延边朝鲜族与汉族2型糖尿病与PPAR-γ2、apM-1和PGC-1基因SNPs相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的2型糖尿病(T2DM)是由于胰岛素抵抗或胰岛素分泌相对不足而导致慢性高血糖的一种常见的具有明显异质性的多基因遗传病,又称为复杂性疾病(complex disease)。遗传因素在T2DM的发生发展中起着重要作用,其发病的遗传特征以多个微效基因(minor gene)和环境因素共同参与其致病过程。
     本课题旨在分析中国延边的朝鲜族与汉族人群T2DM的发生发展的遗传特征和危险因素,并通过检测T2DM的候选基因过氧化物酶体增殖物激活受体-γ2(proxisome proliferators activated receptor-γ2,PPAR-γ2)、脂联素(adipnectin,αpM-1)和过氧化物酶体增殖物激活受体-γ共激活子1(peroxisome proliferator-activated receptor-γcoactivatorl,PGC-1)基因单核苷酸多态性(single nucleotide polymerphism,SNPs)的单体型及连锁不平衡(linkage disequilibrium,LD)与T2DM相关性分析,以期筛选T2DM的危险因子和单体型,为T2DM的诊断、治疗和预防提供理论依据。同时对中国延边的朝鲜族和汉族两个群体的遗传结构和亲缘关系分析提供遗传学上的证据。
     方法本课题分三部分实施。1.采用遗传流行病学手段,随机抽取延边地区朝鲜族和汉族222名T2DM患者作为先证者组,收集其一级亲属为1747人;糖耐量正常(NGT)对照组458名其一级亲属为2261人;以问卷形式填写涵盖一般情况、生活习惯和体征,每个研究对象均绘制系谱,共进行27项实验室检查及体格检查;应用阈值理论估算T2DM的遗传率;利用Li-Mantel-Gsrt法进行同胞的分离比比较,分析T2DM的遗传模式;采用单因素和多因素非条件Logistic回归分析法,筛查T2DM的危险因素。2.通过生物信息学方法在NCBI的dbSNP数据库(Human SNPView)及HapMap数据库查找PPAR-γ2、αpM-1和PGC-1基因的SNP位点,获悉数据库中已构建的单体型及单体型标签SNP(haplotype tag SNP,htSNP),结合文献及研究现状确定本次分析的30个SNPs位点。采用聚合酶链反应-单链构象多态性(PCR-SSCP)技术及直接测序确定基因型,对延边地区散发T2DM患者259例(朝鲜族103人,汉族156人)及对照组221例(朝鲜族108人,汉族113人)进行基因型频率和等位基因频率病例-对照关联研究,采用SHEsis在线软件(http://202.120.7.14/analysis/)进行SNPs的单倍型和连锁不平衡分析,筛查T2DM危险因子。3.利用SNP Assistant version1.0.11(BioData,Ltd)软件在9个T2DM核心家系中进行PPAR-γ2、αpM-1和PGC-1基因8个常见SNPs位点传递不平衡检验(transm-ission-disequilibrium test,TDT),判断各种SNPs与T2DM的连锁关系。
     结果1.遗传流行病学研究结果(1)延边地区朝鲜族、汉族T2DM患者的一级亲属的患病率分别为5.09%和4.82%,均高于对照组人群的一级亲属的患病率1.64%和0.89%(P<0.001),患病危险度(OR)分别增高3.10倍和4.82倍;其中朝鲜族女性患者的一级亲属的患病率(12.39%)明显高于朝鲜族男性、汉族男性及汉族女性患者的一级亲属的患病率(4.67%、4.85%和4.80%)(P<0.05),朝鲜族女性患者的一级亲属患病危险度比其他亲属高2.6倍以上。汉族和朝朝鲜族先证者组一级亲属之间患病率或对照组一级亲属之间患病率均无显著性差异(P=0.056和P=0.809)。(2)延边地区T2DM的总遗传率为39.6%,朝鲜族和汉族的遗传率分别为39.4%和51.6%,汉族高于朝鲜族,但无统计学意义(P>0.05);朝鲜族女性一级亲属遗传率(76.4%)显著高于男性一级亲属遗传率(37.2%)(P<0.001)。(3)T2DM在朝鲜族和汉族同胞中的分离比分别为0.21和0.15,低于0.25,不符合单基因遗传病的特征,支持T2DM多基因遗传模式。(4)在单因素分析基础上进入模型危险因素有糖尿病家族史、腰臀比、高血压、甜食摄入量4个因素与延边地区人群T2DM具有显著性差异(P<0.05)。
     2.T2DM候选基因PPAR-γ2、αpM-1和PGC-1的SNPs单体型连锁不平衡分析结果(1)通过对延边地区朝鲜族和汉族T2DM组和糖耐量正常对照组中PPAR-γ2、αpM-1和PGC-1基因部分扫描共检出15个SNPs位点,既PPAR-γ2基因的Pro12Ala(C>G)和C161T(His477His);αpM-1基因-11391G>A、-11377C>G、-11156insCA、T45G(Gly15Gly)、+276C>A、+349A>G、R221S和H241P;PGC-1基因Thr394Thr(G>A)、IVS2+52C>A、Gly482Ser(G>A)、Thr528Thr(G>A)、Ser577Leu(C>T)。15个SNP各种基因型频率和等位基因频率符合Hardy-Weinberg平衡条件,达到遗传平衡(P>0.05),证明选择的样本具有群体代表。其中等位基因频率低于1%的有4个位点:-11391G>A(A频率为0.009)、R221S(C>A)(A频率为0.003)、H241P(A>C)(C频率为0.0015)、Ser577Ler(C>T)(T频率为0.0013)。本次研究未发现的15个SNPs:PPAR-γ2基因Pro115Gln(C>A)、IVS2+40C>T、Gln438Gln(A>G)、Ser457Ser(A>G)、Leu481Leu(C>T)及αpM-1基因-11426G>A、-11043C>T、G162A(Gly54Val)、+1711C>T、+1795A>G、+1833C>A和PGC-1基因Ser74Leu(C>T)、Leu410Iso(C>A)、Leu438Ser(T>C)、Asp475Asp(C>T)。(2)延边汉族和朝鲜族PPAR-γ2基因Pro12Ala和C161T基因型频率和等位基因频率与T2DM相关性分析结果:①Pro12Ala基因型频率在汉族T2DM组与NGT组分别为PP:0.954和0.960,PA:0.046和0.040,A等位基因频率分别为0.023和0.020,T2DM组与NGT组之间无显著性差异(P>0.05);朝鲜族T2DM组与NGT组PP:0.948和0.955,PA:0.052和0.045,A等位基因频率分别为0.026和0.022,T2DM组与NGT组之间也无显著性差异(P>0.05);延边地区人群中未发现Ala12Ala纯合子:朝鲜族和汉族各种基因型频率和等位基因频率均无显著性差异(P>0.05)。②C161T多态的基因型频率在汉族T2DM组与NGT组分别为:CC:0.615和0.655,CT:0.346和0.345,TT:0.039和0;T等位基因频率分别为0.212和0.172,T2DM组与NGT组之间无显著性差异(P>0.05):朝鲜族T2DM组与NGT组各种基因型频率分别为:CC:0.684和0.611,CT:0.263和0.333,TT:0.053和0.056,T等位基因频率分别为0.184和0.222,T2DM组与NGT组之间无显著性差异(P>0.05);朝鲜族和汉族各种基因型频率和等位基因频率均无显著性差异(P>0.05)。③Pro12Ala与C161T单倍型和连锁不平衡分析结果显示共存在三个单倍型PC、PT和AC,其中AC单倍型在NGT组和T2DM组频率为0和0.059,存在显著差异(P=0.032),危险度OR=0.001(95%CI0.000-0.010),Pro12Ala与C161T为弱连锁不平衡(D'=0.332)。④PPAR-γ2基因Pro12Ala和C161T多态有明显种族差异,但不存在民族或地域差异。(3)αpM-1基因5个SNPs各种基因型频率NGT组与T2DM无显著差异(P>0.05),但不排除样本少的误差;各种等位基因频率在T2DM组与NGT组分别为:-11377C>G的G等位基因频率分别为:0.237与0.225,-11156insCA的发生插入(Ⅰ)等位基因频率分别为0.132和0.158,T45G的G等位基因频率分别为:0.294和0.389,+276G>T的T等位基因频率分别为:0.294和0289,+349A>G的G等位基因频率分别为:0.324和0.389。各种等位基因频率在NGT组与T2DM无显著差异(P>0.05)。(4)延边汉族和朝鲜族PGC-1基因IVS2+52C>A、Thr394Thr(G>A)、Gly482Ser(G>A)、Thr528Thr(G>A)基因型频率和等位基因频率在NGT组与T2DM相关性分析结果:①4个SNPs的各种基因型频率和等位基因频率分布在朝鲜族和汉族之间无显著性差异(P>0.05)。②4个SNPs的基因型频率及等位基因频率在NGT组和T2DM组间的分布也无显著性差异(P>0.05),结果显示PGC-1基因IVS2+52C>A、Thr394Thr(G>A)、Gly482Ser(G>A)、Thr528Thr(G>A)单个SNP均与T2DM发生无相关性。③4个SNPs共存在8种常见的单体型:AAAA、AAGG、AGAA、AGGG、CAAA、CAGG、CGAA和CGGG;汉族人群不存在单体型CAAA,朝鲜族不存在单体型AAAA;单体型CAAA仅在朝鲜族NGT组存在,此单体型是否是朝鲜族正常人群特异的单体型的结论,还需扩大样本定论;同时还发现单体型CAGG在汉族T2DM组显著高于NGT组(P=0.007,OR=0.128(95%CI 0.025-0.666),此结果暗示CAGG可能是汉族的危险单倍型。④4个SNPs两两位点联锁不平衡分析结果显示Gly482Ser与Thr528Thr呈完全连锁不平衡,提示Gly482Ser可作为单倍型的标签SNP,无需再检测Thr528Thr。⑤PGC-1基因Thr394Thr与Gly482Ser联合基因型分析结果显示在NGT组与T2DM组共存在8种联合基因型形式:AA-AA(0与8.8);AA-GA(0与2.9);AA-GG(7.7与2.9);GA-GA(23.1与11.8);GA-GG(11.5与20.6);GG-AA(11.5与20.6);GG-GA(26.9与26.5);GG-GG(19.2与5.9);8种联合基型均与T2DM发生无相关性(P>0.05)。⑥PGC-1基因3个突变热区的SNPs IVS2+52C>A、Gly482Ser和Thr528Thr多态性与其他种族人群比较存在差异性。⑦IVS2+52C>A不同基因型与各种生理生化指标分析结果:在汉族的T2DM组携带CA+AA基因型人群BMI显著高于CC基因型人((P<0.05),而其他的指标如WHR、FPG、TC、TG、HDL-C及LDL-C在两种基因型之间无显著差异(P>0.05):在NGT组携带CC基因型人群FPG明显高于CA+AA基因型人群(P=0.007),同时CC基因型人群HDL-C明显低于CA+AA基因型人群(P=0.011),而在其他的指标如BMI、WHR、TC、TG及LDL-C两种基因型之间无显著差异(P>0.05)。在朝鲜族NGT组携带CC基因型人比携带CA+AA基因型人LDL-C显著增高(P<0.05),而其他的指标如BMI、WHR、FPG、TC、TG、HDL-C在两种基因型之间无显著差异(P>0.05);在T2DM组各种基因型与BMI、WHR、FPG、TC、TG、HDL-C及LDL-C无显著差异(P>0.05)。(5)PGC-1基因IVS2+52C>A和Gly482Ser与PPAR-γ2基因Pro12Ala联合基因型分析结果:在本研究的NGT组和2DM组人群中共存在16种联合基因型形式。在汉族人群NGT组与T2DM组之间均无显著差异(P>0.05),其中较为常见的联合基因型(出现频率超过5%以上)有7种,依次为CC-GA-PA(25.7%与22.3%)、CA-GA-PP(20.0%与12.3%)、CA-GG-PP(15.7%与17.6%)、CC-GG-PP(12.9%与14.9%)、CC-AA-PP(8.6%与8.8%)、AA-GA-PP(5.7%与8.8%)AA-GG-PP(5.7%与5.4%);在朝鲜族人群较为常见的联合基因型(出现频率超过5%以上)也有7种,依次为CC-GA-PA(29.1%与10.9%)、CC-GG-PP(19.8%与21.7%)、CA-GA-PP(17.4%与15.2%)、CA-GG-PP(8.1%与9.8%)、CC-AA-PP(8.6%与8.8%)、CA-AA-PP(7.0%与4.3%)、AA-GA-PP(4.7%与7.6%),其中CA-GG-PP联合基因型频率NGT组较T2DM组显著增高(P=0.012),表明此联合基因型可能是延边朝鲜族人群的保护型基因型,此基因型在汉族人群虽然NGT组较T2DM组有增高趋势,但无统计学意义(P=0.663),在T2DM组的汉族较朝鲜族有增高趋势(基因型频率分别为22.3%和10.9%),但也无统计学意义(P=0.058),其他联合基因型在朝鲜族人群中均未发现与T2DM组存在显著性差异(P>0.05)。
     3.利用传递不平衡(TDT)检测了九个T2DM核心家庭PPAR-γ2、αpM-1和PGC-1基因8个SNPs(-11377 C>G、-11156 insCA、T45G、+276C>A、+349A>G及PGC-1的IVS2+52C>A、Gly482Ser、Thr528Thr)结果:不支持此8个位点与延边朝鲜族和汉族2型糖尿病相连锁;初步筛查到由PGC-1基因IVS2+52C>A、Gly482Ser和Thr528Thr多态构成的一个危险单倍型AAA,提示具有家族史的个体罹患2型糖尿病危险度提高5.6倍,但是,由于我们收集的核心家庭较少,还不能定论,有待于扩大收集的家系,继续深入研究。
     结论1.确定延边地区2型糖尿病主要危险因素是糖尿病家族史、腰臀比、高血压、甜食摄入量,支持2型糖尿病是多基因遗传模式。2.首次对中国延边朝鲜族和汉族PPAR-γ2、αpM-1和PGC-1三个T2DM候选基因进行部分基因片断扫描,检测到15个SNPs:Pro12Ala、C161T、-11391G>A、-11377C>G、-11156insCA、T45G(Gly15Gly)、+276C>A、+349A>G、R221S、H241P、Thr394Thr、IVS2+52C>A、Gly482Ser、Thr528Thr、Ser577Leu;证实αpM-1基因的R221S、H241P、-11391G>A和PGC-1基因的Ser577Leu为罕见基因;鉴定可能不属于本地区的5个SNPs:αpM-1基因+1711C>T、+1795A>G、+1833C>A和PGC-1基因Ser74Leu和Asp475Asp。尚未发现的SNPs为PPAR-γ2基因的Pro115Gln、Gln438Gln、Ser457Ser、Leu481Leu、IVS2+40C>T,αpM-1基因-11426G>A、-11043C>T、G 162A(Gly54Val)和PGC-1基因Ser74Leu、Leu410Iso、Leu438Ser。3.15个SNPs的基因型频率和等位基因频率在朝鲜族和汉族之间无差异。中国延边地区的朝鲜族和汉族基因频率不存在民族差异,遗传结构基本相同,亲缘性较近。但存在种族和地域差异。4.PGC-1基因IVS2+52C>A和Gly482Ser以及PPAR-γ2基因C161T多态可能通过影响脂质代谢来触发2型糖尿病发生。可能是延边朝鲜族和汉族2型糖尿病危险因子。5.PPAR-γ2基因C161T、αpM-1基因-11377C>G、-11156InsCA、T45G、+276C>A、+349A>G和PGC-1基因IVS2+52C>A、Gly482Ser(G>A)8个标记位点未与2型糖尿病连锁。
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a common polygenichereditary disease characterized as chronic hyperglycemia due to insulin resistance orsecretion decreases. It is also called complex disease. Hereditary factors play animportant role in the pathogenesis of T2DM. Both multiple minor genes andenvironment factors are responsible for the development of the disease. The purpose ofthis paper is to explore the risk factors and hereditary features of T2DM in Korean andHan ethnic nationality of Yanbian area in China, via the determination of the singlenucleotide polymorphisms (SNPs) of candidate genes of T2DM, the proxisomeproliferators activated receptor-γ, (PPAR-γ2), the adiopentin (αpM-1) and theperoxisome proliferator-activated receptor-γcoactivatorl (PGC-1), furthermore toanalyze their haplotypes and allele linkage disequilibrium.
     METHODS Part 1: A frequency matched case-control study was used base onthe epidemiological survey of T2DM in urban community population of Yanbian area inChina. 222 T2DM patients were taken randomly as case-group and 1747 as first-degreerelatives. Compared with case-group, 458 people having normal glucose tolerance wereselected as control-group and 2261 as first-degree relatives. The natural condition,living habit, patient history, symptoms, physical symptom, twenty items laboratoryexamination and genealogy atlas of all the persons tested were carried out. Falconer wasapplied to estimate heretability, and Li-Mantel-Gsrt to determine segregation ratio. Thehigh risk factors of T2DM were analyzed by unconditional univariate and multivariateLogistic regression. Part 2: The locations of genes of PPAR-γ2,αpM-1 and PGC-1were screened in Human SNPView of NCBI database and MapHap database using bioinformation methods. The 30 allele sites in this study were selected based on thehaplotype and haplotype tag SNP (htSNP) constructed in the database, as well asreported pappers. The genetic polymorphisms were determined by polymerase chainreaction-single strand conformational polymorphism (PCR-SSCP) and DNA sequencing.Case-contrast analysis was used to investigate the association between genepolymorphisms and gene frequencies in 269 T2DM patients (103 Korean and 156Chinese) and in 221 control subjects (108 Korean and 113 Chinese). The haplotype andlinkage disequilibrium of SNPs were analyzed using the SHEsis software on line(http://202.120.7.14/) in order to screen the risk factors of T2DM. Part 3: The SNPstransmission disequilibrium test (TDT) of 8 common sites of PPAR-γ2,αpM-1 andPGC-1 was conducted in the nuclear families of T2DM patients by using AssistantVersion 10.11 software (BioData, Ltd) in order to analyze the linkage between SNPsand T2DM.
     RESULTS Part 1: The prevalence rates of the T2DM first-degree relatives were5.09% and 4.82% respectively in Yanbian Korean and Han ethnic nationalities,significantly higher than those in control-group, which were 1.64% and 0.89% (P<0.001). Prevalence relative risks (RR) were respectively raised 3.10 and 4.82 times.Among them, the first-degree relatives prevalence rate in Korean femalepatients(12.39%) was significantly higher than that in Korean male, Han ethnicnationality (4.67%, 4.85% and 4.80% respectively, P<0.05). The first-degree relativesRR in Korean female patients were 2.6 times more than that in other relationships.Statistical results indicated the prevalence rate of T2DM was not significantly differentbetween Korean and Han ethnic nationality (P=0.809, 0.056). It illustrated nonationality difference in Yanbian, but having an evidently hereditary tendency. Totalprevalence rate of T2DM was 39.6% in Yanbian. Prevalence rate of Korean and Hanethnic nationalities were 39.4% and 51.6% respectively. Han ethnic nationality washigher than Korean nationality, but no significant difference. The first-degree relatives prevalence rate in Korean female (76.4%) was significantly higher than that in male(37.2%, P<0.001). It pointed out that the first-degree relatives' prevalence rate ofT2DM in Korean female had a hereditary liability than other people. The segregationratio of T2DM in Korean and Han ethnic nationality in Yanbian were 0.21 and 0.15,which were lower than 0.25, and not meet the features of single gene inheritance disease,and support the character of polygenic diseases. Family history of T2DM, hypertension,waist-to-hip ratio (WHR), intaking of sweet food were the major risk factors of T2DM.
     Part 2:15 gene polymorphisms were found from PPAR-γ2,αpM-1 and PGC-1 byPCR-SSCP and DNA sequencing. They were Pro12Ala and C161T (His477His) inPPAR-γ2; -11391 G>A, -11377C>G, -11156 insCA, T45G (Glyl5Gly), +276C>A,+349A>G, R221S and H241P inαpM-1; Thr394Thr, IVS2+52C>A, Gly482Ser(G>A),Thr528Thr(G>A), Ser577Leu (C>T) in PGC-1. Whereas, 15 SNPs were not detected inthis study. They were Pro115Gln, Gln438Gln, Ser457Ser, Leu481Leu, IVS2+40C>T,-11426G>A, -11043C>T, +162G>A(Gly54Val), +1711C>T, +1795 A>G, +1833 C>A,Ser74Leu, Leu 410 Iso, Leu 438 Ser and Ser577Leu. The rare genes were -11391G>A(A frequency 0.009), Ler475SerC>T (T frequency 0.0013), R221SC>A (A frequency0.003), H241P A>C (C frequency 0.0015). The results meet the Hardy-Weinberg law.The genotype frequency and allele frequency of Pro12Ala in PPAR-γ2 in Han T2DMand NGT groups were PP: 0.954 and 0.960; PA: 0.046 and 0.040; A frequency 0.023and 0.020. However, those in Korean T2DM and NGT groups were PP: 0.948 and 0.955;PA: 0.052 and 0.045; A frequency 0.026 and 0.022. No difference was found betweenT2DM and NGT groups. The genotype frequency and allele frequency of 5 SNPs inαpM-1 in T2DM and NGT groups were G in -11377C>G: 0.237 and 0.225; I in-11156insCA: 0.132 and 0.158; G in T45G: 0.294 and 0.389; T in +276G>T: 0.294 and0.289; G in +349A>G: 0.324 and 0.389. There was no difference. We also failed to findthe difference in the genes IVS2+52C>A, Thr394Thr, Gly482Ser(G>A) and Thr528Thr(G>A) in PGC-1 between Han and Korean. The combined genotypes CC-GA-PA, CA-GA-PP, CA-GG-PP, CC-GG-PP and CC-AA-PP in IVS2+52C>A and Gly482Ser ofPGC-1 as well as in Prol2Ala of PPAR-γ2 appeared in high frequency (over 5%).
     Part 3: The 8 SNPs(-11377C>G, -11156 insCA, Gly15Gly (T45G), +276C>A,+349A>G, IVS2+52 C>A, Gly482Ser and Thr528Thr from PPAR-γ2, apM-1 andPGC-1 were not associated with T2DM in Han and Korean as showed in TDT.
     CONCLUSION (1) The major risk factors of T2DM in Yanbian area are family history,hypertension, WHR and intaking of sweet food. The hereditary character of T2DM ispolygenic. (2) 15 SNPs: Prol2Ala, C161T, -11391G>A, -11377C>G, -11156insCA, T45G(Gly15Gly), +276C>A, +349A>G, R221S, H241P, Thr394Thr, IVS2+52C>A,Gly482Ser(G>A), Thr528Thr(G>A) and Ser577Leu(C>T) in PPAR-γ2, apM-1 andPGC-1 related with T2DM were detected in Han and Korean in Yanbian of China. (3)There were no differences in genotype frequency and allele frequency of 15 SNPsabove between Han and Korean nationalities in Yanbian of China. (4) Thepolymorphisms of IVS2+52C>A and Gly482Ser in PGC-1, C161T in PPAR-γ2 wereassociated with T2DM, possibly by interfering with lipid metabolism. (5) Thegenotypes C161T, -11377C>G, -11156InsCA, T45G, +276C>A, +349A>G. IVS2+52C>A and Gly482Ser(G>A) in PPAR-γ2, apM-1 and PGC-1 were not associated withT2DM in Yanbian Han and Korean patients.
引文
[1] Rich SS. Mapping genes in diabetes: Genetic epidemiological perspective [J]. Diabetes, 1990, 39(11): 1315~1319.
    [2] Taylor J G. Using genetic variation to study htmaan disease[J]. Trends in Molecular Medicine, 2001, 7(11): 507-512.
    [3] Zhang W,Collins A,Maniatis N,et al.Properties of linkage disequili brium(LD)maps[J]. Psoc Natl Acad Sci USA,2002,99: 17004-17007
    [4] Tabor HK.Candidate-gene approaches for studying complex genetic traits:practical considerations[J].Nature Reviews,2002,3:1-7
    [5] Zondervan KT. Cardon LR. The complex interplay among factors that influence allelic association[J]. Nat Rev Genet, 2004, 5(2): 89-100.
    [6] Weiss KM, Clark AG. Linkage disequilibrium and the mapping of complex human traits[J]. Trends Genet, 2002, 18(1): 19-24.
    [7] Nowomy P. SNP armies to diss∞t human traits[J]. Current Opinion in Neurobiogy.2001, 11: 637-641.
    [8] Kruglyak I. Prospects for whole-genome linkage disequilibrium mapping of common disease genes[J]. Nat Genet, 1999, 22(2): 139-144.
    [9] Reich N, Cargill M, Polk S, et al. Linkage disequiibrium in the human genome [J]. Nature, 2001, 411(6834): 199-204.
    [10] Akey J, Jin L, Xiong M. Haplotypes VS single marker linkage disequilibrium tests: what do we gain?. EurJHum Genet, 2001, 9 (4): 291-300.
    [11] Zollner S, von Haeseler A. A coalescent approach to study linkage disequilubrium between single nucleotide polymorphisms[J]. Am J Hum Genet, 2000, 66(2): 615-628.
    [12] Consortium TIH.A haplotypemap of the human genome. Nature, 2005,437(7063); 1299-1320.
    [13] Consortium TIH. The international hapmap project.Nature,2003, 426(6968): 789-796.
    [14] Temelkova-Kurktschiev T, Hanefeld M, ChinettiG, et al. Alal2Ala genotype of the peroxisome proliferator-activated receptor gamma-2 protects against atherosclerosis. J Clin Endocr Metab, 2004, 89: 4238-4242.
    [15] Scherer TE, Williams, Fogliano M, et al. A novel serum protein similar to Clq, producedexclusively in adipocytes. Biol Chem, 1995, 270(45): 26746-26749.
    [16] Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes:close association with insulin resistance and hyporinsulinemis[J].J Clin Endocrinol Metob,2001, 86:1930-1935.
    [17] Norman RA, Thompson DB, Foroud T, et al. Bennett PH. Bogardus C, Ravussin E Genome wide search for genes in fluencing percent body fat in Pima Indians: suggestive linkage at chromosome 11q21-q22. Am JHum Genet, 1997, 60(1): 166-173.
    [18] Zhang XY, Chen LH, Guan YF. PPAR family and its relationship to metabolic syndrome. ProgPhysiolSci, 2005, 36(1): 6-12.
    [19] Kissebah AH, Sonnenberg GE, Myklebust J, et al. Quantitative trait locus on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA, 2000, 97: 14478-14483.
    [20] Busfield F, Dufy DL, Kesting JB, et al. Shaw J A genomewide searchfortype 2diabetes-susceptibility genes in Indigenous Australians. Am J Hum Genet, 2002, 70(2): 349-357.
    [21] Vionnet N, Hani E-H, Dupont S, et al. Genomewide search for type 2 diabetes-susceptibility genes in FrenchWhites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27··qter and independent replication of a type 2-diabetes locus on chromosome lq21·q24. Am J Hum Genet, 2000, 67(6): 1470-1480.
    [22] Pratley RE, Thompson DB, Prochazka M, et al. An autosomal genomic scan for loci linked to prediabetic phenotypes in Pima Indians. J Clin Invest, 1998, 101 (8): 1757-1764.
    [23] Perusse L, Ricr T,Chagnon YC, et al. A genome wide scan for abdominal fat assed by computed tomography in the Quebecfamily study.Diabetes,,2001,50:614-21.
    [24] The International HapMap Consortium. A haplotype map of thehuman genome. Nature, 2005. 437(7063): 1299~1320
    [25] Hailer D A, de Jager P L. Applying a new generation of geneticmaps to understand human inflammatory disease. Nat Rev Immunol, 2005, 5(1): 83~91
    [26] Salisbury B A, Pungliya M, Choi J Y, et al. SNP and haplotypevariation in the human genome. M utat Res, 2003, 526(1—2): 53-56
    [27] Carlson C S, Eberle M A, Rieder M J, et al. Selecting a maximally in formative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet, 2004, 74(1): 106~120
    [28] 杜若甫.中国人群体遗传学.科学出版社,北京.2004:761-799.
    [29] Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endorinol Metab, 2001,86(5): 1930-1935.
    [1] O'Rahilly S,Patel P,Lehmann O J, et al. Multipoint linkage analysis of the short arm of chromosome 11 in non-insulin dependent diabetes including maturity onset diabetes of youth. Hum. Genet, 1992, 89:207-212 (PubMed ID: 1587533).
    [2] Marz W, Nauck M, Hoffmann MM, et al. G(-30)A polymorphism in the pancreatic promoter of the glucokinase gene associated with angiographic coronary artery disease and type 2 diabetes mellitus. Circulation 2004,109:2844-2849 (Pub Med ID: 15173029).
    [3] Edghill EL, Bingham C, Ellard S, et al.Mutations in hepatocyte nuclear factor-1-beta and their related phenotypes. J. Med. Genet. 2006, 43: 84-90(PubMed ID: 15930087)
    [4] Fajans SS, Bell GI, Polonsky KS, et al. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. New Eng. J. Med, 2001, 345: 971-980(PubMed ID: 11575290)
    [5] Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, et al.Role of transcription factor KLF11 and its diabetes-associated gene variants, in pancreatic beta cell function. Proc. Nat. Acad. Sci. 2005, 102:4807-4812(PubMed ID: 15774581)
    [6] Goto Y, Nonaka I, Horai S, et al. A mutation in the tRNA-leu (UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature, 1990, 348: 651-653(PubMed ID: 2102678)
    [7] alpietro CD, Briuglia S, Merlino MV, et aI. A mitochondrial DNA mutation (A3243G mtDNA) in a family with cyclic vomiting. Europ. J. Pediat. 2003, 162: 727-728(PubMed ID: 12905015)
    [8] Li H, Isomaa B, Taskinen MR, et al. Consequences of a family history of type 1 and type 2 diabetes on the phenotype of patients with type 2 diabetes. Diabetes Care. 2000, 23(5): 589-594.
    [9] Pannacciulli N, De Pergola G, Ciccone M et al. Effect of family history of type 2 diabetes on the intima-media thickness of the common carotid artery in normal-weight, overweight, and obese glucose-tolerant young adults. Diabetes Care. 2003, 26(4): 1230-1234.
    [10] Mohan V, Shanthirani CS, Deepa R. Glucose intolerance (diabetes and IGT) in a selected South Indian population with special reference to family history, obesity and lifestyle factors--the Chennai Urban Population Study (CUPS 14). J Assoc Physicians India, 2003, 51:771-777.
    [11] 沈洪兵,徐耀初,喻荣彬等.T2DM遗传病因的流行病学研究.中国公共卫生,1999,15(6)492-494.
    [12] 杨新军,王建华,王正伦等.NIDDM病人空腹血糖遗传度分析.遗传.1996,18(4):23-25
    [13] 欧阳风秀,王文英,沈福民等.非胰岛素依赖型糖尿病的遗传流行病学研究.中华预防医学杂志,2000,34(2):81-82
    [14] 彭惠民,张素华,李晨钟等.家族性Ⅱ型糖尿病核心家系的遗传方式分析.中华流行病学杂志,2000,21(4):270-272
    [15] 王劲松,周玲,成金罗等.家族高发性T2DM的遗传模式研究[J].遗传,2003,25(6):637-640.
    [16] 杜若莆.中国人群体遗传学.科学出版社,北京.2004:761-799
    [17] World Health Organization. Definition, diagnosis and classification of diabetes mellitus. Report of a WHO consulation. Geneva. World Health Organization, 1999.
    [18] 张树华,于路,邱鸿鑫等.家族性非胰岛素依赖型糖尿病患者的家系调查.中华医学杂志,1996,76(6):435-439
    [19] 高剑波,成金罗,沈默宇等.家族性T2DM162个家系调查研究[J].实用临床医 药杂志.2004,8(4):22-23,29.
    [20] Stern MP, Mitchell BD, Blangero J,et al.Evidence for a major gen foe type Ⅱ diabetes and linkage analyses with selected candidate gees in Mexican-Americans[J]. Diabetes, 1996, 45(5):563-568.
    [21] Hanson RL, Knowler WC. Analytic strategies to detect linkage to a common aisorder with genetically determined age of onset: diabetes mellitus in Pima lndians[J].Genet-Epidemiol. 1998,15(3):299-315
    [22] 陈玉,周玲,徐耀初等.T2DM与遗传和环境因素相互关系的研究.中华预防医学杂志.2002,36(3):191-194.
    [23] 吴怡,赵涵芳.T2DM相关基因的研究进展[J].上海第二医科大学学报,2005,25(6):634-637.
    [24] 钱荣立.关于糖尿病的新诊断标准与分型[J].中国糖尿病杂志.2000,8(1):5-6.
    [25] 富琳岩,王丽敏,胡海燕等.达斡尔族人群T2DM危险因素分析.中国公共卫生.2005,21(6):731-731.
    [26] 唐晓君,卢仙娥,李革等.T2DM危险因素分析[J].中国公共卫生.2004,20(1):74-75.
    [27] 王国洪,任汉强,谢利平.T2DM与遗传和环境因素的关系[J].中国预防医学杂志,2005,6(2):137-139.
    [28] Wing R R, Goldstein M C, Acton K J et al. Behavioral science research in diabetes: lifestyle changes related to obesity, eating behavior, and physical activity [J]. Diabetes Care, 2004, 24(1): 117-123.
    [1] Norman RA, Thompson DB, Foroud T, et al. Bennett PH. Bogardus C, Ravussin E Genome wide search for genes in fluencing percent body fat in Pima Indians: suggestive linkage at chromosome 11q21-q22. Am J Hum Genet, 1997, 60(1): 166-173.
    [2] Busfield F, Dufy DL, Kesting JB, et al. Shaw J A genomewide search for type 2diabetes-susceptibility genes in Indigenous Australians. Am J Hum Genet, 2002, 70(2): 349-357.
    [3] Vionnet N, Hani E-H, Dupont S, et al. Genomewide search for type2 diabetes.susceptibility genes in FrenchWhites: evidence for a novel susceptibility locus for early(o|¨)nset diabetes on chromosome 3q27-qter and independent replication of a type2 diabetes locus on chromosome lq21 .q24. Am J Hum Genet, 2000, 67(6): 1470-1480.
    [4] Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome[J]. Nature, 2001, 411(6834): 199-204.
    [5] Ristow M, Muller-Wieland D, Pfeiffer A, et al. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. New Eng J Med, 1998, 339: 953-959.
    [6] Rich SS. Mapping genes in diabetes: Genetic epidemiologieal perspective. Diabetes, 1990, 39(11): 1315-1319.
    [7] Nowomy P. SNP armies to dissoot human traits[J]. Current Opinion in Neurobiogy. 2001, 11: 637-641.
    [8] Akey J, Jin L, Xiong M. Haplotypes VS single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet, 2001, 9 (4), 291-300.
    [9] 杜若甫.中国人群体遗传学.科学出版社,北京.2004:761-799.
    [10] Nishizawa H, Shimomura I, Kishida K, et al. Androgens decrease plasma adiponevtin, an insulin -sensitizing adipocyte-derived. Diabetes, 2002, 51(90): 2734-2741
    [11] 汝颖,王长江,王佑民等.PCR-SSCP技术检测2型糖尿病患者脂联素基因3号外显子编码区突变.安徽医科大学学报,2004,39(6):436-438
    [12] Vasseur F, Helbecque N, Dina C, et al. Single nucleotide polymorphism haplotypea in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet, 2002, 11: 2607-2614
    [13] 徐星培,程定珍,王增慧等,中国8个名族HLA多态性的血清学研究.人类学学报,1993,12(2):157-165
    [14] Greene ME, Blumberg B, McBride OW, et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 1995,4: 281-299.
    [15] Werman A, Hollenberg A, Solanes G, et al. Ligand-independent activation domain in the Nterminus of peroxisome proliferator-activated receptort(PPARγ). Differential activity of PPARγ1and-2 isoforms and influence of insulin. J Biol Chem, 1997, 272: 20230-20235.
    [16] Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisom eproliferator-activa-ted receptor gene expression in human tissue. Effects of obesity, weight loss and regulation by insulin and glucocorticoid. J Clin Invest, 1997, 99: 2416~2422.
    [17] Zhang XY, Chen LH, Guan YF. PPAR family and its relationship to metabolic syndrome. Prog Physiol Sci, 2005, 36(1): 6-12.
    [18] Yenc J, Beamer BA, Negri C, et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma)gene in diabetic Caucasians: identification of aPro12Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun, 1997, 241(2): 270-274.
    [19] Cock TA, Back J, Elefteriou F, et al. Enhanced bone formation in lipodystrophic PPARγ~(hyp/hyp) mice relocates haematopoiesis to the spleen. EMBO reports, 2004, 5(10): 1007-1012.
    [20] Savage DB, Tan GD, Acerini CL, Jebb, et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes, 2003, 52:910-917.
    [21] Kusari J, Verma US, Buse JB, et al. Analysis of the gene sequences of the insulin receptor and the insulin-sensitive glucose transporter (GLUT-4) in patients with common-type non-insulin-dependent diabetes mellitus. J Clin Invest, 1991, 88: 1323-1330.
    [22] 赵艳红,丛祥风,陈曦.PPARγ2基因C1431T多态与肥胖的关联研究.中国 分子心脏病学杂志,2003,3(3):140-143.
    [23] Doney A S, Fischer B, Cecil J E, et al. Association of the Prol2Ala and C1 143T variants of PPARG and their haplotypes with susce ptibility to type 2 diabetes. Diabetologia, 2004, 47(3): 555—558.
    [24] Mancini FP, Vaecaro O, Sabatino L, et al. Prol2Ala sub. stitution in the perexisome preliferator activated receptorgamma2 is not associated with type 2 diabetes. Diabetes, 1999, 48: 1466-1468.
    [25] Beamer BA, Yen CJ, Andersen RE, et al. Assoctatioa oftheProl2Ala variantin the perexisome preliferator-aetivated receptorγ2(PpAR-γ2)gene with obesity in two Caucasian populations. Diabetes, 1998,47: 1806-1808.
    [26] Lee BC, Lee HJ, Chung JH. Peroxisome proliferator-activate dreceptor-gamma2 Pro l2Ala polymorphism is associated with reduced risk for ischemie stroke with type 2 diabetes. Neurosci Lett, 2006, 410 (2), 141-145.
    [27] Ek J, Andersen G, Urhammer SA et al. Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type Ⅱ diabetes mellitus. Diabetologia, 2001, 44(12): 2220-2226.
    [28] Mori Y, Kim-muloyalna H, Katakura T, et al. Effect of the Prol2Ala variant of the human peroxismne proliferator activated receptor-γ gene on adiposity, fat distribution, and insulin sensitivity in Japanese men. Biochem Biophys Res Commun, 1998, 251: 195-198.
    [29] Sramkova D, Kunesov R, Hainer V, et al. Is a Prol2Ata polymorphism of the PPARγ2 gene related to obesity and type 2 diabetes mellitus in the Czech population. Ann N Y Acad Sci, 2002, 967: 265-273
    [30] Scherer TE, Williams, Fogliano M, et al. A novel serum protein similar to Clq, producedexclusively in adipoeytes. Biol Chem, 1995, 270(45): 26746-26749.
    [31] Maeda K, Okubo K, Shimomura I, et al. eDNA Cloning and expression of a novel ddipose specific collagen-like factor, apM1 (Adipose Most abundant Gene transcript 1). Biochem Biophys Res Commun, 1996, 221 (2)286-289.
    [32] Saito K, Tobe T, Minoshima S, et al. Organization of the gene for gelatin-binding protein (GBP28). Gene, 1999, 229(1-2): 67-73.
    [33] Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endorinol Metab, 2001, 86(5):1930-1935.
    [34] Kissebah AH, Sonnenberg GE, Myklebust J, et al. Quantitative trait IOCi on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA, 2000, 97: 14478-14483.
    [35] Busfield F,Dufy DL,Kesting JB,et al.Shaw J A genomewide searchfortype 2diab-etessusceptibility genes in Indigenous Australians.Am J Hum Genet,2002,70(2):349-57.
    [36] Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endorinol Metab, 2001, 86(5):1930-1935.
    [37] Kissebah AH, Sonnenberg GE, Myklebust J, et al. Quantitative trait lOCi on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA, 2000, 97: 14478-14483.
    [38] Gu HF, Abulaiti A, Ostenson CG, et al. Single NucleotidePolymorphisms in the Proximal Promoter Region of the Adiponectin(APM1)Gene Are Associated With Type 2 Diabetesin Swedish Caucasians. Diabetes, 2004, 53(11): 31-35.
    [39] Stumvoll M, Tschritter O, Fritsehe A, et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes, 2002, 51: 37-41.
    [40] Filippi E, Sentinelli F, Trisehitta V, et al. Association of the human adiponectin gene and insulin resistance. EurJHum Genet, 2004, 12. 199-205.
    [41] Menzaghi C, Tonino E, Rosa DP, et al. A Haplotype at the Adiponectin Locus Is Associated With Obesity and Other Features of the Insulin Resistance Syndrome. Diabetes, 2002, 51: 2325-2328.
    [42] Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypesin the both proximal promoter and exon 3 of theAPM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Human Molecular Genetics, 2002, 11(21): 2607-2614.
    [43] Kondo H, Shimomura I, M atsukawa Y, et al. Association of adiponectin mutation with type 2diabetes. Diabetes, 2002, 51: 2325-2328.
    [44] Puigserver P, Wu Z, Park CW, et al. Cold-inducible coaofivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6): 829-839.
    [45] Pratley RE, Thompson DB, Prochazka M, et al. An autosomal genomic scan for loci linked to prediabetic phenotypes in Pima Indians. J Clin Invest, 1998, 101 (8): 1757-1764.
    [46] Perusse L, Rice T, Chagnon YC, et al. A genome wide scan for abdominal fat assessed by computed tomography in the Quebec family study. Diabetes, 2001, 50: 614-21.
    [47] Muller YL, Bogardus C, Pedersen O, et al. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes. 2003, 52(3): 895-898.
    [48] 路文盛,程桦,黄勤,等.2型糖尿病PGC-1α基因单核苷酸多态性筛查及Gly482Ser变异分析.中国糖尿病杂志.2006,14(3):192-194.
    [49] Leipold H, Knoefler M, Gruber C, et al. Peroxisome proliferator-activated receptor gamma coactivator-1alpha gene variations are not associated with gestational diabetes mellitus. J Soc Gynecol Investig, 2006, 13(2): 104-107.
    [50] Sookoian S, Garcia SI, Porto PI, et al. Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha may be associated with features of the metabolic syndrome in adolescents. J Mol Endocrinol, 2005, 35(2): 373-380
    [51] Ghoussaini M, Meyre D, Lobbens S, et al. Implication of the Prol2Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. Medical Genetics, 2005, 6:11.
    [52] 傅茂,程桦,李秀钧,等.过氧化物酶增殖体激活受体γ2基因Prol2Ala变异与2型糖尿病的关系.中华医学遗传学杂志,2002,19:234-238.
    [53] Byung Cheol Lee, Hye-jung Lee b, Joo-Ho Chungc. Peroxisome proliferator-activated receptor-γ2 Prol2Ala polymorphism is associated with reduced risk for ischemic stroke with type 2 diabetes. Neuroscience Letters, 2006,410 () 141-145.
    [54] Xing Li Wang, Janine Oosterhof, Natalia Duarte. Peroxisome proliferator-activated receptor γC161→T polymorphism and coronary artery disease. Cardiovascular Research, 1999, 44: 588-594.
    [55] 闰振成,祝之明,沈成义,等.代谢综合征PPARγC-161T基因多态性与颈动脉损害的相关研究.中华医学杂志,2004,84(7):543-547.
    [56] A.S. F.Doney, B,Fischer JE. Cecil K,Boylan FE et al. A. Palmer. Association of the Prol2Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes. Diabetologia,2004,47:555-558.
    [57] 王传现,翟风英,迟玉聚,等.PPAR-γ的Prol2Ala变异与肥胖、糖尿病的关联研究.卫生研究,2004,33(3):317-320.
    [58] Linda Kao WH,,Josef Coresh,,Alan R,et al. Prol2Ala of the peroxisome proliferators-activated receptor-γ2 gene is associated with lower serum insulin levels in nonobese african Americarts. Diabetes,2003,52:1568-1572.
    [59] Aline Meirhaeghe, Dominique Cottel, Philippe Amouyel, et al. Association between peroxisome proliferator-activated receptor γ, haplotypes and the metabolic syndrome in French men and women. Diabetes,2005,54:3043-3048.
    [1] Velho G, Froguel P. Genetic determinants of non-insulin-de pendent diabetes mellitus., strategies andrecentresults. Diabetes-Metab, 1997, 23(1): 7-17.
    [2] Stumvoll M, Tschritter O, Fritsehe A, et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes, 2002, 51: 37-41.
    [3] Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypesin the both proximal promoter and exon 3 of theAPM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Human Molecular Genetics, 2002, 11(21): 2607-2614.
    [4] Lazzeroni LC. A conditioml inference framework for extending the transmission disequilibrium test. Hum Hered, 1998, 48: 67-81.
    [5] Gambaro G. Association studies of genetic polymorphisms and complex disturbance. The Lancet, 2000, 355(1): 308-311.
    [6] 王艳波,于永春,李智,等.中国上海地区汉族人PGC-1a基因多态性与2型糖尿病相关性研究.中华医学遗传学杂志.2005,4(22):453-456.
    [7] Akey J, Jin L, Xiong M. Haplotypes VS single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet, 2001, 9 (4): 291-300.
    [8] Zollner S, von Haeseler A. A coalescent approach to study linkage disequilubrium between single nucleotide polymorphisms. Am J Hum Genet, 2000, 66(2): 615-628.
    [9] Ek J, Andersen G, Urhammer SA et al. Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type Ⅱ diabetes mellitus. Diabetologia, 2001,44(12): 2220-2226.
    [10] Muller YL, Bogardus C, Pedersen O, et al. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes. 2003, 52(3): 895-898.
    [11] Fan Z, Pollin TI, Gong D, et al. Association of an intronic variant of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) with decreased body mass index (BMI) in Caucasians and interaction with the Trp64Arg variant of the β-3 adrenergic receptor. Am J Hum Genet, 2000, 67: 234.
    [1] Rich SS. Mapping genes in diabetes: Genetic epidemiological perspective. Diabetes, 1990, 39(11): 1315-1319.
    [2] O'Rahilly S, Patel P, Lehmann OJ,et al. Multipoint linkage analysis of the short arm of chromosome 11 in non-insulin dependent diabetes including maturity onset diabetes of youth. Hum Genet, 1992, 89: 207-212.
    [3] Matsutani A,Janssen R,Donis-Keller H,et al. A polymorphic (CA) repeat element maps the human glucokinase gene (GCK) to chromosome 7p. Genomics, 1992, 12: 319-325.
    [4] Marz W, Nauck M,Hoffmann MM,et al. G(-30)A polymorphism in the pancreatic promoter of the glucokinase gene associated with angiographic coronary artery disease and type 2 diabetes mellitus. Circulation, 2004, 109: 2844-2849.
    [5] Yamagata K, Oda N, Kalsaki PJ,et al. Mutations in the hepatocyte nuclear factor-1-alpha gene in maturity-onset diabetes of the young (MODY3). Nature, 1996, 384: 455-457.
    [6] Fiedorek FT, Jr, Kay ES. Mapping of the insulin promoter factor 1 gene (Ipf1) to distal mouse chromosome 5. Genomics, 1995, 28:581-584.
    [7] Bach I,Mattei MG,Cereghini Set al. Two members of an HNF1 homeoprotein family are expressed in human liver. Nucleic Acids Res. 1991, 19: 3553-3559.
    [8] Edghill EL, Bingham C, Ellard S et al. Mutations in hepatocyte nuclear factor-1-beta and their related phenotypes. J Med Genet, 2006, 43: 84-90.
    [9] Fajans SS, Bell GI, Polonsky KS et al. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. New Eng J Med, 2001, 345: 971-980.
    [10] Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V et al. Role of transcript -tion factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Na. Acad Sci, 2005, 102:4807-4812.
    [11] Raeder H, Johansson, S, Holm PI et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nature Genet, 2006, 38: 54-62.
    [12] Fajans S, Bell GI, Polonsky KS. Molecular mechanisms and clinical patho-physiology of maturity-onset diabetes of the young. New Eng J Med, 2001, 345: 971-980.
    [13] Goto Y, Nonaka I, Horai S et al. A mutation in the tRNA-leu (UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature, 1990, 348: 651-653.
    [14] Ballinger SW, Shoffner JM, Hedaya EV et al. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nature Genet, 1992, 1: 11-15.
    [15] Van den Ouweland JMW, Lemkes HHPJ, Ruitenbeek W et al. Mutation in mitochondrial tRNA (leu-UUR) gene in a large pedigree with maternally transmitted type Ⅱ diabetes mellitus and deafness. Nature Genet, 1992, 1: 368-371.
    [16] Reardon W, Ross RJM, Sweeney MG et al. Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet, 1992, 340: 1376-1379.
    [17] Greene ME, Blumberg B, McBride OW,et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 1995,4:281-299.
    [18] 't Hart LM, Jansen JJ, Lemkes HH et al. Heteroplasmy levels of a mitochondrial gene mutation associated with diabetes mellitus decrease in leucocyte DNA upon aging. Hum Mutat, 1996, 7: 193-197.
    [19] Velho G,Froguel P. Genetic determinants of non-insulin-de pendent diabetes mellitus: strategies and recent results. Diabetes-Metab, 1997, 23(1): 7-17.
    [20] 沈洪兵,徐耀初,喻荣彬等.2型糖尿病遗传病因的流行病学研究.中国公共卫 生,1999,15(6):492-494.
    [21] 郝超,姜维平,王亚龙等.Ⅱ型糖尿病家族聚集性的研究.中华流行病学杂志,1999,20(6):360-363.
    [22] 江三多.医学遗传数理统计方法.科学出版社,1998,131-144.
    [23] 王劲松,周玲,成金罗等.家族高发性2型糖尿病的遗传模式研究.遗传,2003,15(6):637-640.
    [24] 向红丁,吴纬.1996年全国糖尿病流行病学特点基线调查报告.中国糖尿病杂志,1998,6(3):131-133.
    [25] 梁晓萍,韩全水,文锦丽等.超重和肥胖人群血清脂联素水平与2型糖尿病的关系.中国糖尿病杂志,2006,14(5):335-337.
    [26] Zimmet PZ,Mc Carty DJ,de Courten MP.The global epidemiology of noninsulin-dependent diabetes mellitus and the metabolic syndrome. Diabetes Complications, 1997, 11 (2): 60-68.
    [27] Rader DJ.Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol, 2003, 92(sl): 42-49.
    [28] World Health Organization.Definition,diagnosis and classification of diabetes mellitus and its complication. WHO/NCD/NCS. 1999, 31-32.
    [29] Expert Panel on Detection.Evaluation,and Treatment of High Blood Cholesterol in Adults.Executive summary of the Third Report of the National Cholesterol Education Program (NCEP)expert panel on detection,evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel HI).JAMA, 2001, 285: 2486-2497.
    [30] The European Group for the Study of Insulin Resistance(EGIR).Frequency of the WHO metabolic syndrome in European cohorts,and an alternative definition of an insulin resistance syndrome.Diabetes M etab, 2002, 2: 354-376.
    [31] Alexander CM, Landsman PB, Teutsch SM et al. NCEP defined metabolic syndrome, diabetes,and prevalence of coronary heart disease among NHANES HI participants age 50 yearsand older. Diabetes, 2003, 52: 1210-1214.
    [32] 中华医学会糖尿病学分会代谢综合征研究协作组.中华医学会糖尿病学分 会关于代谢综合征的建议.中华糖尿病杂志,2004,12(3):156-161.
    [33] Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia, 2003, 46:1594-1603.
    [34] Taylor J G. Using genetic variation to study htmaan disease. Trends in Molecular Medicine, 2001, 7(11): 507-512.
    [35] Zhang W, Collins A, Maniatis N et al. Properties of linkage disequili brium (LD) maps. Psoc Natl Acad Sci USA, 2002, 99: 17004-17007
    [36] Kong A, Cox NJ. Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet. 1997, 61: 1179-1788.
    [37] Lander E, Kruglyak L. Genetic dissection of: omplex traits: guidelines for interpreting and reporting linkage results. Nat Genet, 1995, 11 (5): 241-247.
    [38] Naito HK, Ward KM, Schmitz G et al. New approaches to the use of li poproteine lectrophoresisin the clinicalla boratory. In: Rifai N, WamickGR, Dominiczak MH, eds Handbook of lipoprotein testing. Washington DC: AACC press, 1997. 477-495.
    [39] Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273(5281): 1516-1517.
    [40] Tabor HK. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Reviews, 2002, 3: 1-7.
    [41] Pritchard JK, Przeorski M. Linkage disequilibrium in htrmails: models and data. Am J Hum Cenet, 2001, 69: 1-14.
    [42] Ardlie K, Liu-Cordero SN, Eberle MA et al. Lower than expected linkage disequilibrium between tighdy linked markers in humans suggests a role for gene conversion. Am J Hum Genet, 2001, 69(3): 582-589.
    [43] Stephens JC, Schneider JA, Tanguay DA, et al. Haplotype variation and linkage disequilibrium in 313 human genes.Science, 2001, 293(5529): 489-93.
    [44] Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association. Nat Rev Genet, 2004, 5(2): 89-100.
    [45] Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome.Nat Rev Genet, 2002, 3(4): 299-309.
    [46] Weiss KM,Clark AG. Linkage disequilibrium and the mapping of complex human traits.Trends Genet, 2002, 18(1): 19-24.
    [47] Marth G,Yeh R,Vfinton M,et al.Single-nucleotide polymarphisms in the public domain: how useful are they?.Nat Cenet,2001,27:371-372.
    [48] Shastry BS. P alleles in hmnan disease and evulotion.J Hum Cenet, 2002, 47: 561-566.
    [49] Wang DG.Fan JB,Siao CJ, et al. Large-scale identification,mapping,and genotyping of single-nuelcotide polymorphism in the human enome. Science, 1998, 280: 1077-1082.
    [50] Edwards J,Mogg R. Plant genotypingby analysis of single nucleotide polymmphisms. In:Henry R.J.(eds), Plant Genotyping: The DNA Fingerp tinting of Plant.CAB International, 2001. 1-13.
    [51] Taylor JG.Using genetic variation to study human disturbance.Trends in Molecular Medicine,2001,(11): 47-51.
    [52] Gambaro G.Association studies of genetic polymorphisms and complex disturbance.The Lancet,2000, 355(1):308-311.
    [53] Nowomy P.SNP armies to diss∞t human traits.Current Opinion in Neurobiogy. 2001,11:637-641.
    [54] Bernhard M,Schaaf FB. Pneumococcal septic shock is associated with the interleukin-10-1082 gene promoter polymorphism. Am J Respir Crit Care Med,2003,168:476-480.
    [55] Lazzeroni LC. A conditioml inference framework for extending the transmission disequilibrium test.Hum Hered, 1998,48:67-81.
    [56] Kruglyak I. Prospects for whole-genome linkage disequilibrium mapping of common disease genes.Nat Genet, 1999,22(2):139-144.
    [57] Reich N,Cargill M,Polk S,et al.Linkage disequiibrium in the human genome.Nature,2001,411 (6834): 199-204.
    [58] Akey J,Jin L,Xiong M.Haplotypes VS single marker linkage disequilibrium tests:what do we gain? Eur J Hum Genet,2001,9 (4):291-300.
    [59] Zollner S,von Haeseler A.A coalescent approach to study linkage disequilubrium between single nucleotide polymorphisms.Am J Hum Genet,2000,66(2):615-628.
    [60] DalyM J, RiouxJ D, SchafnerS F, et al. High-resolution haplotype structure in the human genome. Nat Genet, 2001, 29(2): 229-232.
    [61] Consortium TIH. A haplotypemap of the human genome. Nature, 2005, 437(7063): 1299-1320.
    [62] Consortium TIH. The international hapmap project. Nature, 2003, 426(6968): 789-796.
    [63] Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science. 2001, 294(5547): 1719-1723.
    [64] Martin ER, Lai EH, Gilbert JR, et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Gene, 2000, 67(2): 383-394.
    [65] Wang N, Akey JM, Zhang K, et al. Distribution of recombination crossovers and theorigin of haplotype blocks: the interplay of population history,recombination, and mutation. Am J Hum Genet, 2002, 71: 1227-1234.
    [66] Sesti G. Searching for type2 diabetes gene prospects pharmacotherapy. Pharmacogenomics J,2002,2:25-29.
    [67] Elbein SC,Sorensen LK,Schumacher MC. Methionine for valine substitution in exon 17 of the insulin receptor gene in a pedigree with familial NIDDM. Diabetes, 1993,42: 429-434.
    [68] 't Hart LM,Stolk RP,Dekker JM,et al.Prevalence of variants in candidate genes for type 2 diabetes mellitus in the Netherlands: the Rotterdam study and the Hoorn study. J Clin Endocr Metab, 1999, 84:1002-1006.
    [69] Foti D,Chiefari E,Fedele M,et al.Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nature Med, 2005, 11: 765-773.
    [70] Moller DE, Cohen O,YamaguchiY,et al.Prevalence of mutations in the insulin receptor gene in subjects with features of the type A syndrome of insulin resistance. Diabetes, 1994,43: 247-255.
    [71] Takahashi Y,Kadowaki H,Ando A,et al. Two aberrant splicings caused by mutations in the insulin receptor gene in cultured lymphocytes from a patient with Rabson-Mendenhall's syndrome. J Clin Invest. 1998, 101: 588-594.
    [72] Clausen JO, Hansen T, Bjorbaek C, et al. Insulin resistance: interactions between obesity and a common variant of insulin receptor substrate-1. Lancet, 1995, 346: 397-402.
    [73] Porzio O, Federici M, Hribal ML, et al. The gly972-to-arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic beta cells. J Clin Invest, 1999, 104: 357-364.
    [74] Marini MA, Frontoni S, Mineo D, et al. The arg(972) variant in insulin receptor substrate-1 is associated with an atherogenic profile in offspring of type 2 diabetic patients. J Clin Endocr Metab, 2003, 88: 3368-3371.
    [75] Federici M, Pandolfi A, De Filippis EA, et al. G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation, 2004, 109: 399-405.
    [76] Perticone F, Sciacqua A, Scozzafava A, et al. Impaired endothelial function in never-treated hypertensive subjects carrying the arg972 polymorphism in the insulin receptor substrate-1 gene. J Clin Endocr Metab, 2004, 89: 3606-3609.
    [77] Esposito DL, Li Y, Vanni C, et al.A novel T608R missense mutation in insulin receptor substrate-1 identified in a subject with type 2 diabetes impairs metabolic insulin signaling. J Clin Endocr Metab, 2003, 88: 1468-1475.
    [78] Mammarella S, Romano F, Di Valerio A, et al.Interaction between the G1057D variant of IRS-2 and overweight in the pathogenesis of type 2 diabetes. Hum Molec Genet, 2000, 9:2517-2521.
    [79] Fritsche A, Madaus A, Renn W, et al.The prevalent Gly1057Asp poly morphism in the insulin receptor substrate-2 gene is not associated with impaired insulin secretion. J Clin Endocr Metab, 2001, 86: 4822-4825.
    [80] Lautier C, Ait El Mkadem S, Renard E, et al.Complex haplotypes of IRS2 gene are associated with severe obesity and reveal heterogeneity in the effect of gly1057asp mutation. Hum Genet, 2003, 113: 34-43.
    [81] D'Alfonso R, Marini MA, Frittitta L, et al.Polymorphisms of the insulin receptor substrate-2 in patients with type 2 diabetes. J Clin Endocr Metab, 2003, 88: 317-322.
    [82] Almind K, Delahaye L, Hansen T, et al.Characterization of the Met326Ile variant of phosphatidylinositol 3-kinase p85-alpha. Proc Nat Acad Sci USA, 2002, 99: 2124-2128.
    [83] Hansen L,Zethelius B,Berglund L,et al.In vitro and in vivo studies of a naturally occurring variant of the human p85alpha regulatory subunit of the phosphoinositide 3-kinase:inh-ibition of protein kinase B and relationships with type 2 diabetes,insulin secretio,glucose disappearance constant,and insulin sensitivity.Diabetes,2001,50:690-693.
    [84] Jackson RS, Creemers JWM, Ohagi S, et al.Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature. Genet, 1997, 16: 303-306.
    [85] Gu HF,Almgren P,Lindholm E,et al.Association between the human glycoprotein PC-1 gene and elevated glucose and insulin levels in a paired-sibling analysis.Diabetes, 2000,49:1601.
    [86] 王国英,张路,等.己糖激酶Ⅱ基因多态性与2型糖尿病相关性研究.中国实用内科杂志,2002,22(9):536-537.
    [87] Aubo C, Senti M, Marrugat J, el al. Risk of myocardial infarction associated with Gln-Arg192 polymorphism in the human paraoronase human paraoxonase gene and diabetes mellitus. The Regrcor Invesugators art J. 2000, 21: 33-38.
    [88] Mackness b,durrington p N,Abuashia B,et al.low paraoxonase activity in type Ⅱ diabetes mellituscomplicated by retinOpathy.Clinical Science,2000,98(3): ⅰ. 355-363.
    [89] Hegele RA, Connelly PW, Scherer SW, et al. Paraoxonase-2 gene (PON2) G148 variant associated with elevated fasting plasma glucose in noninsulin-dependent diabetes mellitus. J Clin Endocr Metab, 1997,82: 3373-3377.
    [90] Sanghera DK,Aston CE,Saha N, et al.DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease. Am JHum Genet, 1998,62: 36-44.
    [91] Deeb SS, Fajas L, Nemoto M, el al. A Pro2Ala substitution in PPAR-γ2 associated with decreased receptor activity, lowered body mass index and improved insulin sensitivity. Nat Genet, 1998, 20: 284-287.
    [92] Lee BC, Lee HJ, Chung JH, et al. Peroxisome proliferator-activated receptor-2 Prol2Ala polymorphism is associated with reduced risk for ischemic stroke with type 2 diabetes. Neuroscience Letters. 2006, 410: 141-145.
    [93] Tavares V, Hirata RD, Roarigues AC,et al. Association between Prol2Ala polymorphism of the PPAR-gamma2 gene and insulin sensitivity in Brazilian patients with type-2 diabetes mellitus. Diabetes Obes Metab. 2005, 7(5): 605-11.
    [94] Menzaghi C, Ercolino T, Salvemini L, et al.Lack of evidence for interaction between APMI and PPARgamma2 genes in mod ulaling insulin sensitivity in nondiabetic Caucasians from Italy. J Intern Med, 2005, 257:315-317.
    [95] Kolehmainen M, Uusitupa MIJ, Alhava E, et al.Effect of the pro12ala polymorphism in the peroxisome proliferator-activated receptor (PPAR) gamma-2 gene on the expression of PPAR-gamma target genes in adipose tissue of massively obese subjects. J Clin Endocr 4,1crab, 2003, 88: 1717-1722.
    [96] Ristow M, Muller-Wieland D, Pfeiffer A, el al.Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. New Eng J Med, 1998, 339: 953-959.
    [97] Wang XL, Oosterhof J, Duarte N, el al.Peroxisome proliferator-activated receptor gamma C161-T polymorphism and coronary artery disease. Cardiov asc Res, 1999, 44: 588-594.
    [98] Sarraf P, Mueller E, Smith WM, et al. Loss-of-function mutations in PPAR-gamma associated with human colon cancer. Molec Cell, 1999, 3: 799-804.
    [99] Savage DB, Tan GD, Acerini CL, Jebb, el al.Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes, 2003, 52:910-917.
    [100] Meirhaeghe A, Fajas L, Helbecque N, et al.A genetic polymorphism of the peroxisome proliferator-activated receptor gamma gene influences plasma leptin levels in obese tumors. Hum Molec Gene, 1998, 7: 435-440.
    [101] Ogawa S, Urano T, Hosoi T, et al.Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPAR-gamma expression in osteoblasts. Biochem Biophys Res Commun, 1999, 260: 122-126.
    [102] Song J, Sakatsume M, Narita I, et al.Peroxisome proliferator-activated receptor gamma C161T polymorphisms and survival of Japanese patients with immunoglobulin A nephropathy. Clin. Genet, 2003, 64: 398-403(ubMed ID: 14616762)
    [103] Masud S, Ye S. Effect of the peroxisome proliferator activated rece ptor-gamma gene prol2ala variant on body mass index: a recta-analysis. J Med Genet, 2003, 40: 773-780.
    [104] Orio F, Jr Matarese G, Di Biase S, et al.Exon 6 and 2 peroxisome prolif erator-activated receptor-gamma polymorphisms in polycystic ovary syndrome. J Clin Endocr Metab, 2003, 88: 5887-5892.
    [105] Hegele RA, Cao H. Harris SB, et al.Peroxisome proliferator-activated receptor-gamma2 P12A and type 2 diabetes in Canadian Oji-Cree. J Clin Endoer Metab, 2000, 85:2014-2019.
    [106] Agarwal AK, Garg A.A novel heterozygous mutation in peroxisome prolif erators-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocr Metab, 2002, 87:408-411.
    [107] Andersen G,Rose CS,Hamid YH,et al.Genctic variation ofthe GLUT10 glucose transporter (SLC2A10)and relationshipsto type 2 diabetes and intermediary traits.Diabetes, 2003, 52:245-248.
    [108] Mattevi VS,Zembrzuski VM, Hutz MH. A resistin gene polymorphism is associated with body mass index in women. Hum Genet,2004,115: 208-212.
    [109] Gu HF,Abulaiti A,Ostenson CG,et al.Single NucleotidePolymorphisms in the Proximal Promoter Region of the Adiponectin(APM1)Gene Are Associated With Type 2 Diabetesin Swedish Caucasians.Diabetes,2004,53(11):31-35.
    [110] Kondo H, Iichiro S, Yuko M, et al. Association of Genetic variation of the Adiponectin Gene Are With Body fad Distribution and Carotid Atherosclerosis in Japanese Obese Subjects. J Atheroscler Thromb,2007,14(11): 19-26.
    [111] Hara K, Boutin P, Mori Y,et al.Genetic Variation in the Gene Encoding Adiponectin Is Associated With an Increased Risk of Type 2 Diabetes in the Japanese Population.Diabetes,2002,51:536-540.
    [112] Menzaghi C, Tonino E, Rosa DP, et al.A Haplotype at the Adiponectin Locus Is Associated With Obesity and Other Features of the Insulin Resistance Syndrome. Diabetes, 2002,51: 2325-2328.
    [113] Lacquemant C, Froguel P, Lobbens S,et al. Fhe adiponectin:tin gene SNP5 is associated with coronary artery diseasP in type 2 (noninsulin dependent) diabetes mellitus. Diabet Med.2004, 21:776-81.
    [114] Kondo H,Shimomura I,M atsukawa Y,et al.Association of adiponectin mutation with type 2diabetes.Diabetes,2002,51:2325-2328.
    [115] Zietz B,Barth N,Schislmerich J,et al.Gly15Gly polymorphism within the human adipocyte-specific apM-1 gene but not Tyrl11His polymorphism is associated with higher levels of cholesterol and LDL-cholesterol in caucasian patients with type 2 diabetes.EXP Clin Endocrinol Diabetes,2001, 109(6): 320-325.
    [116] Ek J, Andersen G, Urhammer SA et al. Mutation analysis of peroxisome proliferator-activated receptor-gamlna coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type Ⅱ diabetes mellitus. Diabetologia, 2001, 44(12): 2220-2226.
    [117] Muller YL, Bogardus C, Pedersen O, et al. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes. 2003, 52(3): 895-898.
    [118] 王艳波,于永春,李智,等.中国上海地区汉族人PGC-1α基因多态性与2型糖尿病相关性研究.中华医学遗传学杂志.2005,4(22):453-456.
    [119] 路文盛,程桦,黄勤,等.2型糖尿病PGC-1α基因单核苷酸多态性筛查及Gly482Ser变异分析.中国糖尿病杂志.2006,14(3):192-194.
    [120] Sookoian S, Garcia SI, Porto PI, et al. Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha may be associated with features of the metabolic syndrome in adolescents. J Mol Endocrinol, 2005, 35(2): 373-380.
    [121] Vimaleswaran KS, Radha V, Ghosh S, et al. Peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians. Diabet Med, 2005, 22(11): 1516-1521.
    [122] Leipold H, Knoefler M, Gruber C, et al. Peroxisome proliferator-aetivated receptor gamma coactivator-1alpha gene variations are not associated with gestational diabetes mellitus. J Soc Gynecol Investig, 2006, 13(2): 104-107.
    [123] Hara K, Tobe K, Okada T, et al. A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type Ⅱ diabetes. Diabetologia, 2002, 45(5): 740-743.
    [124] Andrulionyte L, Zacharova J, Chiasson JL, et al. Common polymorphisms of the PPAR-gamma2 (Prol2Ala) and PGC-1alpha (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial. Diabetologia, 2004, 47(12): 2176-2184.
    [125] Andrulionyte L, Peltola P, Chiasson JL, et al. Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Prol2Ala substitution of. PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes, 2006, 55(7): 2148-2152.
    [126] Vits L,Beckers D,Craen M,et al.Identification of novel and recurrent glucokinase mutations in Belgian and Luxembourg maturity onset diabetes of the young patients. Clin Genet, 2006, 70: 355-359.
    [127] Hager J, Hansen L,Vaisse C,et al. A missense mutation in the glucagon receptor gene is associated with non-insulin-dependent diabetes mellitus. Nature Genet, 1995,9: 299-304.
    [128] Sakagashira S,Sanke T,Hanabusa T,et al. M issense m utation of Amylin gene (S20G) in Japanese NIDDM patients.Diabets,1996,45:1279-1281.
    [129] Oppert JM, Vohl MC,Chagnon M,et al. DNA polymorphism in the uncoupling protein (UCP) gene and human body fat. Int J Obes Relat Metab Disord, 1994, 18: 526-531.
    [130] Nagai, N, Sakane, N, Ueno, LM,et al. The -3826 A-G variant of the uncoupling protein-1 gene diminishes postprandial thermogenesis after a high fat meal in healthy boys. J Clin Endocr Metab. 2003,88:5661-5667.
    [131] Esterbauer H,Schneitler C,Oberkofler H,et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nature Genet, 2001,28: 178-183.
    [132] Brown AM, Willi SM, Argyropoulos G,et al. A novel missense mutation, R70W, in the human uncoupling protein 3 gene in a family with type 2 diabetes. Hum Murat, 1999,13: 508.
    [133] Barrio R, Bellanne-Chantelot C, Moreno JC,et al. Nine novel mutatins in maturity-onset diabetes of the young (MODY) candidate genes in 22 Spanish families. J Clin Endocr Metab, 2002.87: 2532-2539.
    [134] Ranade K, Shue WH,Hung YJ,et al.The glycine allele of a glycine/arginine polymorphism in the beta2 adrenergic receptor gene is associated with essential hypertension in a population of Chinese origin.Am J Hypertens, 2001, 14(12): 1196-2000.
    [135] Okumura MH,Ogawa Y.The polymorphism of tile beta3 adrenergic,receptor gene is associated with reduced low-density lipoprotein patticlesize. Metabolism, 2003,52(3):356-359.
    [136] Daimon M,Kido T,Baba M, et al.Association ofthe ABCA1 gene pol ymerphisms with type 2 DM in a Japanese population.Bioehem Biophys Res Commun, 05, 9(1):205-210.
    [137] Wildhage I,Trusheim H,Goke B, et al.Gene expression of the human glucagon-like peptide-1 receptor is regulated by Sp1 and Sp3. Endocrinology, 1999, 0: 624-631.
    [138] Stoffel M,Espinosa R, Le Beau.et al.Human glucagon-like peptide-1 receptor gene: localization to chromosome band 6p21 by fluorescence in situ hybridization and linkage of a highly polymorphic simple tandem repeat DNA polymorphism to other markers on chromosome 6. Diabetes, 1993,42: 1215-1218.
    [139] Perfetti R,Merkel P.Glucagonlike peptide-1:a major regulator of pancreatic B cell function.Eur J Endocrinol,2000,143:717-725.
    [140] Scrocchi LA,Brown WJ,MaClusky N,et al.Glucose intolerance but normal satiety in mice with a null mutation in the glucagonlike peptide-1 receptor gene. Nat Med, 1996,2:1254-1258.
    [141] 郑异,骆天红,赵萸等.上海地区胰升糖素样肽1受体基因多态性与2型糖尿病相关.中华内分泌代谢杂志,2005,21(6):511-513.
    [142] Fan YS, Eddy RL,Byers MG,et al.Assignment of genes encoding three human glucose transporter/transporter-like proteins (GLUT4, GLUT5 and GLUT6) to chromosomes 17, 1 and 5, respectively. Cytogenet Cell Genet,989,51: 997.
    [143] Bell GI,Kayano T,Buse JB,et.al.Molecular biology of mammalian glucose transporters. Diabetes Care, 1990,13:198-208.
    [144] Kanda H,Tamori Y,Shinoda H,et al.Adipocytes from Muncl 8c-null mice show increased sensitivity to insulin-stimulated GLUT4 externalization. J Clin Invest, 2005,115: 291-301.
    [145] Kusari J,Verma US,Buse JB,et al.Analysis of the gene sequences of the insulin receptor and the insulin-sensitive glucose transporter (GLUT-4) in patients with common-type non-insulin-dependent diabetes mellitus. J Clin Invest, 1991,88: 1323-1330.
    [146] Ranilly S,Choi WH,Tmev RC.Detection of m utations in insulin receptor gene in N IDDM patients by analysis of singl-strandedconformation polymorphism. Diabetes,1991, 40:777-779.
    [147] Issemen I, Green S.Activation of a member of the steroid her mone receptor superfamily by peroxisome proliferators.Nature, 1990,347(6294):645-650.
    [148] Temelkova-Kurktschiev T, Hanefeld M,Chinetti G,et al.Ala12Ala genotype of the peroxisome proliferator-activated receptor gamma-2 protects against atherosclerosis. J Clin Endocr Metab, 2004, 89: 4238-4242.
    [149] Werman A, Hollenberg A,Solanes G, et a. Ligand-independent activation domain in the Nterminus of peroxisome proliferator-activated receptorγ(PPARγ). Differential activity of PPARγ1and-2 isoforms and influence of insulin. J Biol Chem, 1997,272:20230-20235.
    [150] Vidal-Puig AJ, Considine RV,Jimenez-Linan M,et al.Peroxisom eprolif erator-activa-ted receptor gene expression in human tissue.Effects of obesity, weight loss and regulation by insulin and glucocorticoid.J Clin Invest, 1997, 99: 2416~2422.
    [151] Zhang XY,Chen LH,Guan YF.PPAR family and its relationship to metabolic syndrome. Prog Physiol Sci, 2005, 36(1):6-12.
    [152] Norman RA,Thompson DB,Foroud T,et al.Bennett PH. Bogardus C, Ravussin E Genome wide search for genes in fluencing percent body fat in Pima Indians: suggestive linkage at chromosome 11q21-q22.Am J Hum Genet, 1997, 60(1): 166-173.
    [153] Cock TA, Back J,Elefteriou F, et al. Enhanced bone formation in lipodystrophic PPARγ~(hyp/hyp)mice relocates haematopoiesis to the spleen. EMBO reports, 2004, 5(10): 1007-1012.
    [154] Akune T,Ohba S,Kamekura S, et al. PPAR-gamma insufficiency cnhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest, 2004.113: 846-855.
    [155] Hill M,Young M,McCurdy C,et al.Decreased expression of murine PPARγ in adipose ti ssue during endotoxinemia.Endo crinology, 1997,138:3073-3076.
    [156] Hofmann C,Lorenz K,Braithwaite S,et al. Altered gene expression for tumor necrosis factor-a and its receptor during drug and dietary modulation of insulin resistance.Endocrinology, 1994,134:264-270.
    [157] Yenc J,Beamer BA,Negri C, et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of aPro12Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun, 1997, 241(2): 270-274.
    [158] 赵艳红,丛祥风,陈曦.PPARγ2基因C1431T多态与肥胖的关联研究.中国分子心脏病学杂志,2003,3(3):140-143.
    [159] Doney A S,Fischer B,Cecil J E, et al.Association of the Prol2Ala and C1 143T variants of PPARG and their haplotypes with susceptibility to type 2 diabetes. Diabetologia, 2004,47(3): 555—558.
    [160] Rhee EJ, Oh KW, Lee WY, et al. Effects of two common polymorphisms of peroxisome proliferator-activated receptor-gamma gene on metabolic syndrome. Arch Med Res, 2006, 37(1): 86-89.
    [161] Mancini FP, Vaccaro O, Sabatino L, et al. Pro12Ala sub. stitution in the perexisome preliferator activated receptorgamma2 is not associated with type 2 diabetes. Diabetes, 1999, 48: 1466-1468.
    [162] Ek J, Andersen G, Urhammer SA, et al. Studies of Pro12Ala polymorphism of the perexisome preliferator-activated receptorγ2(PPAR-γ2)gene in relation to insulin sensitivity among glucoe tolerant Caucasians. Diabetologia. 2001, 44(12): 1170-1176.
    [163] Beamer BA, Yen CJ, Andersen RE, et al. Assoctatioa of thePro12Ala variantin the perexisome preliferator-activated receptorγ2(PPAR-γ2)gene with obesity in two Caucasian populations: Diabetes, 1998, 47: 1806-1808.
    [164] Moil Y, Kim-muloyalna H, Katakura T,et al.Effect of the Prol2Ala variant of the human peroxismne proliferator activated receptor-γ gene on adiposity. fat distribution,and insulin sensitivity in Japanese men.Biochem Biophys Res Commun, 1998, 251: 195-198.
    [165] Sramkova D, Kunesov R, Hainer V,et al. Is a Prol2Ata polymorphism of the PPARγ2 gene related to obesity and type 2 diabetes mellitus in the Czech population. Ann N Y Acad Sci, 2002, 967:265-273.
    [166] Meirhaeghe A,Amouyel P.Impact of genetic variation of PPARγ. Mol Gene tMetab,2004,83(1-2):93-102.
    [167] Masud S,Ye S. Effect of the peroxisome proliferator activated receptor-gamma gene Pro 1 2Ala variant on body mass index:a recta-analysis. J Med Genet, 2003, 40(10): 773-780.
    [168] Puigserver P,Wu Z,Park CW,et al. Cold-inducible coaofivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6):829-839.
    [169] Esterbauer H, Oberkofler H, Krempler F, et al. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics, 1999, 62: 98-102.
    [170] International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 2004 ,431 (7011), 931-945.
    [171] Pratley RE, Thompson DB, Prochazka M, et al. An autosomal genomic scan for loci linked to prediabetic phenotypes in Pima Indians. J Clin Invest, 1998, 101(8): 1757-1764.
    [172] Perusse L,Rice T, Chagnon YC, et al. A genome wide scan for abdominal fat assessed by computed tomography in the Quebec family study. Diabetes, 2001, 50: 614-21.
    [173] Heery DM, Kalkhoven E, Hoare S. et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 1997, 387(6634): 733-736.
    [174] Monsalve M, Wu Z, Adelmant G, et al. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell, 2000, 6(2): 307-316.
    [175] Orphanides G, Reinberg D. A unified theory ofgene expression. Cell, 2002, 108 (4): 439-451.
    [176] Puigserver P, Wu Z, Spiegelman BM, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92: 829-839.
    [177] Puigserver P, Adelmant G, Wu Z, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science, 1999, 286(5443): 1368-1371.
    [178] Lin J, Puigserver P, Donovan J, et al. Peroxisome proliferator-activated receptor gamma coactivator lbeta (PGC-lbeta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 2002. 277(3): 1645-1648.
    [179] Pratley RE, Thompson DB, Prochazka M, et al. An autosomal genomic scan for loci linked to prediabetic phenotypcs in Pima Indians. J Clin Invest, 1998, 101(8): 1757-1764.
    [180] Lacqunant C, Chikri M, Boutin P. No association be tween the G482S polymorphism of the proliferator-activated receptor-gamma coactlvator-1 (PGC1) gene and Type Ⅱ diabetes in French Caucasia[J]. Diabetol, 2002, 45: 602-603.
    [181] Leipold H, Knoefler M, Gruber C, et al. Peroxisome proliferator-activated receptor gamma coactivator-lalpha gone variations are not associated with gestational diabetes mellitus. J Soc Gynecol Investig, 2006. 13(2): 104-107.
    [182] Sookoian S, Garcia SI, Porto PI, et al. Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha inay be associated with features of the metabolic syndrome in adolescents. J Mol Endocrinol, 2005, 35(2): 373-380
    [183] Fan Z, Pollin TI, Gong D, et al. Association of an intronic variant of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) with decreased body mass index (BMI) in Caucasians and interaction with the Trp64Arg variant of the β-3 adrenergic receptor. Am J Hum Genet, 2000, 67: 234.
    [184] Kusari J, Verma US, Buse JB, Henry. et al. Analysis of the gene sequences of the insulin receptor and the insulin-sensitive glucose transporter (GLUT-4) in patients with common-type non-insulin-dependent diabetes mellitus. J Clin Invest, 1991, 88: 1323-1330.
    [185] Lee BC, Lee HJ, Chung JH. Peroxisome prolifcrator-activate dreceptor- gamma2 Prol2Ala polymorphism is associated with reduced risk for ischemic stroke with type 2 diabetes. Neurosci Lett, 2006,410 (2), 141-145.
    [186] Scherer TE, Williams, Fogliano M, et al. A novel serum protein similar to C1q, producedexclusively in adipocytes. Biol Chem, 1995, 270(45): 26746-26749.
    [187] Maeda K, Okubo K, Shimomura I, et al. cDNA Cloning and expression of a novel ddipose specific collagen-like factor, apM1 (Adipose Most abundant Gene transcript 1). Biochern Biophys Res Commun, 1996, 221(2)286-289.
    [188] Saito K, Tobe T, Minoshima S, et al. Organization of the gene for gelatin-binding protein (GBP28). Gene, 1999, 229(1-2): 67-73.
    [189] Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endorinol Metab, 2001, 86(5): 1930-1935.
    [190] Kissebah AH, Sonnenberg GE, Myklebust J, et al. Quantitative trait 1OCi on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA,2000,97:14478-14483.
    [191] Busfield F,Dufy DL,Kesting JB,et al. Shaw J A genomewide searchfortype 2diabetes-susceptibility genes in Indigenous Australians. Am J Hum Genet, 2002, 70(2):349-357.
    [192] Vionnet N,Hani E-H,Dupont S,et al. Genomewide search for type 2 diabetes. susceptibility genes in French Whites: evidence for a novel susceptibility locus for early..onset diabetes on chromosome 3q27..qter an d independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet,2000,67(6):1470-1480.
    [193] Stumvoll M,Tschritter O,Fritsehe A,et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity interaction with family history of type 2 diabetes. Diabetes,2002,51:37-41.
    [194] Filippi E,Sentinelli F,Trisehitta V,et al.Association of the human adiponectin gene and insulin resistance.Eur J Hum Genet,2004,12:199-205.
    [195] 汝颖,马猛,马腾,等.脂联素基因SNP276多态性与2型糖尿病易感性及胰 岛素敏感性的关联.中华医学遗传学杂志,2005,22(6):698-701.
    [196] Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypesin the both proximal promoter and exon 3 of theAPM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Human Molecular Genetics, 2002, 11(21): 2607-2614.
    [197] Hanis CL, Boerwinkle E, Chakraborty R, et al. A genome·wide search for humannon-insulin·dependent (type 2) diabetes genes reveals amajor susceptibility ocus on chromosome 2.Nat Genet, 1996, 13(2):161-166.
    [198] Hanson RL, Ehm MG, Pettitt DJ, et al. An autosomal genomic scan forlocilinked to type Ⅱ diabetes mellitus and body-mass index in Pima Indians. Am J Hum Genet, 1998, 63 (4): 1130-1138.
    [199] Vionnet N, Hani El-H, Dupont S, et al. Genomewide search for type 2 diabetes·susceptibility genes in French Whites:evidence for a novel susceptibility locus forearly··onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet, 2000, 67(6):1470-1480.
    [200] Ehm MG, Karnoub MC, Sakul H, American Diabetes Association GENNID Study Group. Genetics of NIDDM:Genomewide search for type 2 diabe tes susceptibility genes in four American populations. Am J Hum Genet, 2000, 66(6):1871-1881.
    [201] Xiang K, Wang Y, Zheng J, et al. Genome·wide searchfor type 2 diabetes impaired glucose homeostasis susceptibility genes in the Chinese:significan t linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes, 2004, 53(1):228-234.
    [202] Pezzolesi MG, Nam M, Nagase T, et al. Exam ination of candidate chromosomal regions for type2 diabetes reveals a susceptibility locus on human chromosome 8p23-1. Diabetes, 2004, 53(2):486-491.
    [203] Duggirala R, Blangero J, Almasy L, et al. O'Connell Stern M P Linkage of type2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in M exican American s.Am J Hum GeneL, 1999.64(4):1127-1140.
    [204] Mahtani M M,Widen E,Lehto M,et al.Mapping of a gene fortype 2 diabetes as soc iated with an insulin secretion defectby a genome scan in Finnish families. Nat Genet, 1996, 14(1):90-94.
    [205] Parker A,Meyer J,Lewitzky S,et al.A gene conferring susceotibility to type 2 diabetes in conjunction with obesity is located on chromosome 18pl 1.Diabetes,2001,50(3):675-680.
    [206] Klupa T, Malecki M, Pezzolesi M, et al.Further evidence for a susceptibility locus for type 2 diabetes on chromosome 20q13.1-q13.2. Diabetes, 2000, 49(12):2212-2216.
    [207] Busfield F, Dufy DL,Kesting JB,et al.A genomewide searchfortype 2diabetes-susceptibility genes in Indigenous Australians.Am J Hum Genet,2002,70(2):349-357.
    [208] Imperatore G, Hanson RL,Pettitt DJ,et al.Sib-pair linkage analysis for susceptibility genes for microvascular complications among P ima Indians with type 2 diabetes.Diabetes, 1998,47(5): 821-830.
    [209] Lindgren CM,Mahtani MM,Widen E, et al.Genomewide search for type 2diabetes mellitus susceptibility loci in Finnish families:the Botnia study. Am J Hum Genet, 2002,70(2) :509-516.
    [210] Mori Otabe S,Dina C,Yasuda K, et al.Genome-wide search for type 2diabe tes in Japanese afected sib..pairs confirms susceptibility genes on 3q, 15q,and 20q and identifies two newcandidate loci on 7p and 11p. Diabetes, 2002,51(4): 1247-1255.
    [211] Silander K,Scott L J,Valle T, et al.Finland—United Staaates Investigation of NIDDM Genetics(FU SION).A large set of Finnish afected sibling pair families with type 2 diabetes suggests susceptibility locus on chromosomes 6,11,and 14.Diabetes,2004,53(3):821-829.
    [212] Bektas A,Suprenant M E,Wogan L, et al.Evidence of a novel type 2 diabetes locus 50 cM centromeric toNIDDM2 on chromosome 12q. Diabetes. 1999, 48 (11):2246-2251.
    [213] Ghosh S,Watanabe RM,ValIe TT, et al.The Finland-United states investigation of non-insulin-dependent diabetes mellitus genetics(FUSION)study. Ⅰ:an autosomal genome scan for genes that predispose to type 2 diabetes. Am J Hum Genet, 2000, 67(5): 1174-1185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700