岩石冻融力学实验及水热力耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对寒区日益增长的工程需要,围绕冻结岩石问题,以冻融力学实验为基础,系统研究岩石在冻融循环条件下的损伤力学特性;以寒区大型岩体隧道工程为背景,研究相应的多场耦合数学模型,进行冻融环境下隧道围岩温度场及应力场数值分析。
     从工程现场选取红砂岩和页岩两种典型岩石,加工成标准试件,对两种岩石进行了开放饱水状态下冻融循环试验,设定一次冻融循环温度变化范围为-20℃~+20℃。提出了红砂岩和页岩的两种冻融损伤劣化模式为片落模式和裂纹模式,分析了两种岩石的冻融损伤劣化及冻融破坏行为;对不同含水状态(干燥和完全饱和)和经历不同冻融次数(0,5,10,20,40,60,100次)后的岩样进行单轴压缩试验,记录了岩石冻融循环后的变形、强度变化规律,分析了这两种岩石的冻融耐久性。结果表明:红砂岩的抗压强度及弹性模量均随冻融循环次数的增加而降低,而页岩在最初20次冻融循环内强度及弹性模量有所下降,在20~100次冻融循环后,逐渐趋于稳定;岩石经历冻融循环作用后,相同轴压下的轴向应变增大;红砂岩弹性模量及单轴压缩强度与冻融次数的关系可用二次多项式拟合,而页岩可用指数函数拟合。
     根据隧道围岩单温度场方程,以青海省大坂山岩体隧道工程为例,用大型通用有限元软件模拟了在升温→降温→升温→降温的冻融循环条件下隧道围岩温度场分布规律;介绍了寒区隧道冻胀力,研究了寒区岩体温度场、水分场及应力场耦合数学模型,最后用有限元方法计算了寒区岩体隧道冻胀力。研究表明:冻融环境下,隧道内壁附近区域更容易受地面温度变化、开放通风对流的影响,温度及应力变化都比较剧烈;在寒区隧道设计及施工中必须考虑围岩冻胀力的影响;为减少寒区隧道冻融灾害,应采取良好的保温措施以减少洞内外气温与围岩间的热交换,有效控制冻融圈的范围。
According to the growing needs of the project in cold regions, around frozen rocks, on the basis of freeze-thaw mechanics, studied damage mechanics properties of rocks under the condition of freeze-thaw cycles; Then on the background of large scale rocks engineering in cold regions, studied the corresponding coupled mathematical model, did the temperature and stress field numerical analysis of surrounding rocks under the freeze-thaw environment.
     Two typical rocks that are red sandstone and shale were obtained from engineering sites, and they were prepared as standard specimens, did freeze-thaw cycles test in the opening filled water condition of two rocks, set a natural freeze-thaw cycle temperature range is from -20℃to +20℃. Two deterioration models, i.e. scaling mode for red sandstone and fracturing mode for shale were found, analyzed freeze-thaw thawing damage degradation and freeze-thaw vandalism of two rocks; The uniaxial compression tests were conducted on the two types of rocks subjected to different water status (dry and complete saturated) and freeze-thaw cycles (0, 5, 10, 16, 40, 60, 100 cycles), the deformation and compression strength of rocks varied with different cycles of freeze-thaw are recorded, and resistance to freeze-thaw of the two types of rocks are analyzed. Results show: the compressive strength and elastic modulus of sandstones reduce with cycles increase, but freeze-thaw cycle in strength and elastic modulus of shales decline in the first 20 times, after 20 to 100 times, they stable gradually; After rocks suffered from thawing cycles, axial strain under the same pressure of the phase coaxial increases; Relations of red sandstone elastic modulus and uniaxial compressive strength and the number of freeze-thaw can be fitted by quadratic polynomials, but shales’can be fitted by exponential function.
     According to the single temperature field equations about tunnels, as an example of DaBan mountain tunnel project in Qinghai province, used large scale finite element software to simulate temperature distribution under freeze-thaw cycles which from warming to cool and again; Introduced the frost force in cold region about tunnels, studied the mathematical model about rocks coupling of temperature, moisture and stress field. Finally, with finite element software simulated frost force of the rocks in cold regions. Research shows that, in freeze-thaw environment, tunnel walls near the ground are more susceptible affected by temperature changes and open ventilated convection, temperature and stress change severely; It must be considered in designing and constructing of tunnels in cold regions; In order to reduce freeze-thaw disasters in the cold regions, should take good insulation measures to reduce heat exchanges between temperature and surrounding rocks hole inside and outside, and control the range of freeze-thaw circles effectively.
引文
[1]杨位洸.地基及基础[M].北京:中国建筑工业出版社, 1998
    [2]郭东信等译.普通冻土学[M].北京:科学出版社, 1974
    [3]陈湘生.冻土力学之研究-21世纪岩土力学重要领域之一[J].煤炭学报, 1998, 23 (l): 53~57
    [4]赖远明.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[D].兰州:中国科学院兰州冰川冻土研究所, 1999
    [5]凌建明.脆性岩石的细观裂纹损伤及其时效特性[J].岩石力学与工程学报, 1993, 12 (4): 304~312
    [6]李宁,程国栋,徐学祖等.冻土力学的研究进展与思考[J].力学进展, 2001, 31 (l): 95~102
    [7]徐芝伦.弹性力学(上册)第三版[M].北京:高等教育出版社, 1990. 73~136
    [8] J.F.Nixon and E.C.McRoberts. A study of some factors affecting the thawing of frozen soils[J]. Canadian Geotechnology Journal, 1973, 10 (3): 439~452
    [9] V.H.Sokolov. Laboratoy method for determining the shearing strength of soil frozen together with its foundation.Soil Mech.Found.Engng[J]. 1973, 10 (5): 364~367
    [10] V.V.V.rachev and V.V.Rogov. Freeze drying method of studying the strength of frozen clay soils (In Russia)[J]. Merzlot Issled, 1977, 16: 230~244
    [11]朱元林,王显旭.应变率及温度对冻结粉土抗拉强度的影响[J].冰川冻土, 1995, 17 (增刊)
    [12]朱元林,张家懿.冻土的单轴本构关系[J].冰川冻土, 1992, 14 (4): 210~217
    [13]朱元林,吴紫汪等.我国冻土力学研究新进展及展望[J].冰川冻土, 1995, 17 (增刊): 6~14
    [14]何平,张家懿.振动频率对冻土破坏之影响[J].岩土工程学报, 1995, 17 (3): 78~81
    [15]何平,朱元林.饱和冻结粉土的动弹模与动强度[J].冰川冻土, 1993, 15 (1): 170~174
    [16]盛煌,吴紫汪,苗丽娜等.冻土单轴压缩里面变的归一化模型[J].自然科学进展, 1996, 6 (3): 357~360
    [17]张勇,岳丰田等.超深厚表土冻土力学性能试验研究—龙固副井固结粘土单轴抗压强度特性[A].矿山建设工程新进展—全国矿山建设学术会议文集(上册), 2005
    [18]张照太.深土冻土力学性能试验研究及工程应用[D].安徽理工大学, 2006
    [19]齐吉琳,马巍.冻土的力学性质及研究现状.岩土力学, 2010, 1: 133~143
    [20] Nekrasov,L.B.,I.M.Misnik,and S.D.Movshina,eds. Technical and economic evaluation ofhigh-frequency electrical thermo-hammers for breaking frozen rocks (In Russian). Development of Minning Resoucres of the North[M]. 1972
    [21] Misnik,I.U.and N.D.Kiev. Basic problems of frozen rock evcvation by electric thermal drills (In Russian) [A]. in Thermomechanical Methods of Rock Shattering[C]. 1972
    [22] Goriaev,V.E.,V.V.Reiner,and N.D.Kiev. Studying frozen gorund evcvation by electric thermal means (In Russian)[A]. in Thermomechanical Methods of Rock Shattering[C]. 1972
    [23] Kostromitinov,K.,B.Nikolenko,and V.Nikitin,eds. Testing the strength of forzen rocks on samples of various forms (In Russian). Increasing the effectiveness of mining industry in Yakutia[M]. 1974
    [24] Yamabe,T.and K.M.Neaupane. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature conditions[J]. International Journal of Rock Mechanics&Mining Science, 2001, 38 (7): 1029~1034
    [25] Pakr,C.,J.H.Synn,and D.S.Shin. Experimental study on the thermal characteristics of rock at low temperatures[J]. International Journal of Rock Mechanics&Mining Science, 2004, 41 (Supp.l): 81~86
    [26]杨更社,张全胜,蒲毅彬.冻结温度影响下岩石细观损伤演化CT扫描[J].长安大学学报:自然科学版, 2004, 24 (6): 40~42, 46
    [27]徐光苗.寒区岩体低温、冻融损伤力学特性及多场耦合研究: [学位论文].中国科学院, 2005
    [28]王俐,杨春和.不同初始饱水状态红砂岩冻融损伤差异性研究[J].岩土力学, 2006, 27 (l0): 1772~1776
    [29]张继周,缪林昌,杨振峰.冻融条件下岩石损伤劣化机制和力学特性研究[J].岩石力学与工程学报, 2008, 27 (8): 1688~1694
    [30]李慧军.冻结条件下岩石力学特性的实验研究: [学位论文]. 2009
    [31]程磊.冻结条件下岩石力学特性实验研究及工程应用: [学位论文]. 2009
    [32] Noorishad. Discussion on the Research of Coupled Solid and Fluid Flow in Tunnel Engineering[J]. Chinese Journal of Underground Space and Engineering, 2006, 2 (1)
    [33] Duquennoi,C.,Fremond, M. Modelling of thermal soil behavior[J]. VTT Symposium 94, 1989, Vol.2: 895~915
    [34] Fremond M and Mikkoa M. Thermomechanical modelling of freezing soil[J]. Proceedin- gs of the Sixth International Symposium on Ground Freezing, 1991, 17~24
    [35] Hartikainen, J and Mikkoa M. General thermomechanical model of freezing soil with numerical application[J]. 1997, 101~105
    [36]赖远明,吴紫汪等.寒区隧道温度场、渗流场和应力场场耦合问题的非线性分析[J].岩土工程学报, 1999, 5 (21): 529~533
    [37]张学富,赖远明等.寒区隧道围岩冻融影响数值分析[J].铁道学报, 2002, 24 (4): 92~96
    [38]张玉军.热-水-应力耦合弹塑性二维有限元程序的研制[D].焦作大学学报, 2005, 1 (1): 69~73
    [39]杨更社.软岩体冻融损伤水热力耦合研究初探[J].岩土力学, 2006, 20 (3): 20~29
    [40]杨更社.寒区软岩隧道的水热耦合数值模拟与分析[J].岩土力学, 2007, 3 (4): 11~19
    [41]赖远明,吴紫汪.大坂山隧道围岩冻融损伤的CT分析[J].冰川冻土, 2000, 22 (3): 206~210
    [42]张先军.青藏铁路昆仑山隧道洞内气温及低温分布特征现场试验研究[J].岩石力学与工程学报, 2005, 24 (6): 1086~1089
    [43]长江水利委员会长江科学院.长江水利水电工程岩石试验规程(SL264-2001)[S]. 2001,北京:中国水利水电出版社
    [44] Johnson,T.C.,D.M.Cole,and,E.J.Chamberlain. Effect of freeze-thaw cycles on resilient properties of fine-grained soils[J]. Engineering Geology, 1979, 13 (l-4): 247~276
    [45] Nicholson,D.T and F.H.Nicholson. Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering[J]. Earth Surface Processes and Landfomrs, 2000, 25: 1295~1307
    [46] Watanabe,K.and M.Mizoguchi. Amount of unfrozen waetr in frozen porous media saturated with solution[J]. Cold Regions Science and Technology, 2002, 34: 103~110
    [47]李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究[J].水利学报, 1999 (l): 41~49
    [48]冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社, 1990
    [49]张学富.寒区隧道多场耦合问题的计算模型研究及其有限元分析[D][博士学位论文].兰州:中国科学院寒区与旱区环境与工程研究所, 2004
    [50]李宁,陈波,陈飞雄等.寒区复合地基的温度场、水分场与变形场三场耦合模型[J].冻土工程国家重点实验室年报, 2000 (9): 157~166
    [51]杨更社,蒲毅彬.寒区冻融环境条件下岩石损伤扩展研究探讨[J].实验力学, 2002, 17 (2): 220~226
    [52]葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社, 2004
    [53]马静嵘.软岩体冻融损伤水热力耦合研究初探[D].西安科技大学, 2004
    [54]徐光苗,刘泉声,张秀丽.冻结温度下岩体THM完全耦合的理论初步分析[J].岩石力学与工程学报, 2004, 23 (21): 3709~3713
    [55]吴紫汪等著.寒区隧道工程.北京:海洋出版社, 2003, 11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700