大掺量粉煤灰ECC耐久性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ECC(Engineered Cementitious Composite)作为纤维增强混凝土的一种新材料,具有应变硬化和多缝开裂的特征。近二十年来,国内外对ECC的性能做了大量研究工作,但主要集中在理论研究,以及对其拉伸、弯曲、剪切等力学性能及收缩开裂等性能的试验研究上,对于ECC的耐久性研究较少。针对这一现状,本文从ECC的抗冻性、渗透性、抗碳化性、耐化学腐蚀性及抗钢筋锈蚀能力几个方面着手,以相同强度等级的普通混凝土为对比试验,研究了大掺量粉煤灰ECC的耐久性。
     利用快速冻融试验方法,从质量损失、动弹性模量变化、弯曲性能的改变等方面进行了分析,发现ECC在水中的抗冻性好于在盐溶液中的;经150次冻融循环后,ECC的抗剥落能力较普通混凝土强,初裂荷载和极限荷载均降低,弯曲挠度增大,尤其是在盐溶液中进行冻融的;ECC在水中的抗冻性大于在盐溶液中的抗冻性;且水中冻融150次时韧性达到最大,盐溶液中冻融50次时韧性达到最大。
     通过氯离子扩散系数法,测得ECC的扩散系数是8.095×10~(-10)cm/h,与普通混凝土的扩散系数2.95×10~(-10)cm/h相比,大掺量粉煤灰ECC的抗渗性差。通过酸碱盐溶液浸泡ECC的试验得出,经盐酸溶液浸泡后,ECC的抗折抗压强度降低,初始开裂荷载降低,弯曲挠度增大; NaOH碱溶液对ECC没有明显影响;氯盐和硫酸盐溶液浸泡后的ECC,抗折抗压强度略有提高,初始开裂荷载增加,挠度减小。
     利用快速碳化方法发现,与普通混凝土相比,ECC的碳化更容易发生,其原因是ECC无粗骨料,且使用大量粉煤灰。碳化后ECC的初始开裂荷载降低,弯曲挠度增大。同时,采用电解液加速钢筋锈蚀的方法,比较了ECC与普通混凝土抗钢筋锈蚀的能力,并研究了不同荷载及碳化对ECC抗钢筋锈蚀性能的影响。研究结果表明,ECC具有很好的抗钢筋锈蚀能力,随着预加荷载的增大,ECC的抗钢筋锈蚀能力降低。
Engineered Cementitious Composite (ECC) is featured with strain-hardening and multiple cracking as a new material of fier reinforced concrete. During the recent two decades, many researches on the properties of ECC have been carried out at home and abroad. However, the research mainly focuses on the theoretical study, as well as the mechanical properties such as tensile, flexure, shear and so on, and the properties of shrinkage cracking. Few researches are about the durability of ECC. Therefore, starting with the freezing-thawing resistance, permeability, carbonation resistance, chemical resistance and the resisitance to corrosion of steel, the durability of ECC with low water-cement ratio and high volume fly ash is investigated in this paper, compared with ordinary concrete with the same compressive strength.
     Accelerated freezing and thawing test has been conducted, and the mass loss, changes of dynamic elasticity modulus, and changes of flexural properties are analysted. Furthermore, the influence of freezing and thawing medium on ECC is investigated compared with ordinary concrete. The results show that ECC has stronger resistance to spalling. Whiletime, the initial crack load and ultimate load decrease, and flexural deflection enhances, especially for the specimens under freezing and thawing cycles in the salt solution. The flexural toughness index arrives maximum at 150 cycles in the water and 50 cycles in the salt solution respectively. According to the rapid chloride ions penetration test, the permeability of ECC with high volume fly ash is higher, of which diffusion coefficient is 8.095×10~(-10)cm/h, compared with 2.95×10~(-10)cm/h of ordinary concrete. The results show that the flexural and compressive strength and initial cracking load decrease, but flexural deflection increases after immersed in HCl. However,the influence of NaOH on ECC is not so obvious. Additionally, the flexural and compressive strength slightly enhance, initial cracking load increase and flexural deflection decreases after immersed chlorate and sulphate.
     Compared with ordinary concrete, the carbornation of ECC is relatively easy due to its non coarse aggregate and high volume fly ash used through the accelerated carbornation method. The initial cracking load decreases and the flexural deflection increases after carbornation. Furthermore, the accelerated corrosion of steel test has been conducted to compare the ability of resistance to corrosion of steel between ECC and ordinary concrete. And the influence of different loads and carbornation on the resistance to corrosion of steel has been investigated. The results show that ECC has a strong ability of corrosion resistance compared with ordinary concrete.
引文
1徐学东.现有铁路混凝土桥梁的耐久性问题.第五届全国混凝土耐久性学术交流会论文集. 2000:47~53
    2陈蔚凡.关于保证混凝土耐久性若干问题的建议.第五届全国混凝土耐久性学术交流会论文集. 2000:24~27
    3黄士元. 21世纪初期我国混凝土技术发展的几个重点问题.混凝土. 2002(3):2~7
    4 M. D. Lepech, V. C. Li. Long Term Durability Performance of Engineered Cementitious Composites. Restoration of Buildings and Monuments. 2006,1(2):119~131
    5吴中伟.纤维增强——水泥基材料的未来.混凝土与水泥制品. 1999(1):5~6
    6 V. C. Li, K. H. Obla. Effect of Fiber Length Variation on Tensile Properties of Carbon Fiber Cement Composites. Composite Engineering. 1994,4(9):947~964
    7 V. C. Li, S. Wang. On High Performance Fiber Reinforced Cementitous Composites. Proceeding of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites(DFRCC). Tokyo:Japan Concrete Institute. 2003:12~23
    8 S. F. U. Ahmed, M. Maalej, P, Paramasivam. Analytical Model for Tensile Strain Hardening and Multiple Cracking Behavior of Hybrid Fiber-Engineered Cemetitious Composites. ASCE Journal of Materials in Civil Engineering. 2007,19(7):527~539
    9 M. Lepech, V. C. Li. Durability and Long Term Performance of Engineered Cementitous Composites. Proceedings of Int’l workshop on HPFRCC in structural applications, Honolulu, Hawaii, USA, 2005:23~26
    10 M. B. Weimann, V. C. Li. Drying Shrinkage and Crack Width of Engineered Cementitious Composite(ECC). 7th International Symposium Brittle Matrix Composites. Warsaw, 2003:37~46
    11 J. Zhang, C. Gong, Z. Guo et al. Engineered Cementitious Composite with Characteristic of Law Drying Shrinkage. Cement and Concrete Research. 2009,(39):303~312
    12 M. Lepech, V. C. Li. Water Permeability of Cracked Cementitious Composites. ICF
    11, Turin, Italy, 2005:4539~4544
    13 T. Kanakubo. Tensile Characteristics Evaluation Method for Ductile Fiber-Reinforced Cementitious Composites. Journal of Advanced Concrete Technology. 2006,4(1):3~17
    14杨英姿,祝瑜,高小建,邓红卫.掺粉煤灰PVA纤维增强水泥基复合材料的试验研究.青岛理工大学学报. 2009,30(4):51~54
    15 V. C. Li, S. Wang, H. C. Wu. Tensile Strain-Hardening Behavior of PVA-ECC. ACI Materials Journal. 2001,98(6):483~492
    16 V. C. Li, T. Hashida. Engineering Ductile Fraeture In Brittle Matrix Composites. Journal of Materials Scienee Letters. 1993,12(12):898~901
    17 V. C. Li, C. K. Y. Leung. Steady State and Multiple Cracking of Short Random Fiber Composites. ASCEJ of Engineering Mechanics. 1992,118(11):2246~2264
    18 M. Maalej, V. C. Li, T. Hashida. Effect of Fiber Rupture on Tensile Properties of Short Fiber Composites. ASCE J. Engineering Mechanics. 1995,121(8):903~913
    19 J. Zhang, V. C. Li. Effect of Inclination Angle on Fiber Rupture Load in Fiber Reinforced Cementitious Composites. Composites Science and Technology. 2002,62:775~781
    20 V. C. Li. Reflections on the Research and Development of Engineered Cementitious Composites (ECC). Proceedings of the JCI International Workshop on Ductile Fiber Reinforeed Cementitious Composites (DFRCC)- Application and Evaluation (DRFCC-2002) Takayama. Japan, 2002,8:1~21
    21 T. Kanda, V. C. Li. Practical Design Criteria for Saturated Pseudo Strain Hardening Behavior in ECC. Journal of Advanced Concrete Technology. 2006,4(1):59~72
    22 G. Fisher, V. C. Li. Influence of Matrix Ductility on the Tension-Stiffening Behavior of Steel Reinforced ECC. ACI Structural Journal. 2002,99(1):104~111
    23 C. K. Y. Leung, V. C. Li. Effect of Fiber Inclination on Crack Bridging stress in brittle fiber reinforced brittle matrix composites. Journal of Mechanics and Physics of Solids. 1992,40(6):1333~1362
    24 V. C. Li, D. K. Mishra, H. C. Wu. Matrix Design for Pseudo-Strain-Hardening Fiber Reinforced Cementitious Composites. Materials and Structures. RILEM. 1995,28:586~595
    25 D. B. Marshall, B. N. Cox. A J-Intergral Method for Calculating Steady-State Matrix Cracking Stresses in Composites. Mechanics of Materials. 1998,7:127~133
    26 C. K. Leung. Design Criteria for Pseudo ductile Fiber-Reinforced Composites. J. of Engineering Mechanics. ASCE, 1996,122(1):10~18
    27 T. Kanda, V. C. Li. Mulitiple Cracking Sequence and Saturation in Fiber Reinforced Cementitious Composite. Concrete Research and Technology. JCI, 1998,9(2):19~33
    28 V. C. Li. From Micromechanics to Structural Engineering——The Design of Cementitious Composites for Civil Engineering Applications. J. Struct. Mech.Earthquake Eng. Japan Society of Civil Engineers. 1993,10(2):37~48
    29 C. K. Y. Leung, V. C. Li. Effect of Fiber Inclination on Crack Bridging Stress in Brittle Fiber Reinforced Brittle Matrix Composites. Journal of Mechanics and Physics of Solids. 1992,40(6):1333~1362
    30 M. Sahmaran, M. Lachemi, V. C. Li. Assessing the Durability of Engineered Cementitous Composites under Freezing and Thawing Cycles. Journal of ASTM International. 2009,6(7):1~13
    31 T. Kanda, V. C. Li. New Micromechanics Design Theory for Pseudo Strain Hardening Cementitious Composite. ASCE Journal of Engineering Mechanics. 1999,125(4):373~381
    32 T. Kanda, V. C. Li. Effect of Apparent Strength and Fiber-Matrix Interface Properties on Crack Bridging in Cementitious Composites. Journal of Engineering Mechanics. ASCE, 1999,125(3):290~299
    33饶芬芳.粉煤灰对超高韧性水泥基复合材料弯曲性能的影响试验研究.大连理工大学硕士论文. 2008.5:3~13
    34 V. C. Li, H. C. Wu, Y. W. Chan. Effect of Plasma Treatment of Polyethylene Fibers on Interface and Cementitious Composite Properties. J. of Amer. Ceramics Soc. 1996,79(3):700~704
    35 H. C. Wu, V. C. Li. Fiber/Cement Interface Tailoring with Plasma Treatment. Cement and Concrete Composites. 1999,21:205~212
    36 Z. Lin, T. Kanda, V. C. Li. On Interface Property Characterization and Performance of Fiber Reinforced Cementitious Composites. Concrete Science and Engineering. RILEM, 1999:173~184
    37 T. Kanda, V. C. Li. Interface Property and Apparent Strength of High-Strength Hydrophilic Fiber in Cement Matrix. J. of Materials in Civil Engineering. ASCE, 1998,10(1):5~13
    38 C. Redon, V. C. Li, C. Wu, H. Hoshiro, T. Saito, A. Ogawa. Measuring and Modifying Interface Properties of PVA Fibers in ECC Matrix. ASCE J, Materials in Civil Engineering. 2001,13(6):399~406
    39 V. C. Li. C. Wu, Shunxin Wang et al. Interface Tailoring for Strain-Hardening Polyvinyl Alcohol-Engineered Cementitious Composite (PVA-ECC). ACI Materials Journal. 2002,99(5):462~471
    40 H. Takashima, K. Miyagai, T. Hashida. Fracture Properties of Discontinuous Fiber Reinforced Cementitous Composites Manufactured by Extrusion Molding. In: Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation (DRFCC-2002). Takayama, Japan, 2002:75~84
    41 E. H. Yang, Y. Z. Yang, V. C. Li. Use of Volumes of Fly Ash to Improve ECC Mechanical Properties and Material Greenness. ACI Materials J. 2007,104(6):620~628.
    42 J. K. Kim, J. S. Kim, G. J. Ha et al. Tensile and Fiber Dispersion Performance of ECC (Engineered Cementitious Composites) Produced with Ground Granulated Blast Furnace Slag. Cement and Concrete Research. 2007,37:1096~1105
    43张君,公成旭.高韧性纤维增强水泥基复合材料单轴抗拉性能研究.第十一届全国纤维混凝土学术会议论文集.大连. 2006:27~32
    44高淑玲. PVA纤维增强水泥基复合材料拉伸特性试验研究.大连理工大学学报. 2007,47(2):233~239
    45李贺东.超高韧性水泥基复合材料试验研究.大连理工大学博士论文. 2008.6:35~57
    46邓宗才,薛会青,李朋远,张鹏飞,佘向军.高韧性纤维增强水泥基复合材料的单轴拉伸力学性能.北京工业大学学报. 2009,35(9):1204~1208
    47黄俊,姜弘道. PVA纤维水泥基复合材料轴向拉伸应力-应变全曲线试验研究.纤维混凝土的技术进展与工程应用·第十一届全国纤维混凝土学术会议论文集. 2006:96~103
    48 M. Maalej, V. C. Li. Flexural Strength of Fiber Cementitious Composites. Journal of Materials in Civil Engineering. ASCE, 1994,6(3):390~406
    49 M. Maalej, V. C. Li. Flexural/Tensile Strength Ratio in Engineered Cementitious Composites. Journal of Materials in Civil Engineering. ASCE, 1994,6(4):513~528
    50 M. Lepech, V. C. Li. Size Effect in ECC Structural Members in Flexure. V. C. Li. et al. Proceedings of FRAMCOS-5. Colorado, USA, 2004:1059~1066
    51 M. Kunieda, T. Kanada, K. Rokugo. Size Effects on Flexural Failure Behavior of ECC Members. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC). Tokyo: Japan Concrete Institute. 2002:229~238
    52 T. Matsumoto, P. Suthiwarapirak, T. Kanda. Mechanism of Multiple Cracking and Fracture of DFRCCs under Failure Flexure. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evluation (DFRCC-2002). Takayama, Japan, 2002:259~268
    53 J. Zhang, V. C. Li. Monotonic and Fatigue Performance of Engineered Fiber Reinforeed Cementitious Composite in Overlay System with Deflection Cracks .J. of Cement and Concrete Research. 2002,32(3):415~423
    54徐世烺,蔡向荣,张英华.超高韧性纤维增强水泥基复合材料基本力学性能.水利学报. 2009,40(9):1055~1063
    55赵铁军,毛新奇,田砾. PVA-ECC的弯曲韧性.第十一届全国纤维混凝土学术会议论文集.大连, 2006:21~26
    56任昭君,孙志伟,苏卿.水分含量对PVA-SHCC断裂能及应变硬化的影响.工程建设. 2008,40(4):9~12
    57 T. Kanda, S. Watanabe. Application of Pseudo Strain Hardening Cementitious Composites to Shear Resistant Structural Elements. Fracture Mechanics of Concrete structures. Proceedings FRAMCOS-3. D-79104 Freiburg, Germany: AEDIFICATIO Publishers. 1998:1477~1490
    58 P. Kabele, V. C. Li, H. Horii. et al. Use of BMC for Ductile Structural Members. In Proc. 5th International Symposium on Brittle Matrix Composites (BMC-5). Warsaw, Poland, 1997:579~588
    59刘志凤.超高韧性水泥基复合材料干燥收缩及约束下抗裂性能研究.大连理工大学硕士论文. 2009:6~8
    60 V. C. Li. Engineered Cementitious Composites for Structural Applications Innovations Forum. Journal of Materials in Civil Engineering. 1998:66~69
    61朱桂红,田砾,郭平功,赵铁军.工程复复合材料(ECC)的耐久性试验研究进展.工程建设. 2006,38(5):7~9
    62 V. C. Li, H. Horii, P. Kabele. et al. Repair and Retrofit with Engineered Cementitious Composites. Engineering Fracture Mechanics. 2006,65:317-334
    63 Y. M. Lim, H. C. Wu, V. C. Li. Development of Flexural Composite Properties and Dry Shrinkage Behavior of High-Performance Fiber Reinforced Cementitious Composites at Early Ages. ACI Material Journal. 1999,96(1):20~26
    64赵铁军,毛新奇,张鹏.应变硬化水泥基复合材料的干燥收缩与开裂.东南大学学报. 2006:269~273
    65田砾,荆斌,赵铁军,毛新奇.应变硬化水泥基复合材料收缩性能的试验研究.建筑科学. 2007,23(6):76~79
    66 M. Sahmaran, V. C. Li. Durability Properties of Micro-Cracked ECC Containing High Volumes Fly Ash. Cement and Concrete Research. 2009 (available online)
    67 M. Lepech, V. C. Li. Water Permeability of Cracked Cementitious Composites. ICF 11. Turin, Italy, 2005:4539~4544
    68罗百福.绿色高韧性纤维增强水泥基复合材料的研究.哈尔滨工业大学硕士论. 2008:15~18
    69袁晓露,李北星,崔巩,赵尚传.粉煤灰混凝土的抗冻性能及机理分析.混凝土. 2008(12):43~44
    70冯庆革,杨义,杨绿峰,朱惠英.低用水量大掺量粉煤灰高性能混凝土的耐久性研究.第一届两岸三地绿色材料学术研讨会论文集. 2008:16~19
    71王善拔.混凝土盐类结晶破坏的理论与实践.水泥. 2008(5):3~6
    72王冲,蒲心诚,严吴南,万朝均,白光,何桂.高性能混凝土的耐化学侵蚀性能研究. 1999,21(1):28~31
    73刘秉京.混凝土结构耐久性设计.北京:人民交通出版社. 2007:75~82
    74薛国安.大掺量粉煤灰混凝土的作用及其机理分析.化学工程与装备. 2009.10:103~104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700