牛MRF家族、MSTN、GHRH和GHR基因变异及其与生长性状的相关分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用PCR-RFLP和PCR-SSCP技术,检测了南阳牛、秦川牛、郏县红牛、中国荷斯坦牛和牦牛5个群体共521个个体的MRF家族、MSTN、GHRH和GHR基因的遗传变异,分析了其遗传结构和遗传多样性,并对南阳牛、秦川牛和郏县红牛3个中国黄牛群体在上述位点的多态性与其生长性状进行了相关分析,以检验这些基因的多态对南阳牛、秦川牛和郏县红牛3个黄牛群体生长发育的遗传效应,以期发现对重要经济性状具有显著效应的遗传标记,为中国黄牛的高效选育和分子标记数据库的建立、种质资源保护与利用提供遗传学依据。本研究获得了以下结果:
     1.牛MSTN基因变异及其与生长性状的相关分析
     1.1 PCR-SSCP检测结果表明,MSTN基因外显子1和3在5个群体中均未发现多态。利用限制性内切酶TaqI对5个群体MSTN 5'调控区约1346 bp片段进行PCR-RFLP分析,发现该片段不存在限制性内切酶TaqI的多态位点,证明已经公布的牛MSTN序列(GenBank No. AF348479)存在测序错误,-360位(相对于ATG转录起始点)碱基应该为A。
     1.2利用限制性内切酶DraI对5个群体MSTN 5'调控区约1346 bp片段进行PCR-RFLP分析,结果表明牛MSTN 5'调控区PCR-RFLP-DraI多态位点存在2个等位基因T和A。南阳牛、秦川牛、郏县红牛、中国荷斯坦牛和牦牛等位基因T/A的基因频率分别为0.955/0.045、0.973/0.027、0.972/0.028、0.918/0.082和1.000/0.000。这个多态表现为TT、TA和AA 3种基因型。牦牛个体全部为TT型,即在牦牛群体中未出现T>A突变;南阳牛、秦川牛和中国荷斯坦牛群中出现了TT和TA两种基因型,无AA纯合体;而在108头郏县红牛群体中,除了TT和TA型个体,还出现了1个AA纯合个体。在5个群体中,TT基因型为优势基因型,T为优势等位基因。群体卡方适合性检验表明,南阳牛、秦川牛和中国荷斯坦牛3个群体处于Hardy-Weinberg平衡状态;而郏县红牛群体偏离Hardy-Weinberg平衡状态。中国荷斯坦牛、郏县红牛、南阳牛、秦川牛和牦牛5个群体遗传多态指数h/Ne/S/PIC分别为0.1505/1.1772/0.2835/0.1345、0.0864/1.0946/0.1842/0.0826、0.0545/1.0576/0.1279/0.0530、0.0523/1.0552/0.1237/0.0501和0.0000/1.0000/0.0000/0.0000,因此其群体遗传多态性丰富程度从大到小依次为中国荷斯坦牛、郏县红牛、南阳牛、秦川牛和牦牛。
     1.3利用最小二乘法对MSTN-DraI多态位点与3个黄牛群体(南阳牛、秦川牛、郏县红牛)生长性状进行相关分析,结果表明年龄对南阳牛体重、体高、体斜长、胸围和坐骨端宽影响极显著(P<0.01),说明不同年龄阶段南阳牛的生长发育存在明显差异,生长快慢与年龄有直接关系。多重比较表明,18月龄南阳牛TT型个体的体高显著高于TA型个体(P<0.05),6月龄两种基因型个体之间胸围差异显著(P<0.05)。
     2.牛MRF基因家族多态性及其与生长性状的相关分析
     2.1利用PCR-RFLP和PCR-SSCP技术在牛MRF基因家族4个基因(Myf5、MyoD、Myf6、MyoG)检测到4个多态位点。
     PCR-RFLP-TaqI检测到牛Myf5-1位点存在三种基因型,该位点多态是由该基因内含子2的1948 bp (Accession No. M95684)处的SNP (CAA/CGA)引起的。在南阳牛、秦川牛、郏县红牛、中国荷斯坦牛和牦牛5个群体中等位基因A/B的频率分别为0.173/0.827、0.242/0.758、0.248/0.752、0.262/0.738和0.031/0.969,等位基因B为优势等位基因。牦牛群体在该位点未发现AA型纯合体。卡方检验表明5个群体均处于Hardy-Weinberg平衡状态。
     PCR-SSCP检测到牛Myf5-2位点有1个SNP(A>T),位于Myf5基因外显子1的609 bp (Accession No. M95684),未引起氨基酸的改变。在南阳牛、秦川牛、郏县红牛和牦牛4个群体中,该多态表现为AA、AB和BB三种基因型,等位基因A/B的频率依次为0.443/0.557、0.475/0.525、0.467/0.533和0.199/0.801。在南阳牛、秦川牛和郏县红牛3个黄牛群体中,杂合个体所占比例较小,基因频率分布接近相等;在牦牛群体中,BB型为优势基因型,B为优势等位基因。南阳牛、秦川牛、郏县红牛和牦牛4个群体在该位点均偏离Hardy-Weinberg平衡状态。
     利用PCR-SSCP技术检测到牛MyoD基因内含子2 (MyoD-intron2)和牛Myf6基因编码区分别存在1个SNP (C>T),Myf6位点的SNP位于Myf6基因(Accession No. AB110601)的338 bp,未引起氨基酸的改变。南阳牛、秦川牛、郏县红牛和中国荷斯坦牛在MyoD-intron2位点等位基因A/B的频率分别为0.904/0.096、0.882/0.118、0.926/0.074和0.980/0.020。南阳牛、秦川牛和郏县红牛在Myf6位点等位基因A/B的频率分别为0.983/0.017、0.995/0.005和0.997/0.023。在这2个位点上,发现AA和AB两种基因型,牦牛全部为AA型个体,说明牦牛群体的这两个位点可能已经达到纯合;其它所研究群体均未发现BB型纯合体,AA型纯合体占绝大多数,AA基因型为优势基因型,A为优势等位基因,且群体处于Hardy-Weinberg平衡状态。
     南阳牛、秦川牛和郏县红牛3个黄牛群体的Myf5-1和Myf5-2位点属于(或接近)中度多态位点,MyoD-intron2和Myf6位点属于低度多态位点。南阳牛、秦川牛和郏县红牛3个黄牛群体平均PIC分别为0.2023、0.2175和0.2123,因此其遗传多态性丰富程度从高到低依次为秦川牛、郏县红牛和南阳牛。
     2.2利用最小二乘法对这4个位点多态与南阳牛、秦川牛和郏县红牛3个黄牛群体生长性状进行相关分析,结果表明:
     在Myf5-1-TaqI位点,18月龄南阳牛AA型个体的体高极显著高于AB和BB型个体(P<0.01);郏县红牛AA型个体的坐骨端宽显著高于其它两种基因型个体(P<0.05) ;而秦川牛AA型个体的体高和十字部高显著低于AB和BB型个体(P<0.05); Myf5-2位点3种基因型对南阳牛体高和体斜长影响显著,6月龄和12月龄BB型个体体高均显著高于AA型个体(P<0.05);6月龄的BB型个体的体斜长也显著高于AA型个体(P<0.05)。在秦川牛群体中,杂合个体的腰角宽显著高于纯合个体(P<0.05);
     在MyoD-intron2位点,秦川牛除了体高和十字部高外,AB型个体的其它性状均显著高于AA型个体(P<0.05)。在Myf6位点,18月龄南阳牛AA型个体的坐骨端宽显著高于AB型个体(P<0.05)。
     3.牛GHRH基因外显子3多态与生长性状的相关分析
     3.1利用PCR-RFLP检测了5个群体GHRH基因外显子3限制性内切酶HaeⅢ的酶切多态性。在南阳牛、秦川牛、郏县红牛、中国荷斯坦牛和牦牛5个群体中,等位基因A/B的频率分别为0.314/0.686、0.259/0.741、0.243/0.757、0.265/0.735和1.000/0.000。在牦牛群体中未发现GHRH exon3-HaeⅢ多态,全部个体为AA型。在南阳牛、秦川牛、郏县红牛和中国荷斯坦牛群体中主要为BB型和AB型个体,等位基因B为优势等位基因。南阳牛、秦川牛、郏县红牛和中国荷斯坦牛4个群体处于Hardy-Weinberg平衡状态。南阳牛、秦川牛、郏县红牛和中国荷斯坦牛群体的遗传多态指数h/Ne/S/PIC分别为0.431/1.757/0.474/0.338、0.384/1.623/0.559/0.310、0.368/1.582/0.590/0.300和0.390/1.638/0.548/0.314。该位点的0.25     3.2利用最小二乘法对GHRH exon3-HaeⅢ位点多态与南阳牛、秦川牛和郏县红牛3个黄牛群体生长性状进行相关分析和多重比较发现,对于6月龄南阳牛,除了胸围和坐骨端宽外,体重、体高、体斜长和日增重在杂合个体与纯合的BB型个体之间差异显著(P<0.05);24月龄时,AA型和AB型个体的体重和日增重显著高于BB型个体(P<0.05)。GHRH exon3-HaeⅢ多态对郏县红牛的体斜长和胸围的效应达到显著水平,表现为BB型个体显著低于杂合个体(P<0.05)。
     4.牛GHR基因外显子10多态与生长性状的相关分析
     4.1利用PCR-SSCP研究了GHR基因外显子10的SNP (A>G)在5个群体中的遗传特性。在南阳牛、秦川牛、郏县红牛、中国荷斯坦牛和牦牛5个群体中,等位基因G/A的频率分别为0.443/0.557、0.444/0.556、0.495/0.505、0.164/0.836和0.114/0.886。牦牛群体未发现GG型个体;在牦牛和中国荷斯坦牛群体中主要为AA型,等位基因A为优势等位基因。在南阳牛、秦川牛和郏县红牛群体中,3种基因型分布比较均衡。南阳牛、秦川牛、牦牛3个群体处于Hardy-Weinberg平衡状态,而郏县红牛和中国荷斯坦牛群体则偏离Hardy-Weinberg平衡状态。南阳牛、秦川牛和郏县红牛3个群体在该位点0.25     4.2对牛GHR基因外显子10的SNP基因型对南阳牛、秦川牛和郏县红牛生长性状的遗传效应进行了分析。在南阳牛生长过程中,GHR基因外显子10的SNP (A>G)对坐骨端宽性状的效应显著(P<0.05);6月龄南阳牛纯合GG型个体的体高显著高于杂合个体和纯合AA型个体(P<0.05)。12月龄南阳牛GG型个体的胸围显著高于杂合个体(P<0.05)。
Genetic variations of MRF family, MSTN, GHRH and GHR genes were detected by PCR-RFLP and PCR-SSCP DNA marker techniques in 521 individuals of five bovine populations (Nanyang cattle, Qinchuan cattle, Jiaxian Red cattle, Chinese Holstein, and Yak), and association analysis were carried out to evaluate the effects of genotypes of polymorphic loci on growth traits of three Chinese cattle populations (Nanyang, Qinchuan and Jiaxian Red ). The objective was to detect the hereditary characteristics and to explore molecular markers with significant effects on economic important traits for efficient selection and improvement of Chinese cattle, and to provide genetic information for construction of molecular marker database, protection and utilization of breed resource of Chinese cattle. The results were as follows:
     1. Relationship between genetic variation of MSTN gene and growth traits in Nanyang, Qinchuan and Jiaxian Red cattle populations
     1.1 No polymorphism in MSTN exon 1 and 3 was detected using PCR-SSCP in the five populations. PCR-RFLP tests using restriction endonuclease TaqI were carried out in the 1346 bp fragment of bovine MSTN 5'regulatory region in the five populations. The results showed that no TaqI polymorphism in the five populations. Therefore, this study identified an occurrence of sequencing error in the publishing sequence (Accession No. AF348479) and confirmed the presence of nucleotide A at position -360 (relative to ATG start codon).
     1.2 PCR-RFLP tests using restriction endonuclease DraI were carried out in the 1346 bp fragment of bovine MSTN 5'regulatory region in the five populations. The results showed the polymorphic PCR-RFLP-DraI in MSTN 5'regulatory region was a bi-allelic loci with allele T and A. The allele frequencies of T/A of Nanyang, Qinchuan, Jiaxian Red cattle, Chinese Holstein and Yak populations were 0.955/0.045, 0.973/0.027, 0.972/0.028, 0.918/0.082, 1.000/0.000 respectively. There were three genotypes (TT, TA and AA) in this locus. Yak individuals were all genotype TT, that is, no mutation (T>A) was detected in Yak population. In Nanyang and Qinchuan cattle, individuals with genotype TT and TA were found and no individuals with genotype AA was detected, whereas in Jiaxian Red cattle only one homozygous AA individual was detected. Genotype TT and allele T were dominant in the five populations. The Chi-Square tests showed Nanyang, Qinchuan cattle and Chinese Holstein populations were at Hardy-Weinberg equilibrium, but Jiaxian Red cattle population was at Hardy-Weinberg disequilibrium. Genetic diversity indexes of h/Ne/S/PIC in Nanyang, Qinchuan, Jiaxian Red cattle, Chinese Holstein and Yak populations were 0.1505/1.1772/0.2835/0.1345, 0.0864/1.0946/0.1842/0.0826, 0.0545/1.0576/0.1279/0.0530, 0.0523/1.0552/0.1237/0.0501 and 0.0000/1.0000/0.0000/0.0000,so the population genetic polymorphisms from higher to lower were Chinese Holstein, Jiaxina Red, Nanyang, Qinchuan cattle and Yak.
     1.3 Associations between MSTN-DraI polymorphism and growth traits in Nanyang, Qinchuan and Jiaxian Red cattle were analyzed by least square means (LSM) method. The results showed that age had significant effects on body weight, withers height, body length, heart girth and hucklebone width in the Nanyang cattle (P<0.01), which indicated growth of Nanyang cattle differed significantly at different growth stages and directly correlated with age. Multiple comparison results showed MSTN-DraI genotypes affected hucklebone width of six-month Nanyang cattle and individuals with genotype TT had higher withers height than those with genotype TA (P<0.05).
     2. Genetic variations of MRF gene family and their associations with growth traits in Nanyang, Qinchuan and Jiaxian Red cattle populations
     2.1 Four polymorphic loci were detected in four genes (Myf5, MyoD, Myf6, MyoG) of bovine MRF gene family by PCR-RFLP and PCR-SSCP techniques.
     Three genotypes were detected by PCR-RFLP-TaqI technique in bovine Myf5-1 locus. This polymorphism was caused by a SNP (CAA/CGA) located in intron 2 at position 1948 bp of bovine Myf5 sequence (Accession No. M95684). The allele frequencies of A/B in Nanyang, Qinchuan, Jiaxian Red cattle, Chinese Holstein and Yak were 0.173/0.827, 0.242/0.758, 0.248/0.752, 0.262/0.738 and 0.031/0.969. Homozygous AA individual was not detected in Yak population. Allele B was dominant in five populations which were all at Hardy-Weinberg equilibrium.
     A SNP (A>T) located in bovine Myf5 exon 1 at position 609 bp (Accession No. M95684) was detected by PCR-SSCP and did not change the amino acid sequence. In Nanyang, Qinchuan, Jiaxian Red cattle and Yak population, there were three genotypes and allele A/B frequencies were 0.443/0.557, 0.475/0.525, 0.467/0.533 and 0.199/0.801. The heterozygous genotype frequency was low and allele frequencies of A and B were almost equal in Nanyang, Qinchuan and Jiaxian Red cattle populations. Genotype BB and allele B were dominant in Yak population. Nanyang, Qinchuan, Jiaxian Red cattle and Yak populations were all at Hardy-Weinberg disequilibrium.
     Two SNP (C>T) were detected in intron 2 of bovine MyoD gene and coding sequence of bovine Myf6 gene respectively. In Myf6 gene the SNP did not cause any change in amino acid sequence. The frequencies of allele A/B at MyoD-intron2 locus in Nanyang, Qinchuan, Jiaxian Red cattle and Chinese Holstein were 0.904/0.096, 0.882/0.118, 0.926/0.074 and 0.980/0.020. The frequencies of allele A/B at Myf6 locus in Nanyang, Qinchuan and Jiaxian Red cattle were 0.983/0.017, 0.995/0.005 and 0.997/0.023. There were two genotypes at the two loci respectively. Individuals of Yak population were all genotype AA, which indicated Yak population was homozygous at the MyoD-intron2 and Myf6 loci. No homozygous BB individual was found and homozygous AA individual was the majority in the others which were all at Hardy-Weinberg equilibrium. Genotype AA and allele A were dominant in the studied populations.
     Myf5-1-TaqI polymorphism and Myf5-2 SNP were (or closer to) moderate polymorphic and MyoD-intron2 and Myf6 loci were low-polymorphic in Nanyang, Qinchuan and Jiaxian Red cattle. The means of PIC of population at the four loci of Nanyang, Qinchuan and Jiaxian Red cattle were 0.2023, 0.2175 and 0.2123, therefore the genetic polymorphisms from higher to lower were Qinchuan, Jiaxina Red and Nanyang cattle.
     2.2 Association analysis between the polymorphisms and growth traits of Nanyang, Qinchuan and Jiaxian Red cattle populations were carried out. The results were as follows:
     For Myf5-1-TaqI polymorphism, eighteen-month Nanyang individuals with genotype AA had higher withers height compared to individuals with genotype AB and BB, and Jiaxian Red cattle with genotype AA had higher hucklebone width than those with genotype AB and BB, whereas Qinchuan cattle with genotype AA had lower withers height and height at hip cross than the other two kinds of individuals (P<0.05).
     The Myf5-2 SNP had significant effects on weithers height and body length of Nanyang cattle (P<0.05). Homozygous individuals of six-month and twelve-month Nanyang cattle with genotype BB had higher withers height than the other homozygous animals, and homozygous BB animals of six-month Nanyang cattle had higher body length than the other homozygous animals (P<0.05). Compared with homozygous animals in Qinchuan cattle, heterozygous individuals had higher hip width (P<0.05).
     For MyoD-intron2 SNP, except withers height and height at hip cross, body length, hucklebone width, rump length, heart girth and hip width of heterozygous Qinchuan animals were higher than homozygous animals (P<0.05). For Myf6 SNP, eighteen-month Nanyang cattle with genotype AA had higher hucklebone width when compared with heterozygous animals (P<0.05).
     3. Association of GHRH exon3-HaeⅢpolymorphism with growth traits in Nanyang, Qinchuan and Jiaxian Red cattle populations
     3.1 The polymorphism in exon 1 of bovine GHRH gene was investigated by PCR-RFLP- HaeⅢin the five populations. The frequencies of allele A/B in Nanyang, Qinchuan, Jiaxian Red cattle, Chinese Holstein and Yak populations were 0.314/0.686, 0.259/0.741, 0.243/0.757, 0.265/0.735 and 1.000/0.000. Yak population was monomorphism in GHRH exon3-HaeⅢlocus, all animals were genotype AA. Individuals with genotype AB and BB were the majority and allele B was dominant in Nanyang, Qinchuan, Jiaxian Red cattle and Chinese Holstein populations which were all at Hardy-Weinberg equilibrium. Genetic diversity indexes of h/Ne/S/PIC in Nanyang, Qinchuan, Jiaxian Red cattle and Chinese Holstein populations were 0.431/1.757/0.474/0.338, 0.384/1.623/0.559/0.310, 0.368/1.582/0.590/0.300 and 0.390/1.638/0.548/0.314. Since the population PICs at GHRH exon3-HaeⅢwere intervenient of 0.25 and 0.50, GHRH exon3-HaeⅢlocus was moderate polymorphic in the five populations. The genetic polymorphisms of five populations from higher to lower were Nanyang, Chinese Holstein, Qinchuan, Jiaxina Red and Yak.
     3.2 Association analysis and multiple comparisons were carried out between genotypes of GHRH exon3-HaeⅢlocus and growth traits of Nanyang, Qinchuan, Jiaxian Red cattle. For six-month Nanyang cattle, except heart girth and hucklebone width, body weight, withers heights, body length and average daily gain differed significantly between genotype AB and BB animals (P<0.05). Twenty-four-month Nanyang animals with genotype BB had lower body weight and average daily gain compared with animals with other two genotypes (P<0.05). The effects of GHRH exon3-HaeⅢon body length and heart girth reached a significant level in Jiaxain Red cattle, animals with genotype BB were significant lower than those of heterozygous animals (P<0.05).
     4. Relationship between GHR exon 10 and growth traits in Nanyang, Qinchuan and Jiaxian Red cattle populations
     4.1 Characterization of the SNP (A>G) located in bovine GHR exon 10 was investigated in the five populations. Allele G/A frequencies of Nanyang, Qinchuan, Jiaxian Red cattle, Chinese Holstein and Yak populations were 0.443/0.557, 0.444/0.556, 0.495/0.505, 0.164/0.836 and 0.114/0.886 respectively. Animals with genotype GG were not detected in Yak population. Genotype AA and allele A were dominant in Chinese Holstein and Yak populations. Genotype frequencies were almost equal in Nanyang, Qinchuan and Jiaxian Red cattle populations. Nanyang, Qinchuan cattle and Yak populations were at Hardy-Weinberg equilibrium, whereas Jiaxian Red cattle and Chinese Holstein were at Hardy-Weinberg disequilibrium. In Nanyang, Qinchuan and Jiaxian Red cattle populations, the SNP was moderate polymorphic (0.25     4.2 The effects of the SNP genotypes of bovine GHR gene on growth traits were evaluated in Nanyang, Qinchuan and Jiaxian Red cattle. The SNP of GHR gene had significant effects on hucklebone width of Nanyang cattle at all growth stages (P<0.05). Six-month Nanyang animals with genotype GG had higher withers heights than heterozygous animals and homozygous AA animals (P<0.05). Homozygous GG animals of twelve-month Nanyang cattle had higher heart girth than heterozygous animals (P<0.05).
引文
[1] Lee S J, McPherron A C. Regulation of myostatin activity and muscle growth[J]. PNAS USA, 2001, 98: 9306-9311.
    [2] Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation[J]. J Biol Chem , 2000, 275: 40235-40245.
    [3] Taylor W E, Bhasin S, Artaza J, Byhower F, Azam M, Willard D H Jr, Cull F C Jr, Gonzalez-Cadavid N. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells[J]. Am J Physiol Endocrinol Metab , 2001, 280: E221-E228.
    [4] Rios R, Karneiro I, Arce V M, Devesa J. Myostatin is an inhibitor of myogenic differentiation[J]. Am J Physiol Cell Physiol, 2002, 282: C993-C999.
    [5] Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by downregulating MyoD expression[J]. J Biol Chem, 2002, 277: 49831-49840.
    [6] McPherron A C, Lee S J. Double muscling in cattle due to mutations in the myostatin gene[J]. PNAS USA, 1997, 94: 12457-12461.
    [7] Casas E, Keele J W, Fahrenkrug S C, Smith T P L, Cundiff L V, Stone R T. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele[J]. J Anim Sci 1999, 77: 1686-1692.
    [8] Casas E, Bennett G L, Smith T P L, Cundiff L V. Association of myostatin on early calf mortality, growth, and carcass composition traits in crossbred cattle[J]. J Anim Sci, 2004, 82: 2913-2918.
    [9] Grobet L, Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Masabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype incattle[J]. Nature Genetics,1997, 17: 71-74.
    [10] Kambadur R, Sharma M, Smith T P, Bass J J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle[J]. Genome Research 1997, 7: 910-916.
    [11] Karim L, Coppieters W, Grobet L, Valentini A, Georges M. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay[J]. Anim Genet, 2000, 31: 396-9.
    [12] Cappucio I, Marchitelli C, Serracchioli A, Nardone A, Filippini F, Ajmone-Marsan P, Valentini A. A G-T Transversion introduces a stop codon at the mh locus in Hypertrophic Marchigiana beef subjects[J]. Animal Genetics 1998, 29:51.
    [13] Grobet L, Poncelet D, Royo L J, Brouwers B, Pirottin D, Michaux C, Menissier F, Zanotti M, Dunner S, Georges M. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle[J]. Mammalian Genome 1998, 9: 210–213.
    [14] Lee S-J. Regulation of muscle mass by myostatin[J]. Annu Rev Cell Dev Biol 2004, 20:61-86.
    [15] McPherron A C, Lawler A M, Lee S-J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member[J]. Nature 1997, 387:83-90.
    [16] McPherron A C, Lee S J. Suppression of body fat accumulation in myostatin-deficient mice[J]. J ClinInvest 2002, 109:595-601.
    [17] Grobet L, Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Masabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype incattle[J]. Nature Genetics,1997, 17: 71–74.
    [18] Grobet L, Poncelet D, Royo L J, Brouwers B, Pirottin D, Michaux C, Menissier F, Zanotti M, Dunner S, Georges M. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle[J]. Mammalian Genome 1998, 9: 210–213.
    [19] Kambadur R, Sharma M, Smith T P, Bass J J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle[J]. Genome Research 1997, 7: 910–916.
    [20] McPherron A C, Lee S J. Double muscling in cattle due to mutations in the myostatin gene[J]. PNAS USA, 1997, 94: 12457-12461.
    [21] Charlier C, Coppieters W, Farnir F, Grobet L, Leroy P L. The mh gene causing double-muscling in cattle mapps to bovine chromosome 2[J]. Mamm Genome 1995, 6:788-792.
    [22] Marchitelli C, Savarese M C, Crisa A, Nardone A, Marsan P A, Valentini A. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene[J]. Mamm Genome 2003, 14:392-395.
    [23] Hamrick M W, McPherron A C, Lovejoy C O, Hudson J. Femoral morphology and cross-sectional geometry of adult myostatin-deficient mice[J]. Bone 2000, 27:343-349.
    [24] Turner C H. Muscle-bone interactions, revisited[J]. Bone 2000, 27:339-340.
    [25] Swatland H J, Kieffer N M. Fetal development of the double muscled condition in cattle[J]. J Anim Sci 1974, 38:752-757.
    [26] Wegner J, Albrecht E, Fiedler I, Teuscher F, Papstein H J, Ender K. Growth- and breed-related changes of muscle fiber characteristics in cattle[J]. J Anim Sci 2000, 78:1485-1496.
    [27] De Smet S, Webb E C, Claeys E, Uytterhaegen L, Demeyer D I. Effect of dietary energy and protein levels on fatty acid composition of intramuscular fat in double-muscled Belgian Blue bulls[J]. Meat Science 2000, 56:73-79.
    [28] Hocquette J F, Bas P, Bauchart D, Vermorel M, Geay Y. Fat partitioning and biochemical characteristics of fatty tissues in relation to plasma metabolites and hormones in normal and double-muscled young growing bulls[J]. Comp Biochem Physiol A Mol Integr Physiol 1999, 122:127-38.
    [29] Webb E C, De Smet S, Van Nevel C, Martens B, Demeyer D I. Effect of Anatomical Location on the Composition of Fatty Acids in Double-Muscled Belgian Blue Cows[J]. Meat Science 1998, 50:45-53.
    [30] Te Pas M F W,Soumillion A. Improvement of livestock breeding strategies using physiologic and functional genomic information of the muscle regulatory factors gene family for skeletal muscle development [J]. Current Genomics 2001, 2: 285-304.
    [31] Nishi M, Yasue A, Nishimatu S, Nohno T, Yamaoka T, Itakura M, Moriyama K, Ohuchi H, Noji S. A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle[J]. Biochemical and Biophysical Research Communications, 2002, 293:247-251.
    [32] Zhu X, Hadhazy M, Wehling M, Tidball J G, McNally E M. dominant negative myostatin produces hypertrophy with out hyperplasia in muscle[J]. FEBS Lett 2000, 474:71-75.
    [33] Begdanovich S, Krag T O B, Barton E R, Morris L D, Whittemore L-A. Functional improvement of dystrophic muscle to myostatin blockage[J]. Nature 2002, 420:418-421.
    [34] Whittemore L A, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill J J, Jalenak M, Kelley P, Knight A, Maylor R, O'Hara D, Pearson A, Quazi A, Ryerson S, Tan X Y, Tomkinson K N, Veldman G M, Widom A, Wright J F, Wudyka S, Zhao L, Wolfman N M. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength[J]. Biochem Biophys Res Commun. 2003 300:965-71.
    [35] Joulia D, Bernardi H, Garadel V, Rabenoelina F, Vernus B, Cabello G. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin[J]. Exp Cell Res 2003, 286:263-275.
    [36] Grobet L, Martin L J, Poncelet D, Pirrotin D, Brouwers B, Riquet J, Schoblerlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle [J]. Nature Genetics 1997, 17:71–74.
    [37] Amthor H, Huang R, McKinnell I, Christ B, Kambadur R, Sharma I, Patel K. The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis[J]. Dev Biol 2002b,251:241-257.
    [38] McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activiation and self-renewal[J]. J Cell Biol 2003, 162:1135-1147.
    [39] Zimmers T A, Davis M V, Koniaris L G, Haynes P, Esquela A F, Tomkinson K N, McPherron A C, Wolfman N M, Lee S-J. Induction of cachexia in mice by systematically administrated myostatin[J]. Science 2002, 296:1486-1488.
    [40] Grobet L, Poncelet D, Royo L J, Brouwers B, Pirottin D, Michaux C, Menissier F, Zanotti M, Dunner S, Georges M. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle [J]. Mammalian Genome 1998, 9:210–213.
    [41] kim H S, Liang L, Dean R G, Hausman D B, Hartzell D L, Baile C A. Inhibition of predipocyte differentiation by myostatin treatment in 3T3-L1 cultures[J]. Biochem Biophys Res Commun 2001, 281:902-906.
    [42] Rebbapragada A, Benchabane H, Wrana J, Celeste A J, Attisano L. myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis[J]. Mol Cell Biol 2003, 23:7230-7242.
    [43] Hirai S, Matsumoto H, Hino N, Kawachi H, Matsui T,Yano H. yostatin inhibits differentiation of bovine preadipocyte[J]. Domestic Animal Endocrinology 2007, 32:1-14.
    [44] Lin J, Arnold H B, Della-Fera M A, Azain M J, Hartzell D L, Baile C A. Myostatin knockout in mice increases myogenesis and decreases adipogenesis[J]. Bioch Biophys Res Commun 2002, 290:701-706.
    [45] Arnold H, Della-Fera M A, Baile C A. Review of myostatin history, physiology and applications[J]. Int Arch Biosci 2001, 8:1014-1022.
    [46] Wiener P, Smith J A, Lewis A M, Woolliams J A, Williams J L. Muscle-related traits in cattle: the role of the myostatin gene in the South Deven breed[J]. Genet Selection Evol 2002, 34:221-232.
    [47] Bellinge R H S, Liberles D A, Laschi S P A, O’Brien P A, Tay G K. Myostatin and its implications on animal breeding: a review [J]. Animal Genetics 2005, 36, 1–6..
    [48] Pomeroy R W, Williams D R. Muscular hypertrophy in cattle[J]. Animal Production 1962, 4:302-312.
    [49] Arthur P F, Makarechian M, Salmon R K, Price M A. Plasma growth hormone and insulin concentrations in double-muscled and normal bull calves[J]. Animal Science 1990, 68:1609-1615.
    [50] Hornick J L, Van Eenaeme C, Diez M, Minet V, Istasse L. Different periods of feed restriction before compensatory growth in Belgian Blue bulls: II. Plasma metabolites and hormones[J]. Animal Science 1998, 76:260-271.
    [51] Patel K, Amthor H. The function of myostatin and strategies of myostatin blockage-new hope for therapies aimed at promoting growth of skeletal muscle[J]. Neuromuscular Disorders 2005, 15:117-126.
    [52] Dominique J E, Gerard C. Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects[J]. Experimental Cell Res doi: 10.1016/j.yexcr.2006.04.012.
    [53] Wise R J, Barr P J, Wong P A, Kiefer M C, Brake A J, Kaufman R J. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site[J]. Proc Natl Acad Sci USA 1990, 87:9378-9382.
    [54] Thies R S, Chen T, Davies M V, Tomkinson K N, Pearson A A, Shakey Q A, Wolfman N M. GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding[J]. Growth Factors 2001, 18:251-9.
    [55] Huet C, Li Z F, Liu H Z , Black R A, Galliano M F, Engvall E. Skeletal muscle cell hypertrophy induced by inhibitors of metalloproteases; myostatin as a potential mediator[J]. Am J Physiol Cell Physiol 2001, 281: C1624-C1634.
    [56] Daopin S, Piez K A, Ogawa Y, Davies D R. Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily[J]. Science 1992, 257:369 – 373.
    [57] Schlunegger M P, Grütter M G. An unusual feature revealed by the crystal structure at 2.2 ? resolution of human transforming growth fact or-β2[J]. Nature 1992, 358:430 – 434.
    [58] Griffith D L, Keck P C, Sampath T K, Rueger D C, Carlson W D. Three-dimensional structure of recombinant human osteogenic protein 1: Structural paradigm for the transforming growth factor β superfamily[J]. PNAS 1996, 93:878-883.
    [59] Hinck A P, Archer S J, QianS W, Roberts A B, Sporn M B, Weatherbee J A, Tsang M L-S, Lucas R, Zhang B L, Wenker J, Torchia D A. Transforming Growth Factor β1: Three-Dimensional Structure in Solution and Comparison with the X-ray Structure of Transforming Growth Factorβ2[J]. Biochemistry 1996, 35: 8517 -8534.
    [60] Mittl P R E, Priestle J P, Cox D A, Mcmaster G, Cerletti N, Grutter M G. The crystal structure of TGF-{beta}3 and comparison to TGF-{beta}2: Implications for receptor binding[J]. Protein Science 1996, 5:1261-1271.
    [61] Eigenbrot C, Gerber N. X-ray structure of glial cell-derived neurotrophic factor at 1.9 ? resolution and implications for receptor binding[J]. Natural Structural Biology 1997, 4:435 – 438.
    [62] Kirsch T, Sebald W, Dreyer M K. Crystal structure of the BMP-2?BRIA ectodomain complex[J]. Nature Structural Biology 2000, 7:492 – 496.
    [63] Thompson T B, Woodruff T K, Jardetzky T S. Structures of an ActRIIB: activin A complex reveal a novel binding model for TGF- ligand:receptor interactions[J]. EMBO J 2003, 22:1555–1566.
    [64] Wolfman N M, McPherron A C, Pappano W N, Davies M V, Song K, Tomkinson K N, Wright J F,Zhao L, Sebald S M, Greenspan D S, Lee S-J. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases[J]. PNAS USA. 2003, 100: 15842–15846.
    [65] Yang J, Ratovitski T, Brady J P, Solomon M B, Wells K D, Wall R J. Expression of myostatin pro domain results in muscular transgenic mice[J]. Mol Reprod Dev 2001, 60:351-361.
    [66] Hill J J, Davies M V, Pearson A A, Wang J H, Hewick R M, Wolfman N M, Qiu Y. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum[J]. J Biol Chem 2002, 277:40735–40741.
    [67] Blader P, Rastegar S, Fischer N, Strahle U. Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid[J]. Science. 1997, 278:1937-1940.
    [68] S Piccolo, Agius E, Lu B, Goodman S, Dale L, De Robertis E M. Cleavage of chordin by xolloid metalloprotease suggests a role for proteolytic processing in the regulation of spemann organizer activity[J]. Cell 1997, 91:407-416.
    [69] Scott I C,Blitz I L, Pappano W N,Imamura Y,Clark T G, Steiglitz B M, Thomas C L, Maas S A, Takahara K,Cho K W Y,Greenspan D S. Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis[J]. Developmental Biology 1999, 213:283-300.
    [70] Pappano W N, Steiglitz B M, Scott I C, Keene D R, Greenspan D S. Use of Bmp1/T111 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/tolloid-like metalloproteinases[J]. Molecular and Cellular Biology 2003, 23:4428-4438.
    [71] Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. Activin-binding protein from rat ovary is follistatin[J]. Science 1990, 247:836-838.
    [72] Yamashita H, ten Dijke P, Huylebroeck D, Sampath T K, Andries M, Smith J C, Heldin C H, Miyazono K. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects[J]. Journal of Cell Biology 1995, 130:217-226.
    [73] de Winter J P, ten Dijke P, de Vries C J, van Achterberg T A, Sugino H, de Waele P, Huylebroeck D, Verschueren K, van den Eijnden-van Raaij A J. Follistatins neutralize activin bioactivity by inhibition of activin binding to its type II receptors[J]. Mol Cell Endocrinol 1996, 116:105-114.
    [74] Fainsod A, Deissler K, Yelin R, Marom K, Epstein M, Pillemer G, Steinbeisser H, Blum M. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4[J]. Mech Dev 1997, 63:39-50.
    [75] Iemura S I, Yamamoto T S, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, Ueno N. Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo[J]. Developmental Biology 1998, 95:9337-9342 .
    [76] Amthor H, Connolly D, Patel K, Brand-Saberi B, Wilkinson D G, Cooke J, Christ B. The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis[J]. Developmental Biology 1996, 178:343-362.
    [77] Amthor H, Christ B, Rashid-Doubell F, Kemp C F, Lang E, Patel K. Follistatin regulates bonemorphogenetic protein-7 (BMP-7) activity to stimulate embryonic muscle growth[J]. Developmental Biology 2002, 243:115-127.
    [78] Matzuk M M, Lu N, H Vogel, Sellheyer K, Roop D R, Bradley A. Multiple defects and perinatal death in mice deficient in follistatin[J]. Nature 2002, 374:360-363.
    [79] Hill J J, Qiu Y, Hewick R M, Wolfman N M. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains[J]. Molecular Endocrinology 2003, 17:1144-1154.
    [80] Hayette S, Gadoux M, Martel S, Bertrand S, Tigaud I, Magaud J-P, Rimokh R. FLRG (follistatin-related gene), a new target of chromosomal rearrangement in malignant blood disorders[J]. Oncogene 1998, 16:2949-2954.
    [81] Tsuchida K, Arai K Y, Kuramoto Y, Yamakawa N, Hasegawa Y, Sugino H. Identification and Characterization of a Novel Follistatin-like Protein as a Binding Protein for the TGF-β Family[J]. J Biol Chem 2000, 275:40788-40796.
    [82] Shi Y, Massague J. Mechanisms of TGF-β signaling from cell membrane to nucleus[J]. Cell 2003, 113:685-700.
    [83] Lewis K A, Gray P C, Blount A L, MacConell L A, Wiater E, Bilezikjian LM, Vale W. Betagly can binds inhibin and can mediate functional antagonism of activin signaling[J]. Nature 2000, 404:411-414.
    [84] Schier A F, Shen M M. Nodal signaling in vertebrate development[J]. Nature 2000, 403:385-389.
    [85] Cheng S K, Olale F, Bennett J T, Brivanlou A H, Schier A F. EGF-CFC proteins are essential coreceptors for the TGF-β signal Vg1 and GDF-1[J]. Genes Dev 2003, 17:31-36.
    [86] Attisano L, Carcamo J, Ventura F, Weis F M B, Massague J, Wrana J L. Identification of human activin and TGF-β typeⅠ receptors that form heteromeric kinase complexes with typeⅡ receptors[J]. Cell 1993, 75:671-680.
    [87] Luo K, Stroschein S L, Wang W, Chen D, Martens E, Zhou S, Zhou Q. The ski oncoprotein interacts with the Smad proteins to repress TGF β signaling[J]. Genes Dev 1999, 13:2196-2126.
    [88] Stroschein S, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF β signaling by the SnoN oncoprotein[J]. Science 1999, 286:771-774.
    [89] Sun Y, Liu X, Ng-Eaton E, Lane W S, Lodish H F, Weinberg R A. Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signaling[J]. Mol Cell 1999, 4:499-509.
    [90] Sun Y, Liu X, Ng-Eaton E, Lodish H F, Weinberg R A. SnoN and Ski protooncoprpteins are rapidly degraded in response to transforming growth factor β signaling[J]. PNAS USA 1999, 96:12442-12447.
    [91] Akiyoshi S, Inoue H, Hanai J I, Kusanagi K, Nemoto N, et al. c-ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads[J]. J Biol Chem 1999, 274:35269-35277.
    [92] Berk M, Desai S, Heyman H C, Colmenares C. Mice lacking the ski proto-oncogene have defects in neuralation, craniofacial patterning, and skeletal muscle development[J]. Genes Dev 1997, 4:2029-2039.
    [93] Sutrave P, Kelly A M, Hughes S H. ski can cause selective growth of skeletal muscle in transgenicmice[J]. Genes Dev 1990, 4:1462-1472.
    [94] Smith T P L, Lopez-Corrales N L, Kappes S M, Sonstegard T S. Myostatin maps to the interval containing the bovine mh locus[J]. Mamm Genome 1997, 8:742-744.
    [95] Shibata M, Ohshima K, Kojima T, Muramoto T, Matsumoto K, Komatsu M, Aikawa K, Fujimura S, Kadowaki M. Nucleotide sequence of myostatin gene and its developmental expression in skeletal muscles of Japanese Black beef[J]. J Anim Sci 2003, 74:383-390.
    [96] Dunner S, Eugenia M, Mirandaa, Amiguesb Y, Ca?óna J, Georgesc M, Hansetd R, Williamse J, Ménissierf F. Haplotype diversity of the myostatin gene among beef cattle breeds[J]. Genet Sel Evol 2003, 35:103-118.
    [97] Switonski M. Molecular genetics in beef cattle breeding-a review[J]. Animal Science Papers and Reports 2002, 20(suppl.):17-18.
    [98] Fahrenkrug S C, Casas E, Keele J W, Smith T P. Technical note: direct genotyping of the muscle-doubling locus(mh) in Piedmontese and Belgian Blue Cattle by fluorescent PCR[J]. J Anim Sci 1999, 77:2028-2030.
    [99] Stratil A, Kopecny M. Genomic organization, sequence and polymorphism of the porcin myostatin(GDF-8, MSTN) gene[J]. Anim Genet 1999, 30:462-470.
    [100] 姜运良,李宁, 杜立新,吴常信. 猪肌肉生长抑制素基因5’调控区T→A突变与生长性状的关系分析[J]. 遗传学报 2002, 29:413-416.
    [101] 李绍华, 熊远著, 郑嵘, 李爱云, 邓昌彦, 蒋思文, 雷明刚, 文雅芹, 曹国春. 猪MSTN基因多态性及其SNPs的研究[J]. 遗传学报 2002, 29:326-331.
    [102] Cieslak D, Blicharski T, Kapelanski W, Pierzchala M. Investigation of polymorphisms in the porcine myostatin(GDF-8, MSTN) gene[J]. Czech J Anim Sci 2003, 48:69-75.
    [103] 顾志良,朱大海,李宁,李辉,邓学梅,吴常信. 鸡myostatin基因单核苷酸多态性与骨骼肌和脂肪生长关系[J]. 中国科学C辑 2003,33:273-280.
    [104] Casas E, Keele J W, Shackelford S D, Koohmaraie M, Sonstegard T S, Smith T P L, Kappes S M, Stone R T. Association of the muscle hypertrophy locus with carcass traits in beef cattle[J]. J Anim Sci 1998, 76:468-473.
    [105] Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T. Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles[J]. Biochim Biophys Acta 2000, 1497:77-88.
    [106] Kawada S, Tachi C, Ishii N. Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading[J]. Journal of Muscle Research and Cell Motility 2001, 22: 627-633.
    [107] Tseng1 B S, Zhao P, Pattison J S, Gordon S E, Granchelli J A, Madsen R W, Folk L C, Hoffman E P, Booth F W. Regenerated mdx mouse skeletal muscle shows differential mRNA expression[J]. J Appl Physiol 2002, 93:537-545.
    [108] Peters D, Barash I A, Burdi M, Yuan P S, Mathew L, Fridén J, Lieber R L. Asynchronous functional, cellular and transcriptional changes after a bout of eccentric exercise in the rat[J]. J Physiol 2003, 553:947-957.
    [109] Miller J B, Everitt E A, Smith T H, Block N E, Dominov J A. Cellular and molecular diversity inskeletal muscle development: news from in vitro and in vivo[J]. Bio Essays 1993, 15:191-195.
    [110] Firulli A B, Olsen E N. Modular regulation of muscle gene transcription: a mechanism for muscle cell diversity[J]. Trends Genet 1997, 13:364-369.
    [111] Molkentin J D, Olsen E N. Defining the regulatory networks for muscle development[J]. Current Opinion in Genetics and Development 1996, 6:445-453.
    [112] Delgado I, Huang X, Jones S, Zhang L, Hatcher R, Gao B, Zahng P. Dynamic gene expression during the onset of myoblast differentiation in vitro[J]. Genomics 2003, 82:109-121.
    [113] Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht B D. An initial blueprint for myogenic differentiation[J]. Genes Dev 2005, 19:553-569.
    [114] Braun T, Buschausen-Denker G, Bober E, Tannich E, Arnold H-H. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblast[J]. EMBO J 1989, 8:701-709.
    [115] Braun T, Bober E, Winter B, Rosenthal N, Arnold H-H. Myf6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12[J]. EMBO J 1990, 9:821-831.
    [116] Olson E N, Klein W H. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out[J]. Genes Dev 1994, 8:1-8.
    [117] Te Pas M F, Harders F L, Soumillion A, Born L, Buist W, Meuwissen T H. Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits[J]. Mamm Genome 1999, 10:123-127.
    [118] Hughes S M, Schiaffino S. Control of muscle fiber size: a crucial factor in ageing[J]. Acta Physiologica Scandinavica 1999, 167:307-312.
    [119] Wright W, Sassoon D A, Lin V K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD1[J]. Cell 1989, 56:607-617.
    [120] Edmonson D, Olson E N. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program[J]. Genes Dev 1989, 3:628-640.
    [121] Rhodes S, Konieczny S F. Identification of MRF4: a new member of the muscle regulatory factor gene family[J]. Genes Dev 1989, 3:2050-2061.
    [122] Miner J, Wold B. Herculin, a fourth member of the MyoD family of myogenic regulatory genes[J]. PNAS USA 1990, 87:1089-1093.
    [123] Murre C, McCaw P S, Vaessin H, Caudy M, Jan L Y, Cabrera C V, Buskin J N, Hauschka S D, Lassar A B, Weintraub H, Baltimore D. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence[J]. Cell 1989, 58:537-544.
    [124] Lassar A, Buskin J N, Lockshon D, Davis R L, Apone S, Hauschka S D, Weintraub H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer[J]. Cell 1989, 58:832-831.
    [125] Lassar A, Davis R L, Wright W E, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo[J]. Cell 1991, 66:305-315.
    [126] Blackwell T, Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection[J]. Science 1990, 250:1104-1110.
    [127] Tapscott S, Davis R L, Thayer M J, Cheng P F, Weintraub H, Lassar A B. MyoD1: a nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts[J]. Science 1988, 242:405-411.
    [128] Weintraub H, Dwarki V J, Verma I, Davis R, Hollenberg S, Snider L, Lasser A, Tapscott S J. Muscle-specific transcriptional activation by MyoD[J]. Genes Dev 1991, 5:1377-1386.
    [129] Vandromme M, Cavadore J C, Bonnieu A, Froeschle A, Lamb N, Femandez A. Two nuclear localization signals present in the basic helix 1 domains of MyoD promote its active nuclear translocation and can function independently[J]. PNAS USA 1995, 92:4646-4650.
    [130] Gerber A, Klesert T R, Bergstrom D A, Tapscott S J. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis[J]. Genes Dev 1997, 11:436-450.
    [131] Schwarz J, Chakraborty T, Martin J, Zhou J, Olson E N. The basic region of myogenin cooperates with two transcription activation domains to induce muscle-specific transcription[J]. Mol Cell Biol 1992, 12:266-275.
    [132] Roy K, Ivana L, de la Serna, Imbalzano A N. The myogenic basic helix-loop-helix family of transcription factors shows similar requirements for SWI/SNF chromatin remodeling enzymes during muscle differentiation in culture[J]. J Biol Chem 2002, 277:33818-33824.
    [133] Ott M O, Bober E, Lyons G, Arnold H, Buckingham M. Early expression of the myogenic regulatory gene, myf-5, in precussor cells of skeletal muscle in the mouse embryo[J]. Development 1991, 111:1097-1107.
    [134] Tajbakhsh S, Bober E, Babinet C, Pourin S, Arnold H H, Buckingham M. Gene targeting the myfr-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fiber as well as early embryonic muscle[J]. Dev Dyn 1996, 206:291-300.
    [135] Sassoon D, Lyons G, Wright W E, Lin V, Lassar A, Weintraub H, Buckingham M. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis[J]. Nature 1989, 344:303-307.
    [136] Faerman A, Goldhamer D J, Puzis R, Emerson C P, Shani M. The distal human MyoD enhancer sequences direct unique muscle-specific patterns of lacZ expression during mouse development[J]. Dev Biol 1995, 171:27-38.
    [137] Perry R L S, Rudnicki M A. Molecular mechanisms regulating myogenic determination and differentiation[J]. Frontiers in Bioscience 2000, 5:750-767.
    [138] Sabourin L A, Rudnicki M A. The molecular regulation of myogenesis[J]. Clin Genet 2000, 57:16-25.
    [139] Cusella-De Angelis M G, Molinari S, Le Donne A, Coletta M, Vivarelli E, Bouche M, Molinaro M, Ferrari S, Cossu G. Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis[J]. Development, 1994, 120:925-933.
    [140] Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F. The formation of skeletal muscle: from somite to limb[J]. J Anat 2003, 202:59-68.
    [141] Hughes S M,Koishi K, Rudnicki M, Maggs A M. MyoD protein is differentially accumulated in fast and slow skeletal muscle fibres and required for normal fibre type balance in rodents[J]. Mech Dev 1997, 61:151-163.
    [142] Montarras D, Chelly J, Bober E, Arnols H, Ott M O, Gros F, Pinset C. Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis[J]. New Biology 1991, 3:592-600.
    [143] Shimokawa T, Kato M, Ezaki O, Hashimoto S. Transcriptional regulation of muscle-specific genes during myoblast differentiation[J]. Biochemical and Biophysical Resaerch Communications 1998, 246:287-292.
    [144] Barjot C, Laplace-Marieze V, Gannoun-Zaki L, Mckoy G, Briand M, Vigneron P, Bacou F. Expression of lactate dehydrogenase myosin heavy chain and myogenic regulatory factor genes in rabbit embryonic muscle cell cultures[J]. Journal of Muscle Research and Cell Motility 1998, 19:343-351.
    [145] Barjot C, Cotten M L, Goblet C, Whahen R G, Bacou F. Expression of myosin heavy chain and myogenic regulatory factor genes in fast and slow rabbit muscle satellite cell culture[J]. Journal of Muscle Research and Cell Motility 1995, 16:619-628.
    [146] Smith C K II, Janney M J, Allen R E. Temporal expression of myogenic regulation genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells[J]. Journal of Cellular Physiology 1994, 159:379-385.
    [147] Muroya S, Nakajima I, Chikunik K. Related expression of MyoD and Myf5 with myosin heavy chain isoform types in bovine adult skeletal muscles[J]. Zoological Science 2002, 19:755-761.
    [148] Muroya S, Nakajima I, Chikunik K. Sequential expression of myogenic regulatory factors in bovine skeletal muscle and the satellite cell culture[J]. Journal of Animal Science 2002, 73:375-381.
    [149] Muroya S, Nakajima I, Oe M, Chikunik K. Effect of phase limited inhibition of MyoD expression on the terminal differentiation of bovine myoblasts: no alteration of Myf5 or myogenin expression[J]. Develop Growth Differ 2005, 47:483-492.
    [150] Cornelison D D, Wold B J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells[J]. Dev Biol 1997, 191:270-283.
    [151] Perry R L S, Rudnicki M A. Molecular mechanisms regulating myogenic determination and differentiation[J]. Frontiers in Bioscience 2000, 5:750-767.
    [152] Rudnicki M A, Schnegelsberg P N J, Stead R H, Braun T, Arnold H-H, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle[J]. Cell 1993, 75:1351-1359.
    [153] Kablar B, Krastel K, Ying C, Asakura A, Tapscott S J, Rudnicki M A. MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle[J]. Development 1997, 124, 4729-4738.
    [154] Rawls A, Valdez M R, Zheng W, Richardson J, Klein W H, Olsen E N. Overlapping functions of the myogenic bHLH genes MRF4 and MyoDrevealed in double mutant mice[J]. Development 1998, 125:2349-2358.
    [155] Valdez M, Richardson J A, Klein W H, Olson E N. Failure of Myf-5 to support myogenic differentiation without myogenin, MyoD, and MRF4[J]. Dev Bio 2000, 219:287-298.
    [156] Wang Y, Jaenisch R. Myogenin can substitute for Myf5 in promoting myogenesis but less efficiency[J]. Development 1997, 124:2507-2513.
    [157] Wang Y, Schnegelsberg P N J, Dausman J, Jaenisch R. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin[J]. Nature 1996, 379:823-825.
    [158] Zhu Z, Miller J B. MRF4 can substitute for myogenin during early stages of myogenesis[J]. Developmental Dynamics 1997, 209:233-241.
    [159] Rudnicki M A, Braun T, Hinuma S, Jaenischa R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development[J]. Cell 1992, 71:383-390.
    [160] Braun T, Rudnicki M A, Arnold H-H, Jaenisch R. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death[J]. Cell 1992,71:369-382.
    [161] Hasty P, Bradley A, Morris J H, Edmondson D G, Venuti J M, Olson E N, Klein W H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J]. Nature 1993, 364:501-506.
    [162] Israel M A, Hernandez M C, Florio M, Andres-Barquin P J, Mantani A, Carter J H, Julin C M. Id gene expression as a key mediator of tumor cell biology[J]. Cancer Res 1999, 59(Suppl):1726-1730.
    [163] Spicer D B, Rhee J, Cheung W L, Lassar A B. Inhibition of myogenic bHLH and MEF2 transcription factors by the BHLH protein Twist [see comments] [J]. Science 1996, 272:1476-1480.
    [164] Lemercier C,To R Q,Carrasco R A,Konieczny S F. The basic helix?loop?helix transcription factor Mist1 functions as a transcriptional repressor of MyoD[J]. EMBO J 1998, 17:1412-1422.
    [165] Halevy O, Novitch B G, Spicer D B, Skapek S X, Rhee J, Hannon G J, Beach D, Lassar A B. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD[J]. Science 1995, 267,:1018-1021.
    [166] Parker S B, Eichele G, Zhang P, Rawls A, Sands A T, Bradley A, Olson E N, Harper J W, Elledge S J. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells[J]. Science 1995, 267:1024-1027.
    [167] Zhang J M, Wei Q, Zhao X, Paterson B M. Coupling the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4[J]. EMBO J 1999, 18:926-933.
    [168] Gredinger E, Gerber A N, Tamir Y, Tapscott S J, Bengal E. Motigen-activated protein kinase pathway is involved in the differentiation of muscle cells[J]. J Biol Chem 1998, 273:10436-10444.
    [169] Bennett A M, Tonks N K. Regulation of distinct stages of skeletal muscle differentiation by mitogen -activated protein kinase[J]. Science 1997, 28:1288-1291.
    [170] Weyman C M, Wolfman A. Mitogen-activated protein kinase kinase (MEK) activity is required for inhibition of skeletal muscle differentiation by insulin-like growth factor 1 or fibroblast growth factor 2[J]. Endcronology 1998, 139:1794-1800.
    [171] Cuenda A, Cohen P. Stress-activated protein-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis[J]. J Biol Chem 1999, 274:4341-4346.
    [172] Li C, Basarab J, Snelling W M, Benkel B, Murdoch B, Moore S S. The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits[J]. J Anim Sci, 2002, 80: 1187-1194.
    [173] Li C, Basarab J, Snelling W M, Benkel B, Murdoch B, Kneeland J, Hansen C, Moore S S. Identical by descent haplotype sharing analysis: Application in fine mapping of QTLs for birth weight in commerical lines of Bos Taurus[A]. Proc. 7th World Congr. Genet. Appl. Livest. Prod. Montpellier, France. 2002 : 481-484.
    [174] Li C, Basarab J, Snelling W M, Benkel B, Murdoch B, Hansen C, Moore S S. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus[J]. J Anim Sci, 2004, 82:1-7.
    [175] Stratil A, Cepica S. Three polymorphisms in the porcine myogenic factor 5 (MYF5) gene detected by PCR-RFLP[J]. Anim Genet 1999, 30:79-80.
    [176] Drogemuller C, Kempers A. A TaqI PCR-RFLP at the bovine myogenic factor (MYF5) gene[J]. Anim Genet 2000, 31:146-147.
    [177] Cieslak D, Kuryl J, Kapelanski W, Pierzchala M. A relationship between genotypes at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs[J]. Anim Sci Pap Rep 2002, 20:77-92.
    [178] Urbanski P, Kuryl J. New SNPs in the coding and 5' flanking regions of porcine MYOD1 (MYF3) and MYF5 genes[J]. J Appl Genet 2004, 45, 325-329.
    [179] Klosowska D, Kuryl J, Elminowska-Wenda G, Kapelanski W, Walasik K, Pierzchala M, Cieslak D, Bogucka J. Arelationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrian×(Polish Large White×Polish Landrace) crosses[J]. Czech J. Anim Sci 2004, 49: 99-107.
    [180] Fausto M da S C, Simone E F G, Paulo S L, Aldrin V P, Marta F M G, Marcos V G B da S, Alex S S, Kleibe de M e S, Lúcio A de M G. Association of MYF5 gene allelic variants with production traits in pigs[J]. Genetics and Molecular Biology 2005, 28: 363-369.
    [181] Wyszynska-Koko J, Kuryl J, Flisikowski K. Partial sequence of porcine MYF6 gene, its comparative analysis and a novel polymorphism of the region coding for the basic domain[J]. Biochem Genet 2004, 42:411-417.
    [182] Soumillion A, Erkens J H F, Lenstra J A, Rettenberger G, te Pas M F W. Genetic variation in the porcine myogenin gene locus[J]. Mammlian Genome 1997, 8:564-568.
    [183] Xue H L, Zhou Z X. Effects of the MyoG gene on the partial growth traits in pigs[J]. Acta Genetica Sinica 2006, 33:992-997.
    [184] Klosowska D, Kuryl J, Elminowska-Wenda G, Kapelanski W, Walasik K, Pierzchala M, Cieslak D, Bogucka J. Arelationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrian×(Polish Large White×Polish Landrace) crosses[J]. Czech J. Anim Sci 2004, 49: 99-107.
    [185] 李景芬, 刘 娣, 于 浩. 7 个猪种MyoD基因家族中3个基因外显子的SNPs检测分析[J]. 中国畜牧杂志 2005, 41:21-24.
    [186] 朱 砺, 李学伟. MyoD 基因在不同猪种中的PCR-RFLP 遗传多态性及其遗传效应研究[J]. 畜牧兽医学报 2005, 36:761-766.
    [187] Cieslak D, Kapelanski W, Blicharski T, Pierzchala M. Restriction fragment length polymorphisms in myogenin and myf3 genes and their influence on lean meat content in pigs[J]. J Anim Breed Genet2000, 117:43-55.
    [188] Kuryl J, Kapelanski W, Cieslak D, Pierzchala M, Grajewska S, Bocian M. Are polymorphisms in non-coding regions of porcine MyoD genes suitable for predicting meat and fat deposition in the carcass? [J]. Anim Sci Pap Rep 2002, 20:245-254.
    [189] LeHir H, Nott A, Moore M. How introns influence and inhance eukaryotic gene expression[J]. Trends Biochem Sci 2003, 28:215-220.
    [190] Ernst C W, Vaske D A, Larson R G, White M E, Rothschild M F. Rapid communication: MspI restriction fragment length polymorphism at the swine MYF6 locus[J]. J Anim Sci 1994, 72:799.
    [191] Maak S, Neumann K, Swalve H.H. Identification and analysis of putative regulatory sequences for the MYF5/MYF6 locus in different vertebrate species[J]. Gene 2006, 379:141–147.
    [192] Wyszynska-Koko J., Kuryl J. Porcine MYF6 gene: sequence, homology analysis, and variation in the promoter region[J]. Anim. Biotechnol 2004, 15:159–173.
    [193] Rico-Bautista E. Negative regulation of GH signaling[J]. Reproprint Stockholm, Sweden. 2005.
    [194] Carter-Su C, Schwartz J, Smit L S. Molecular mechanism of growth hormone action[J]. Annu Rev Physiol 1996, 58:187-207.
    [195] De Vos, Ultsch A M, Kossiakoff A A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex[J]. Science 1992, 255:306.
    [196] Tanner J W, Chen W, Young R L, Longmore G D, Shaw A S. The conserved boxl motif of cytokine receptors 15 required for association with JAK kinases[J]. J Biol Chem 1995, 270:6523-301.
    [197] Govers R, ten Broeke T, van Kerkhof P, Schwartz A L, Strous G J. Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor[J]. EBMO J 1999, 18:28-36.
    [198]Petr E L, Giovanna A, Jens H N, Gunnar N, Nils B. Requirement of tyrosine 333 and 338 of the growth hormone(GH) receptor for selected GH - stimulated function[J]. J Biol Chem 1995, 270:21745 – 217501.
    [199] Jenkins Z A, Henry H M, Sise J A, Montgomery G W. Brief Notes: Follistation (FST), growth hormone receptor(GHR) and prolaction receptor(PRLR) genes map to the same region of sheep chromosome 16[J]. Animal Genetics 2000, 31:280-291.
    [200] Moody D E, Pomp D, Barendse W, Womack J E. Assignment of the growth hormone receptor gene to bovine chromosome 20 using linkage analysis and somatic cell mapping[J]. Animal Genetics 1995, 26:341-343.
    [201] Kopchick J J, Andry J M. Growth hormone (GH) , GH receptor , and signal transduction[J]. Mol Genet Metab 2000, 71:293 – 314.
    [202] Jiang H L, Lucy M C. Variants of the 50-untranslated region of the bovine growth hormone receptor mRNA: isolation, expression and effects on translational efficiency[J]. Gene 2001, 265:45-53.
    [203] Kopchick J J, Andry J M. Growth hormone(GH), GH receptor, and signal transduction. Mol Genet Metab 2000, 71:293-341.
    [204] Strous G J, van Kerkhof P. The ubiquitin-proteasome pathway and the regulation of growth hormone receptor availability[J]. Molecullar and Cellular Endocrinology 2002, 197:143-151.
    [205] Falaki M, Gengler N, Sneyers M, Prandi A, Massart S, Formigoni A, Burny A, Portetelle D,Renaville R. Relationships of polymorphisms for growth hormone and growth hormone receptor genes with milk production traits for Italian Holstein-Friesian bulls[J]. J Dairy Sci 1996, 79:1446-1453.
    [206] Lucy M C, Johnsson G S, Shibuya H, Boyd C K, Herring W O, Werin M. Rapid communication: polymorphic (GT)n microsatellite in the bovine somatotropine receptor gene promoter[J]. J Anim Sci 1998, 76:2209-2210.
    [207] Hale C S, Herring W O, Shibuya H, Lucy M C, Lubahn D B, Keisler D H, Johnson G S. Decreased growth in Angus steers with a short TG-microsatellite allele in the P1 promoter of the growth hormone receptor gene[J]. J Anim Sci 2000, 78:2099-2104.
    [208] Zhou Y and Jiang H. Trait-associated sequence variation in the bovine growth hormone receptor 1A promoter does not affect promoter activity in vitro[J]. Anim Genet 2005, 36:156-159.
    [209] Curi R A, Palmieri D A, Suguisawa L, Ferraz A L J, de Oliveira H N, Furlan L R, Silveira A C, Lopes C R. Effects of GHR gene polymorphism on growth an carcass traits in Zebu and crossbred beef cattle[J]. Livestock Sci 2006, 101:94-100.
    [210] Maj A, Jolanta O, Edward D, Lech Z. Association of the polymorphism in the 5’- noncoding region of the bovine growth hormone receptor gene with meat production traits in Polish Black-white cattle[J]. Meat Science 2006, 72:539-544.
    [211] Di Stasio L, Destefanis G, Brugiapaglia A, Albera A, Rolando A. Short communication: Polymorphism of the GHR gene in cattle and relationship with meat production and quality[J]. Anim Genet 2005, 36:138-140.
    [212] Moisio S, Elo K, Kantanen J, Vilkki J. Polymorphism within the 3’flanking region of the bovine growth hormone receptor gene[J]. Anim Genet 1998, 29:55-57.
    [213] Gola M, Doga M, Bonadonna S, Mazziotti G, Vescovi P P, Giustina A. Neuroendocrine tumors secreting growth hormone-releasing hormone: Pathophysiological and clinical aspects[J]. Pituitary 2006, 9:221-229.
    [214] Boulanger L, Lazure C, Lefrancois L, Gaudreau P. Proteolytic degradation of rat growth hormone-releasing factor (1-29) amide in rat pituitary and hypothalamus[J]. Brain Res 1993, 616:39-47.
    [215] Lin-Su K, Wajnrajch M P. Growth hormone releasing hormone(GHRH) and the GHRH receptor[J]. Endocrine and Metabolic Disorders 2002, 3:313-323.
    [216] Gonzalez-Crespo S, Boronat A. Expression of the rat growth hormone-releasing hormone gene in placenta is directed by an alternative promoter[J]. PNAS USA 1991, 88:8749–8753.
    [217] Bagnato A, Moretti C, Ohnishi J, Frajese G, Catt KJ. Expression of the growth hormone-releasing hormone gene and its peptide product in the rat ovary[J]. Endocrinology 1992, 130:1097–1102.
    [218] Stephanou A, Knight R A, Lightman S L. Production of a growth hormone-releasing hormone-like peptide and its mRNA by human lymphocytes[J]. Neuroendocrinology 1991, 53:628–633.
    [219] Frohman L A, Kineman R D, Kamegai J, Park S, Teixeira L T,Coschigano K T, Kopchic J J. Secretagogues and the somatotrope:Signaling and proliferation[J]. Recent Prog Horm Res 2000, 55:269–290.
    [220] Petersenn S, Schulte H M. Structure and function of the growth hormone-releasing hormonereceptor[J]. Vitam Horm 2000, 59:35–69.
    [221] Pommier S A, Dubreuil P, Pelletier G, Gaudreau P, Mowles T F, Brazeau P. Effect of a potent analog of human growth hormone-releasing factor on carcass composition and quality of crossbred market pigs[J]. J Anim Sci 1990, 68:1291-1298.
    [222] Dubreuil P , Petitclerc D , Pelletier G, Gaudreau P, Farmer C, Mowles T F, Brazeau P. Effect of dose and frequency of administration of a potent analog of human growth hormone-releasing factor on hormone secretion and growth in pigs[J]. J Anim Sci 1990, 68:1254-1268.
    [223] Dahl G E , Chapin L T , Moseley W M, Kamdar M B, Tucker H A. Galctopoietic effects of a (1-30) NH2 analog of growth hormone-releasing factor in dairy cows[J]. J Dairy Sci 1994, 77:2518-2525.
    [224] Lapierre H , Pellecier G, Abribat T, Fournier K, Gaudreau P, Brazeau P, Petitclerc D. The effect of feed intake and growth hormone-releasing factor on lactating dairycows[J]. J Dairy Sci 1995, 78:804-815.
    [225] Moody D E, Pomp D, Barendse W. Short communication: restriction fragment length polymorphism in amplification products of the bovine growth hormone-releasing hormone gene[J]. J Anim Sci 1995, 73:3789.
    [226] Parmentier I, Portetelle D, Gengler N, Prandi A, Bertozzi C, Vleurick L, Gilson R, Renaville R. Candidate gene markers associated with somatotropic axis and milk selection[J]. Domestic Animal Endocrinology 1999, 17:139-148.
    [227] Dybus A, Grzesiak W. GHRH/HaeШ gene polymorphism and its associations with milk production traits in Polish Black-and-White cattle[J]. Arch Tierz Dummerstorf 2006, 5:434-438.
    [228] Dybus A, Kmiec M, Sobek Z, Pietrzyk W, Wisniewski B. Associations between polymorphisms of growth hormone releasing hormone(GHRH) and pituitary transcription factor 1(PIT1) genes and production traits of Limousine cattle[J]. Arch Tierz Dummerstorf 2003, 6:527-534.
    [229] Cheong H S, Yoon D H, Kim L H, Park B L, Choi Y H, Chung E R, Cho Y M , Park E W, Cheong I C, Oh S J , Yi S G, Park T, Shin H D. Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle[J]. BMC Genetics 2006, 7:35-40.
    [230] Franco M M, Antunes R C, Silva H D, Goulart L R. Association of PIT1, GH and GHRH polymorphisms with performance and carcass traits in Landrace pigs[J]. J Appl Genet 2005, 46:195-200.
    [231] 孟和, 张永春, 陈卫红, 满初日嘎, 解彦炯, 钱松晋, 丁国臣, 潘玉春. 蒙古牛肌肉生长抑制素基因编码序列检测分析[J]. 上海交通大学学报 2004, 22:339-342.
    [232] 史明艳, 昝林森, 李保兰, 刘霞, 张自富. 牛myostatin基因单核苷酸多态性分析[J]. 中国农学通报 2005, 21:24-25.
    [233] 杨东英. 黄牛生长性能候选基因多态及其与生长发育相关性研究[D]. 博士论文 西北农林科技大学,杨陵:2007.
    [234] Crisa, A, C. Marchitelli, M. C. Savarese, and A. Valentini. Sequence analysis of myostatin promotor in cattle[J]. Cytogenet Genom Res 2003, 102: 48-52.
    [235] 杜荣骞. 生物统计学(第二版)[M]. 高等教育出版社:2004.
    [236] 魏太云,林含新,谢联辉. PCR-SSCP分析条件的优化[J]. 福建农林大学学报 2002,31:22-25.
    [237] Lee S J, McPherron A C. Myostatin and the control of skeletal muscle mass[J]. Curr Opin Genet Dev1999, 9: 604-607.
    [238] Wagner K R, Liu X, Chang X, Allen R E. Muscle regeneration in the prolonged absence of myostatin[J]. PNAS USA 2005, 102:2519-2524.
    [239] Strail A, Kopecny M. Genomic organization, sequence and polymorphism of the porcine myostatin (GDF-8; MSTN) gene[J]. Animal Genetics 1999, 30:462-470.
    [240] 闵令江. 山羊肉用性能候选基因遗传分析及生长发育性状QTL定位[D]. 博士论文 西北农林科技大学,杨陵:2007.
    [241] Grosse W M, Kappes S M, Laegreid W W, Keele J W, Chitko-McKown C G, Heaton M P. Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes[J]. Mamm. Genome 1999, 10:1062–1069.
    [242] Ge W, Davis M E, Hinses H C, Irvin K M. Rapid communication: single nucleotide polymorphisms detected in exon 10 of the bovine growth hormone receptor gene[J]. Journal of Animal Science 2000, 78:2229-2230.
    [243] 赵高峰,陈宏,雷初朝,张春雷,张 丽,蓝贤勇,房兴堂,康湘涛. 秦川牛GHR基因SNPs及其与生长性状关系的研究. 遗传 2007,29(3): 319-323.
    [244] Aggrey S E, Yao J, Sabour M P, Lin C Y, Zadworny D, Hayes J F, Kuhnlein U. Markers within the regulatory region of the growth hormone receptor gene and their association with milk-related traits in Holsteins[J]. Journal of Heredity 1999, 90:148-151.
    [245] Ge W, Davis M E, Hines H C, Irvin K M, Simmen R C M. Association of single nucleotide polymorphisms in the growth hormone and growth hormone receptor genes with blood serum insulin-like growth factor I concentration and growth traits in Angus cattle[J]. Journal of Animal Science 2003, 81:641–648.
    [246] Maj A, Zwierzchowski L. New RFLP-Fnu4HI polymorphism within the 5’-flanking region of the bovine growth hormone receptor gene[J]. Cellular and Molecular Biology Letters 2002, 7(Suppl.):305.
    [247] Blott S, Kim J J, Moisio S, Schmidt-Kuntzel A, Cornet A, Berzi P, et al. Molecular dissection of a quantitative trait locus. A phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition[J]. Genetics 2003, 163:253–266.
    [248] Maj A, Oprzadek J, Oprzadek A, Dymnicki E, Zwierzchowski L. Polymorphism in the 5’-noncoding region of the bovine growth hormone receptor gene and its association with meat production traits in cattle[J]. Animal Research 2004, 53:503-514.
    [249] Maj A, Strza?kowska N, S?oniewski K, Krzyzewski J, Oprzadek J, Zwierzchowski L. Single nucleotide polymorphism (SNP) in the 50-noncoding region of the bovine growth hormone receptor gene and its association with dairy production traits in Polish Black-and-White cattle[J]. Czech Journal of Animal Science 2004, 49:419-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700