盘管式蓄冰槽的数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源的日益紧张和社会对环保的日益关注,能源利用技术的要求不断提高。蓄冷技术能够实现“移峰填谷”,优化现有的电力系统能源利用结构,对蓄冷空调技术进行研究具有重要的现实意义。
     目前的蓄冷技术大多采用冰蓄冷技术,蓄冰槽是冰蓄冷系统中十分重要的部件,其换热性能好坏直接关系到整个蓄冰系统的性能优劣。本文主要针对盘管式蓄冰槽的换热性能进行研究,研究内容主要包括以下两个方面:(1)在一定的假设条件基础上,建立蓄冰槽模型,通过ANSYS软件模拟,研究蓄冰槽不同的结构参数,如盘管布置方式、盘管直径、盘管间距,以及载冷剂的进口温度对蓄冰槽传热特性的影响,并研究了盘管管径对载冷剂流动阻力的影响;(2)根据模拟结果,重点设计了蓄冰槽,并搭建冰蓄冷空调系统试验台,对蓄冰槽的传热特性进行实验研究。
     根据模拟与实验结果,主要得出以下结论:(1)对于U形盘管管束,顺排既简化了布置方式,且传热特性优于叉排,同时也满足温度场均匀的要求,故顺排比叉排更有利;(2)管束顺排时,载冷剂初始温度、管间距大小以及管径对蓄冰槽的传热特性有较大影响,当蓄冷槽体积一定、U形管直径和数量相同时,管间距越大越有利于增强蓄冷槽传热特性;在条件允许的情况下,应尽量选择管径大一些的U形管;(3)管径对流动阻力影响较小;(4)蓄冰时,蓄冷槽内最低温度-3℃,最高温度-0.9℃,相变温度-2.2℃,温度分层现象明显且过冷度较大;(5)在水中添加质量分数0.25%的硼砂能够将水的过冷度降低0.2℃并将系统COP提高0.1,可见添加一定量的硼砂有利于水的换热,提高蓄冷槽的换热性能;(6)释冷时,载冷剂进出蓄冷槽的温度变化快慢与融冰过程紧密相关,在一定阶段,进出蓄冷槽的载冷剂的温差基本保持稳定在8℃。
With energy supplies intense increasingly and environmental protection being concerned on particularly, requirement of energy utilization technology enhances endlessly. Thermal energy storage technology, which helps to shift peak load on electricity, has benefit of the optimization of the existing power system of energy utilization structure, research of the cool-storage air conditioning technology has important practical significance.
     Ice thermal energy storage technology is used widely in the present, ice storage tank, which heat transfer performance is directly related to the performance of the ice storage system, is a very important component. This paper mainly focus on heat transfer performance of ice-on-coil storage tank. Research works mainly include the following two aspects:(1) Have established the model of ice storage tank on the basis of certain assumptions and simulated by ANSYS software to study on geometric parameters of the storage tank, such as coil layouts, diameter and space, and the influence of inlet temperature of refrigerating medium for heat transfer characteristics of the ice storage tank, as well as the influence of coil diameter for flow resistance of refrigerating medium; (2) Have designed ice storage tank particllarly and built ice storage test-bed of air-conditioning system, as well as carried study on heat transfer characteristics of the ice storage tank according to the simulation results.
     According to the simulation and experiment, the main results were as follows:(1) For the U-shaped coil, tubes in-line arrangement, which not only simplified layouts and enhanced the heat transfer characteristics, but also met the requirements of uniform temperature pattern, was better than staggered style to the performance of ice storage tank; (2) For U-tubes in-line arrangement, initial temperature of refrigerating medium, coil diameter and space, had a great influence on heat transfer characteristics, larger space was benefit to improving heat transfer characteristics of ice storage tank with the same diameter and number of tubes when ice storage tank volume was certain. It is believed larger diameter was tried to choose if the conditions permitted; (3) Coil diameter had less impact on flow resistance; (4) Temperature stratification of ice storage was significant and subcooled temperature was larger with the minimum temperature of-3℃, the maximum temperature of-0.9℃, and phase transition temperature of-2.2℃in freezing processes; (5) Adding mass fraction of 0.25% of borax to the water was able to reduce 0.2℃of subcooled temperature and increase 0.1 of COP, thus that adding a certain amount of borax was benefit to heat transfer and improving heat transfer performance of ice storage tank; (6)The rate of temperature change for inlet and outlet was closely related to melting process, In certain stage, difference in temperature between inlet and outlet of refrigerating medium maintained steady at 8℃.
引文
[1]潘伟东,巫江虹.蓄冷空调——更有效利用能源的新出路.低温与特气,2006,24(4):1-5.
    [2]许肖飞,周光辉.我国新型冰蓄冷空调技术的发展现状.中原工学院院报,2006,17(1):55-58.
    [3]赖建波.直接蒸发盘管外融冰系统蓄冰槽性能的研究.[硕士学位论文].天津:天津商学院,2004:1-7.
    [4]华泽钊等.蓄冷技术及其在空调工程中的应用.北京:科学出版社,1997:1-25.
    [5]张虎.蓄能空调技术的应用与发展.安徽建筑工业学院学报(自然科学版),2006,14(4):62-65.
    [6]章学来.空调蓄冷蓄热技术.大连:大连海事大学出版社,2006:1-20.
    [7]方贵银,邢琳等.蓄冷空调技术的现状及发展趋势.制冷与空调,2006,6(1):1-5.
    [8]白莉,迟铭书等.我国冰蓄冷空调技术现状及趋势研究.吉林建筑工程学院学报,2008,25(2):77-80.
    [9]李兴仁.低温相变蓄冷材料及其蓄冷特性的实验研究.[硕士学位论文].重庆:重庆大学,2004:1-2.
    [10]Apple L.S. Chan, Tin-Tai Chow, Square K.F. Fong, John Z. Lin. Performance evaluation of district cooling plant with ice storage. Energy,2006,31(14):2750-2762.
    [11]M.J. Sebzali, P.A. Rubini. Analysis of ice cool thermal storage for a clinic building in Kuwai. Energy Conversion and Management,2006,47:3417-3434.
    [12]于航.空调蓄冷技术与设计.北京:化学工业出版社,2007:1-18.
    [13]李先庭.冰球式蓄冰罐的数学模型.暖通空调,1996,(4):19-22.
    [14]M.Landy, C.D.Noble. Case Study of Cost-Effective Low-Temperature Air Distributions, Ice Storage, ASHRAE,1991,97(1):854-859.
    [15]D.Arnold. Dynamic Simulation of Encapsulated Ice stores-part2:Model Development and Validation. ASHRAE Transaction,1994,100:1245-1254.
    [16]方贵银.蓄冷空调工程实用新技术.北京:人民邮电出版社,2000:1-18.
    [17]郭茶秀,魏新利.热能存储技术与应用.北京:化学工业出版社,2005:5-23.
    [18]张宝刚.新型立式封装板蓄冰设备性能的实验与理论研究.[博士学位论文].天津:天津大学,2007:1-168.
    [19]李金辉,刘晓兰等.新型相变储能材料的研究进展.化工新型材料,2006,34(8):18-21.
    [20]高清华,肖睿等.直接蒸发内融冰式冰蓄冷空调蓄冰槽内的传热特性研究. 中国制冷学会2007年学术年会,2007:799-803.
    [21]朱煜.导热塑料盘管蓄冰槽外融冰实验研究.[硕士学位论文].杭州:浙江大学,2006:1-57.
    [22]Y.S. Zhao, W.Z. Chen, F.R. Sun, Z.Y. Chen. Analysis of Contact Melting Driven by Surface Heat Flux Around a Cylinder. Journal of Thermal Science, 2008,17(1):64-68.
    [23]Yoshiyuki Kozawa, Naoki Aizawa, Masayuki Tanino. Study on ice storing characteristics in dynamic-type ice storage system by using supercooled water. Effects of the supplying conditions of ice-slurry at deployment to district heating and cooling system. International Journal of Refrigeration,2005,28:73-82.
    [24]胡家喜.冰蓄冷空调系统蓄冷释冷过程的研究.[硕士学位论文].南京:南京工业大学,2004:19-69.
    [25]Michael J. Kazmierczak, Victor Nirmalanandhan. Heat transfer augmentation for external ice-on-tube TES systems using porous copper mesh to increase volumetric ice production. International Journal of Refrigeration,2006, 29(6):1020-1033.
    [26]Francis Agyenim, Neil Hewitt, Philip Eames, Mervyn Smyth. A review of materials:heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, In Press.
    [27]刘玉东.纳米复合低温相变蓄冷材料的制备及热物性研究.[博士学位论文].重庆:重庆大学,2005:1-122.
    [28]余鹏.HCFC-141b/HFC-134a混合气体水合物蓄、放冷实验研究.[硕士学位论文].广州:广州大学,2007:1-81.
    [29]A. Felix Regin, S.C. Solanki, J.S. Saini. Heat transfer characteristics of thermal energy storage system using PCM capsules:A review. Renewable and Sustainable Energy Reviews,2008,12(9):2438-2458.
    [30]Hisham Ettouney, Imad Alatiqi, Mohammad Al-Sahali, Khalida Al-Hajirie. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads. Energy Conversion and Management,2006,47(2):211-228.
    [31]David MacPhee, Ibrahim Dincer. Thermal modeling of a packed bed thermal energy storage system during charging. Applied Thermal Engineering,2009, 29(4):695-705.
    [32]Denis Flick, Christophe Doursat, Mohamed Ben Lakhdar. Modelling and numerical simulation of ice slurry storage tank. Computer Aided Chemical Engineering,2007,24:1169-1174.
    [33]C. Zamfirescu, A. Bejan. Tree-shaped structures for cold storage. International Journal of Refrigeration,2005,28(2):231-241.
    [34]曾强洪,吴钢.基于ANSYS分析内融冰蓄冰槽的蓄冰模型.制冷与空调,2007,27(1):4-8.
    [35]曹业玲,蒋彦龙等.内融冰盘管动态蓄冰特性数值模拟与实验研究.南京航空航天大学学报,2007,39(6):756-760.
    [36]Piia Lamberg, Reijo Lehtiniemi, Anna-Maria Henell. Numerical and experimental investigation of melting and freezing processes in phase change material storage. International Journal of Thermal Sciences,2004,3:277-287.
    [37]T. Kousksou, J.-P. Bedecarrats, J.-P. Dumas, A. Mimet. Dynamic modelling of the storage of an encapsulated ice tank. Applied Thermal Engineering,2005, 25:1534-1548.
    [38]Marino Grozdek, Rahmatollah Khodabandeh, Per Lundqvist, Bjorn Palm, Ake Melinder. Experimental investigation of ice slurry heat transfer in horizontal tube. International Journal of Refrigeration,2009,32(6):1310-1322.
    [39]张智力.冰蓄冷-低温送风空调系统的仿真优化及风口性能研究.[博士学位论文].上海:同济大学,2004:1-119.
    [40]叶水泉.蓄冰盘管传热性能及低温送风空调系统研究.[博士学位论文].杭州:浙江大学,2004:1-130.
    [41]S. A. Tassou, Y. K. Leung. Energy conservation in commercial air conditioning through ice storage and cold air distribution design. Heat Recovery Systems and CHP,1992,12(5):419-425.
    [42]T. Kousksou, J.-P. Bedecarrats, J.-P. Dumas, A. Mimet. Dynamic modelling of the storage of an encapsulated ice tank. Applied Thermal Engineering,2005, 25(10):1534-1548.
    [43]Beata Niezgoda-Zelasko, Jerzy Zelasko. Melting of ice slurry under forced convection conditions in tubes. Experimental Thermal and Fluid Science,2008, 32(8):1597-1608.
    [44]Koji Matsumoto, Ken Oikawa, Masashi Okada,Yoshikazu Teraoka, Tetsuo Kawagoe. Study on high performance ice slurry formed by cooling emulsion in ice storage (discussion on adaptability of emulsion to thermal storage material). International Journal of Refrigeration,2006,29:1010-1019.
    [45]肖睿,何世辉,杜艳利等.直接蒸发式冰蓄冷空调的蓄冰槽融冰强化换热.工程热物理学报,2008,29(9):1524-1526.
    [46]朱煜.导热塑料盘管蓄冰槽外融冰实验研究.[硕士学位论文].杭州:浙江大学,2006:25-32.
    [47]张欢,俞洁,由世俊等.新型立式封装板蓄设备的实验研究.全国暖通空调制冷2008年学术年会,2008:132-133.
    [48]吴坤.空调用新型立式封装板蓄冰设备的研究与开发.[硕士学位论文].天津:天津大学,2006:1-56.
    [49]赵磊.新型立式封装板蓄冰罐蓄冰空调设备实验及性能研究.[硕士学位论文].天津:天津大学,2007:1-50.
    [50]Denis Flick, Christophe Doursat, Mohamed Ben Lakhdar. Modelling and numerical simulation of ice slurry storage tank. Computer Aided Chemical Engineering,2007,24:1169-1174.
    [51]T. Kousksou, J.-P. Bedecarrats, J.-P. Dumas, A. Mimet. Dynamic modelling of the storage of an encapsulated ice tank. Applied Thermal Engineering,2007, 25(10):1534-1548.
    [52]Michael J. Kazmierczak, Victor Nirmalanandhan. Heat transfer augmentation for external ice-on-tube TES systems using porous copper mesh to increase volumetric ice production. International Journal of Refrigeration,2006, 29(6):1020-1033.
    [53]S. Choi, J. D. Kim, E. Kim, J. I. Yoon. Experimental characteristics of a storage tank on a harvest-type ice storage system. International Journal of Heat and Mass Transfer,2002,45(7):1407-1412.
    [54]李平,蒋丹.U形管内流动阻力损失与传热的数值模拟.东华大学学报,2007,33(3):302-305.
    [55]张洪济.热传导.北京:高等教育出版社,1992:87-98.
    [56]Masayuki Tanino, Yoshiyuki Kozawa. Ice-water two-phase flow behavior in ice heat storage systems. International Journal of Refrigeration,2001,24(7):639-651.
    [57]苏燕兵,陆军,白博峰.封闭腔内水自然对流换热数值模拟.化工学报,2007,58(11):2715-2720.
    [58]姜宝成,李炳熙等.内融冰式蓄冰管融冰过程中自然对流的影响.哈尔滨工业大学学报,2006,38(5):786-789.
    [59]Esam M. Alawadhi. Phase change process with free convection in a circular enclosure:numerical simulations. Computers & Fluids,2004,33(10):1335-1348.
    [60]S. Fukusako, M. Takahashi. Free convection heat transfer of air-water layers in a horizontal cooled circular tube. International Journal of Heat and Mass Transfer,1991,34(3):693-702.
    [61]孙涛.内融式盘管式蓄冰槽性能研究及冰蓄冷系统评价初探.[硕士学位论文].上海:上海交通大学,2001:1-58.
    [62]郭荣量.流体力学及其应用.机械工业出版社,1996:54-87.
    [63]张朝晖.ANSYS 8.0热分析教程与实例解析.中国铁道出版社:2005:259-285.
    [64]徐小玉.冰蓄冷空调的应用与传热特性研究.[硕士学位论文].上海:上海海事大学,2005:1-68.
    [65]洪荣华,陈坤,吴杰等.影响冰蓄冷溶液过冷度因素的实验研究.第三届制冷空调新技术研讨会,2005:484-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700