert system for mold and die polishing operation. J Jpn Soc Precision Eng 1991, 57(12):2151-6 (in Japanese)
    [153] Sasaki T, Miyoshi T, Saito K, et al. Knowledge acquisition and automation of polishing operations for injection mold (3rd report): Development and construction of automatic polishing apparatus. J Jpn Soc Precision Eng 1992, 58(12): 2037-43 (in Japanese)
    [154] M. Cemal Cakir, Ozgur Irfan, Kadir Cavdar. An expert system approach for die and mold making operations. Robotics and Computer-Integrated Manufacturing. 2005, 21:175-183
    [155] S. Kumar, R. Singh. An intelligent system for selection of die-set of metal stamping press tool. Journal of Materials Processing Technology.2005, 164-165:1395-1401
    [156] Chul Kim, Y. S. Park, J. H. Kim, J. C. Choi. A study on the development of computer-aided process planning system for electric product with bending and piercing operations. Journal of Materials Processing Technology. 2002, 130-131:626-631
    [157] J. H. Ahn, Y. F. Shen, H. Y. Kim, H. D. Jeong, K. K. Cho. Development of a sensor information integrated expert system for optimizing die polishing. Robotics and Computer Integrated Manufacturing. 2001,17:269-276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700