柔性交流输电系统中电力电子装置运行特性分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FACTS技术的出现带给高压输电系统用户新的机遇和挑战,它改变了过去交流输电不能灵活控制和不能满足增长的电力需求的局面,是实现电力系统安全、经济、综合控制的重要措施,为复杂电力系统的稳定运行提供了一种很好的调节手段。在FACTS家族中最具有代表性的元件是STATCOM、SSSC、UPFC,其中STATCOM是最早实用化的FACTS装置,可以实现系统电压的稳定;而SSSC可以实现传输线路阻抗的调节且不会引发振荡;UPFC作为最灵活的FACTS装置可以单独做STATCOM和SSSC运行,又可以组合起来进行潮流调度和电压控制,因此有必要对这三种FACTS装置进行深入的研究。本文针对目前以上三种FACTS装置研究中存在的问题,进行了以下四个方面的工作。
     考虑到FACTS装置的成功应用要求对其所有可行的方法和它们的运行特性有一个清楚的了解,本文首先讨论了STATCOM注入电流运行范围、注入功率运行范围。建立了STATCOM的数学模型,分析了直流母线电容电压的暂态过程和系统电压平衡,在此基础上设计了相应的控制系统。安装在长距离输电线上的STATCOM能够支撑输电系统关键节点的电压,提高系统输电能力,因此本文讨论了不同的安装位置对STATCOM调节线路传输功率的影响。理论分析得出STATCOM安装在线路的中间时,其调节线路传输的有功功率最大,能够更好地提高系统的稳定性。考虑到STATCOM控制策略的选择是其能否更好地实现补偿效果的关键,本文讨论了目前应用于STATCOM的无功补偿控制模式和自动电压控制模式,认为对于配电系统来说自动电压控制模式是一个更好的选择。并且比较了STATCOM的三种自动电压控制模式:稳压控制模式、直接电压下垂控制模式和带电流补偿的电压下垂控制模式,发现如果允许电压下垂,在给定最大的电容和电抗值的情况下,STATCOM补偿的范围可以加大,可靠性更高。此外,通过分析可知,合理设计控制系统可以使得STATCOM能够增加系统的第一摇摆稳定性,抑制系统振荡。
     其次,讨论了SSSC注入电压运行范围、注入功率运行范围。建立了SSSC的数学模型,分析了直流母线电容电压的暂态过程,提出了一种无外部储能装置的SSSC自启动方案。SSSC的控制策略主要有直接电压补偿控制模式和阻抗补偿控制模式,本文通过对两种控制模式下SSSC补偿范围、功角特性的分析得出,SSSC采用直接电压补偿控制是最好的选择,给出了相应的控制系统设计。为了更为直观地了解SSSC对系统功率的影响,本文在系统接收端电压和发送端电压幅值、相位一定的情况下,给出了系统各部分有功和无功功率二维坐标平面图。对比了在改变同样大小的系统接收端的有功功率的时候,STATCOM和SSSC输出的无功功率的大小,最后得出在实际的运行条件下,SSSC工作效率更高。此外,在单机无穷大系统中分析了SSSC抑制系统振荡特性。
     再次,本文通过分析发现UPFC在潮流控制时对系统接收端和发送端相位都有较大影响,考虑了这个因素,本文更为准确的分析了UPFC的潮流控制能力。研究了UPFC系统中各部分的功率运行范围,通过数学推导发现系统各部分的功率受多个变量的影响,为了更直观地分析UPFC的运行轨迹,本文给出了UPFC系统各部分的二维功率运行平面和三维功率运行曲面,通过观察其二维功率运行平面和三维功率运行曲面可见,线路传输有功/无功功率的每一个运行点都是唯一与一个UPFC串联输出电压相对应的。但对于UPFC串联部分注入电网的功率而言,一定的功率运行点可能对应多个串联输出电压,因此要实现对电网潮流的有效控制,必须直接对线路电流或线路传输的有功/无功进行控制。通过分析UPFC在线路中的不同安装位置对其潮流调控能力的影响,得出UPFC的安装位置应根据实际要求综合考虑。考虑了UPFC装置内部各变量之间的关系,给出了UPFC的相对完整的控制系统,并联变换器采用了协调控制策略,串联变换器采用了交叉耦合控制和交叉解耦控制,并且通过仿真验证了控制系统的有效性。
     最后,建立了一个功率容量为15kVA的小型FACTS实验系统,结合教研室的技术力量和动态模拟实验室的条件,在380V的两个无穷大系统和800V的单机无穷大系统中,对STATCOM、SSSC和UPFC的性能作了实验研究,得到了大量有效的实验结果,为将来FACTS装置在实际系统中的应用奠定了坚实的基础。
FACTS technology brings the users of high voltage transmission systems fresh opportunities as well as challenges. It appears to be one the most important alternatives to overcome both the inflexible condition of most of the power sytems and the continuously growing demand of power. It is an effective method to realize security, the economical, integrated control of power systems. It offers a good way to improve the stability operation of complex and interconnected power systems. This paper gives an overview of the emerging FACTS technology with emphasis on the STATCOM, SSSC and UPFC. Of the FACTS controllers of interest here, the STATCOM has the ability to increase/decrease the terminal voltage magnitude and, consequently, to increase/decrease power flows in the transmission line. The SSSC controls power flow by changing ehe series reactance of the line and is immune to classical network resonances. The UPFC is the most comprehensive multivariable FACTS controller.It can not only work separately as a STATCOM or a SSSC but also control the transmission line real and reactive power in the transmission line, improve the transient stability margins, damp power oscillations and provide voltage support. So it is necessary to further research the performances of FACTS controllers. To solve the problems existed in the research field of FACTS controllers above, this paper works in the four areas as listed below.
     The successful incorporation of FACTS controllers in the power systems requires a clear understanding of all possible approaches and their operating characteristics. In this paper, first, a systematic study is performed to derive operating areas of the shunt current injection and power injection of STATCOM. By the analysis of mathematical model, DC bus voltage and voltage balance of the STATCOM system, the corresponding control system is designed. STATCOM installed in the long transmission line can support key nodes voltage and improve transmission capacity of the power system. So this paper discusses how STATCOM for controlling the transmittable power in the transmission line depends on the location of STATCOM in the network. The analysis indicates that STATCOM installed in the middle line can control furthest the transmittable power in the transmission line and enhance transient and steady state stability of power systems. Considering the control scheme being the key to achieve better compensation, this paper discusses the reactive power compensation mode and automatic control mode of STATCOM. It can be concluded by analysis that the automatic voltage control mode is a better choice for the distribution systems. The automatic voltage control mode includes three types: the constant voltage control mode, the direct voltage droop control mode, the voltage droop control mode with the compensating current. By comparing three control modes above, it is shown that the linear operating range of a compensator with given maximum capacitive and inductive ratings can be extended if a regulation droop is allowed. On the other hand, it is reasonable to expect by analysis that, with suitable and fast controls, STATCOM can change the power flow in the system during and flowing dynamic disturbances so as to increase the transient stability limit and provide effective power oscillation damping.
     Second, a systematic study is performed to derive operating areas of the series voltage injection and power injection of SSSC. By the analysis of mathematical model, DC bus voltage, this paper proposes ans describes the self-startup technique of SSSC without energy storage. In this paper, two different compensation control modes of SSSC, the voltage compensation mode and the impendance compensation mode, are discussed. By analyzing compensation areas and power-angle characteristics of SSSC based on two above compensation modes, it can be concluded that the voltage compensation mode is better suitable for SSSC and the corresponding control system is designed. Under certain conditions, the certain magnitudes and phases of sending-end voltage and receiving-end voltage, this paper presents power operation plane plots of SSSC in a two-dimensional space. It provides an intuitionistic measure for understanding how SSSC impacts on the system power. This also compares the power ratings of STATCOM and SSSC when performing the same reactive power compensation job. As a result, SSSC is superior to STATCOM in actual operation. Moreover, the power oscillation damping performance of SSSC is analyzed in a simple single machine infinite bus system.
     Third, this paper discovers that the phases of the sending-end voltage and the receiving-end voltage change with the power flow in the transmission. Considering the factor, this paper accurately analyzes the power flow control performance of UPFC. Furthermore, the real/reactive power absorbed/injected by the components of the UPFC system during power flow changes is plotted in 2D and 3D space respectively. That provides an effective method to determine the power rating of the power conversion parts of the UPFC and judge the availability of the control scheme for UPFC. By observing the power map, it can be found that every point of the transmission real & reactive power is corresponding to a certain voltage injected by the series part of the UPFC. However, for the power map of the injected power by the series part of the UPFC one power operating point may corresponding to more than one voltage injected by the series part of the UPFC. Therefore, it is necessary for effectively controlling power flow to directly control the transmission line current or real/reactive power in control system. By analyzing the effect of placement of UPFC to power flow control, it is conclude that placement of UPFC should be considered based on actual demand. Considering the internal relations among the variables of UPFC, a relatively complete control system is designed: a coordinated control scheme is used in shunt converter, cross-coupling control scheme and cross-decoupling control scheme are used in series converter. Simulation results show the effectiveness of the proposed control system.
     At last, a 15kVA FACTS experimental system is established in this paper. Combining office technology and the dynamic simulation laboratory conditions, this paper studies the performance of STATCOM, SSSC, UPFC in two infinite bus systems at 380V rating and a simple single machine infinite bus system at 800V rating. And abundant effective experimental results are gotten in this paper. These works lay a sound foundation of the powerful FACTS controllers for future application.
引文
[1] 谭伟璞. 统一潮流控制器的研究 [博士学位论文]. 哈尔滨工业大学图书馆, 1999
    [2] U. S. -Canada Power System Outage Task Force. Interim report: Cause of the August 14th Blackout in the United States and Canada. November 2003
    [3] 王建. 基于统一潮流控制器(UPFC)的电力系统潮流分析、优化和控制研究 [博士学位论文]. 华南理工大学图书馆, 2001
    [4] The EPRI Journal for April-May 1986 addresses flexible ac transmission
    [5] Hingorani, N. G. FACTS technology and opportunities. Flexible AC Transmission Systems (FACTS)-The Key to Increased Utilization of Power Systems, IEE Colloquium on (Digest No. 1994/005), 12th, Jan, 1994: 4/1-4/10
    [6] Hingorani, N. G.. Flexible AC transmission. Spectrum. IEEE, April 1993, 30(4): 40-45
    [7] Hingorani, N. G.. Future role of power electronics in power systems. ISPSD '95. Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs, Yokohama, Japan, 23-25th, May 1995: 13 -15
    [8] Narain G. Hingorani, Laszlo Gyugyi. Understanding FACTS: concepts and technology of flexible AC transmission systems. 1st Edition, 3 park Avenue, 17th Floor, New York, NY 10016-5997, U. S. A. Institute of Electrical and Electronics Engineers, Inc, 1999
    [9] Lazio Gyugyi, Colin D. Schauder, Kalyan K. Sen. Static Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Lines. IEEE Transactions on Power Delivery, January 1997, 12(1): 406-417
    [10] CL Neft, CD Shauder. Theory and design of a 30-hp matrix Converter. IEEE Trans. on Industrial Applications, 1992, 28(3): 546-551
    [11] Thallam. Application of the interphase power controller technology for transmission line power flow control. IEEE Transactions on Power Delivery, April 1997, 12(2): 888-894
    [12] Lacoste J. FACTS equipments and power system dynamics, CIGRE, SymposiumTokyo, 1995, 310-06
    [13] 李乃湖, 李扬, 陈珩. 灵活交流输电技术在互联电网中的应用. 中国电力, 1995, (4): 2-5
    [14] 赵良炳, 马维新, 陈建业. 传统交流输电系统与灵活输电系统. 电网技术, 1995, 19(1): 62-66
    [15] Hideaki Fujita. Evaluation of various kinds of power electronic equipment in power system. CIGRE, Symposium Tokyo, 1995, 220-03
    [16] 韩英铎, 王仲鸿, 林孔兴. 电力系统中的三项前沿课题. 清华大学学报(自然科学版), 1997, 37(7): 40-42
    [17] 唐寅生. SVC 在我国电网中的应用及前景. 电气时空, 2003, 5: 16-17
    [18] 唐寅生. 500kV 云田变电站 SVC 三次谐波放大及抑制措施分析. 电力电容器, 1995, 4: 41-44
    [19] Itoh, K., Tsunoda, Y., Akabane, K. Development of large-capacity VBO-free light-triggered thyristors and their application to SVC valves. Power Electronics Specialists Conference, 1991. PESC '91 Record, 22nd Annual IEEE, Cambridge- Massachusetts, USA, 24-27th June, 1991: 453-459
    [20] Ichikawa, F., Suzuki, K., Nakajima, T. Development of self-commutated SVC for power system. Power Conversion Conference, 1993. Yokohama, Japan, 9-21st April, 1993: 609-614
    [21] Hasegawa, T., Aoshima, Y., Sato, T., Kondo, O. Development of 60 MVA SVC (static VAr compensator) using large capacity 8 kV and 3 kA thyristors. Power Conversion Conference, Nagaoka, Japan, 3-6th Aug, 1997, 2: 725- 730
    [22] 刘文华, 姜齐荣, 梁旭. ±20Mvar STATCOM 总体设计. 电力系统自动化, 2000, 24(23): 14-18
    [23] Rao, P., Crow, M. L., Yang, Z. STATCOM control for power system voltage control applications. IEEE Transactions on Power Delivery, October 2000, 15(4): 1311-1317
    [24] Larsson, T., Poumarede, C. STATCOM, an efficient means for flicker mitigation. IEEE Power Engineering Society 1999 Winter Meeting, New York, 31st Jan-4th Feb 1999, 2: 1208-1213
    [25] Yang, Z., Shen, C., Zhang, L. Integration of a STATCOM and battery energy storage.IEEE Transactions on Power Systems, May 2001, 16(2): 254-260
    [26] Arsoy, A. B., Liu, Y., Ribeiro, P. F. et al. StatCom-SMES. IEEE Industry Applications Magazine, March-April 2003, 9(2): 21-28
    [27] 王红月, 梁志珊. 电力系统的可控制动电阻的非线性预测控制. 华南理工大学学报(自然科学版), 2002, 30(8): 32-35
    [28] 付蓉, 韩敬东, 鞠平. 可控制动电阻的模糊神经网络控制. 电网技术, 2001, 25(2): 13-16
    [29] Miao, Z., Choudhry, M. A., Klein, R. L. Dynamic simulation and stability control of three-phase power distribution system with distributed generators. IEEE Power Engineering Society Winter Meeting, 2002, New York, NY, 27th-31st Jan 2002, 2: 1029-1035
    [30] 郑文斌, 胡国文, 王仲鸿. 伊敏—冯屯输电线 TCSC 动态模拟实验装置的特性研究. 清华大学学报(自然科学版), 1997, 37(7): 59-62
    [31] 曹继丰. 平果可控串补工程及其在南方电网中的作用. 电网技术, 2004, 28(14): 6-9
    [32] K Braun, G Thumn, L Kirschnet. 亚洲首个 500kV 可控串补 TCSC 工程——天广交流输变电平果站可控串补一次系统设计方案. 国际电力, 2004, 8(4): 49-54
    [33] 赵学强. NGH 次同步谐振阻尼方案的研究及仿真分析. 华东电力, 1998, 12: 7-11
    [34] Li Wang, Ioi Keong Ung, Ching-Huei Lee. Damping subsynchronous resonance using modal-control NGH SSR damping scheme. I. Single-machine study. TENCON '93. Proceedings. Computer, Communication, Control and Power Engineering. 1993 IEEE Region 10 Conference on, Beijin, 19-21st Oct. 1993, 5(10): 111-114
    [35] Li Wang, Ching-Huei Lee. Damping sub-synchronous resonance using modal-control NGH SSR damping scheme. II. Two-machine common-mode study. TENCON '93. Proceedings. Computer, Communication, Control and Power Engineering. 1993 IEEE Region 10 Conference on, Beijin, China, 19-21st Oct. 1993, 5(10): 115-118
    [36] B. A. Renz, A. Keri, S. Schauder. et al. AEP Unified Power Flow Controller Performance. IEEE Transaction on Power Delivery, 1999, 14(4): 1374-1381
    [37] J. B. Choo, B. H. Chang. H. S. Lee et al. Development of FACTS operation technology to the KEPCO Power Network –Installation & Operation. IEEE/PESTransmission and Distribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, 6th-10th Oct. 2002: 2008-2013
    [38] Chang, B. H., Choo, J. B., Joong-Moon Kim, et al. Development of FACTS operation technology to the KEPCO power network-development of education program for 80 MVA UPFC operator, IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, 6th-10th Oct. 2002: 2014-2018
    [39] Diez-Valencia, V., Annakkage, U. D., Gole, A. M, et al. Interline power flow controller (IPFC) steady state operation. Canadian Conference on Electrical and Computer Engineering, 2002. IEEE CCECE 2002, Toronto, Canada, 12nd-15th May 2002, 1: 280- 284
    [40] Teerathana, S., Yokoyama, A. An optimal power flow control method of power system using interline power flow controller (IPFC). TENCON 2004. 2004 IEEE Region 10 Conference, Chiang Mai, Thailand, Nov. 21st-24th, 2004, C: 343-346
    [41] Zanetta, L. C., Jr., Vasquez-Arnez, R. L. Steady-state multiline power flow control through the generalized IPFC (interline power flow controller). 2004 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, Sao Paulo, Brazil, 8th-11th Nov. 2004: 28-33
    [42] Fardanesh, B., Schuff, A. Dynamic studies of the NYS transmission system with the marcy CSC in the UPFC and IPFC configurations. 2003 IEEE PES Transmission and Distribution Conference and Exposition, Dallas, Texas, U. S. A, 7-12 Sept. 2003, 3: 1126-1130
    [43] Abdel-Aty Edris, Shalom Zelingher, Laszlo Gyugyi, et al. Squeezing More Power from the Grid. IEEE Power Engineering Review, June 2002: 4-6
    [44] Uzunovic, E., Fardanesh, B., Hopkins, L, et al. NYPA convertible static compensator (CSC) application phase I: STATCOM. 2001 IEEE/PES Transmission and Distribution Conference and Exposition, Atlanta, U. S. A, 28th Oct-2nd Nov. 2001, 2: 1139-1143
    [45] 杨晓东, 房大中, 刘长胜等. 阻尼联络线低频振荡的 SVC 自适应模糊控制器研究, 中国电机工程学报, 2003, 23(1): 55-60
    [46] Sekoguchi M., Konishi H., Goto M.. Nonlinear Optimal Control Applied toSTATCOM for Power System. Stabilization. IEEE/PES Transmission and Distribution Conference and Exhibition, 2002, (1): 342-347
    [47] 栗春, 姜齐荣, 王仲鸿. 基于规则的 STATCOM 的控制器设计. 中国电机工程学报, 1999, 19(6): 56-60
    [48] L. Cong and Y. Wang. Co-ordinated control of generator excitation and STATCOM for rotor angle stability and voltage regulation enhancement of power systems. IEE Proceedings-Generation, Transmission and Distribution, 2002, 149(6): 659-666
    [49] 黄建新, 洪佩孙, 索丽生. 新型静止无功发生器(ASVG)的模糊控制研究. 河海大学学报, 1998, 26(3): 81-86
    [50] 王强, 姜齐荣, 沈斐等. 迭代学习控制用于 STATCOM 阻尼区域间振荡的研究, 电网技术, 1999, 26(3): 1-5
    [51] 沈东, 姜齐荣, 韩英铎. 静止同步补偿器的标么化模型及开环响应时间常数分析. 中国电机工程学报, 2000, 20(7): 56-61
    [52] 马晓军, 刘文华, 王仲鸿, 等. 新型同步补偿器直流侧储能电容值的选取方法. 中国电机工程学报, 2000, 20(10): 31-35
    [53] 谢小荣, 崔文进, 唐义良, 等. STATCOM 无功电流的鲁棒自适应控制. 中国电机工程, 2001, 21(4): 35-39
    [54] HF Wang and FJ Swift. A unified model for the analysis of FACTS devices in damping power system oscillations Part I: Single-machine infinite-bus power system. IEEE Trans on Power Delivery, 1997, 12(2): 941-953
    [55] HF Wang and FJ Swift. A unified model for the analysis of FACTS devices in damping power system oscillations Part II: Multi-machine Power system. IEEE Trans on Power Delivery, 1998, 13(4): 1355-1362
    [56] Zuniga-Haro, P. ; Ramirez, J. M.. SSSC Switching Functions Model. IEEE Transactions on Power Delivery, Jan. 2006, 21(1): 518 – 520
    [57] R. Natesan, G. Radman. Effects of STATCOM, SSSC, UPFC on Voltage Stability. 2004. Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, Atlanta, Georgia, USA, 14th-16th March 2004: 546-550
    [58] Xiao-ping Zhang. Advanced Modeling of the Multicontrol Functional Static Synchronous Series Compensator(SSSC) in Newton Power Flow. IEEE Transactions on Power System, 2003, 18(4): 1410-1416
    [59] Zhang X P, Xue C F, Godfrey K P. Modeling of the synchronous series compensator (SSSC) in three-phase newton power flow. IEE Proceedings on Generation, Transmission and Distribution, 2004, 151(4): 486-494
    [60] Alomoush M I.. Static synchronous series compensator to help energy marks resolve congestion-caused problems. Large Engineering Systems Conference on Power Engineerding, 2004: 25-29
    [61] Manzar Rahamn, M. Ahmed, R. Gutmna, R. J. O’Keefe, R. Nelson, J. Bian. UPFC application on the AEP system: Planning Considerations. IEEE Transactions on Power System, 1997, 12(4): 1695-1701
    [62] A. J. F. Keri, X. Lombard, A. A. Edris, A. S. Mehraban, A. Elriachy. Unified Power Flow Controller(UPFC): Modeling and Analysis. IEEE Transactions on Power Delivery, 1999, 14(2): 648-654
    [63] S. Arabi and P. Kundur. A Versatile Facts Device Model for Power Flow and Stability Simulation. IEEE Trans. on Power System, 1996, 11(4): 1994-1950
    [64] Nabavi-Niaki A, Iravani. M. R. Steady state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Transactions on Power Systems, November 1996, 11(4): 1937-1943
    [65] FUERTE-ESQUIVEL C R, ACHA E. Unified Power Flow Controller: A Critical Comparison of Newton-Raphson UPFC Algorithms in Power Flow Studies. IEE Proceedings Generation Transmission and Distribution, 1997, 144 (5): 437-444
    [66] K. S. Smith, L. Ran, J. Penman. Dynamic modeling of a unified power flow controller. IEE Proceedings of Generation, Transmission and Distribution, January 1997, 144(1): 7-12
    [67] Padiyar K. R and Uma Rao K. Modeling and control of unified power flow controller for transient stability. International Journal of Electrical Power and Energy Systems, 1999, 21(1): 1–11
    [68] SEN K K, STACEY E J. UPFC--Unified Power Flow Controller: Theory, Modelling and Applications. IEEE Trans on Power Delivery, 1998, 13(4): 1453-1460
    [69] L. Gyugyi, C. D. Schauder, S. L. Willams, et al. The Unified Power Flow Controller:A New Approach to Power Transmission Control, IEEE Transactions on Power Delivery, April 1995, 10(2): 1085-1097
    [70] Lerch, E., Povh, D., Witzmann, R., Hlebcar, B., Mihalic, R.. Simulation and Performance Analysis of Unified Power Flow Controller. CIGRE 1994, 14-205: 1-6
    [71] S. Limyingcharoen, U. D. Annakage, N. C. Pahalawaththa. Effects of unified power flow controllers on transient stability. IEE Proc-Generation Tansmission and Distribution, 1998, 145(2): 182-188
    [72] R. Mihali?, P. ?unko, D. Povh. Improvement of transient. stability using unified power flow controller. IEEE Transactions on Power Delivery, 1996, 11(1): 485-492
    [73] S. Limyingcharoen, U. D. Annakage, N. C. Pahalawaththa. Fuzzy logic based unified power flow controllers for transient stability improvement. IEE Proc-Generation Tansmission and Distribution, 1998, 145(3): 225-232
    [74] Wang H F. Damping function of unified power flow controller. IEE Proceedings-Generation, Transmission and Distribution, 1999, 146(1): 81-87
    [75] E. Uzunovic, C. A. Ca?nizares, J. Reeve. Fundamental frequency model of Unified Power Flow Controller. North American Power Symposium(NAPS), Cleveland, Ohio, October 1998: 294-299
    [76] E. Uzunovic, C. A. Ca?nizares, J. Reeve. EMTP Studies of UPFC Power Oscillation Damping. Proc. of NAPS’99, San Luis. Obispo, California, October 1999: 155-163
    [77] 章良栋, 岑文辉, 刘为. UPFC 的模型及控制器研究. 电力系统自动化, 1998. 1, 22(1): 36-39
    [78] 刘前进, 孙元章, 黎雄等. 基于功率注入法的 UPFC 潮流控制研究. 清华大学学报(自然科学版), 2001, 41(3): 55-58
    [79] 李兰英, 李宵燕, 张得福等. 具有能量缓冲的统一潮流控制器及其控制的研究. 中国电机工程学报, 2001. 7, 21(7): 9-13
    [80] 鞠儒生, 陈宝贤, 邱晓刚. UPFC 控制方法研究. 中国电机工程学报, 2003. 6, 23(6): 60-65
    [81] K. KSen. STATCOM: Theory, Modeling, and Applications. IEEE Power Engineering Society 1999 Winter Meeting, February 1999, (2): 1177-1183
    [82] Erinmez. I. A., Foss. A. M. Static Synchronous Compensator(STATCOM). WorkingGroup 14. 19, CIGRE Study Committee 14, Document NO. 144, August 1999
    [83] C. D Schauder and H. Mehta, Vector analysis and control of advanced static VAR compensators. IEE Proc. -C, 1993, 140(4): 299-306
    [84] PW Lehn and MR Iravani, “Experimental Evaluation of STATCOM Closed Loop Dynamics, ” IEEE Transactions on Power Delivery, vol. 13, pp. 1378-1384, Oct. 1998
    [85] Jiang Y, Ekstrom A. Applying PWM to control overcurrents at unbalanced faults of forced-commutated VSCs used as static var compensator. IEEE Trans on Power Delivery, 1997, 12(1): 273-278
    [86] AR Wood and CM Osauskas. A Linear Frequency-domain Model of a STATCOM. IEEE Transactions on Power Delivery, July 2004, 19(3): 1410-1418
    [87] E. Lerch, D. Povh, L. Xu. Advanced SVC control for damping power system oscillations. IEEE Transactions on Power System, 1991, 46(2): 524-531
    [88] Y. Zhuang, R. W. Menzies, Q. B. Nayak. Dyniamic Performance of a STATCOM at HVDC Inverter Feeding a Very Weak AC System. IEEE Transactions on Power Delivery, 1996, 11(2): 121-128
    [89] E. Larsen, N. Miller, S. Nilsson. Benefits of GTO-based Compensation Systems for Electric Utility Application. IEEE Transactions on Power Delivery, Oct 1992, 7(4): 2056-2063
    [90] L. Gyugyi. Dynamic compensation of AC transmission lines by solid-state synchronous voltage sources. IEEE Transactions on Power Delivery, April 1994, 9(2): 904-911
    [91] P. K. Dash. Fuzzy-logic-based VAR stabilizer for power system control. IEE Proc. -Gen. Trans. Distrib., 1995, 142(6): 618-624
    [92] Ni Y. X, Snider L.. STATCOM power frequency model with VSC charging dynamics and its application in the power system stability analysis. In: Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management. Hong Kong, China, 1997: 119-124
    [93] Ni Y. X, Mak L. O., Huang Z., Chen S. and Zhang B.. Fuzzy logic damping controller for FACTS devices in interconnected power systems. ISCAS'99, Orlando, USA, 1999: 591-594
    [94] 魏文辉, 刘文华, 宋 强, 袁志昌, 倪 镭, 邹 彬. 基于逆系统方法有功-无功解耦PWM控制的链式STATCOM动态控制策略研究. 中国电机工程学报, 2005, 25(3): 23-28
    [95] 刘恩东, 井元伟, 王 珂, 张嗣瀛. 基于神经网络的 STATCOM 非线性鲁棒逆推设计. 2005 东北大学学报, 2005, 26(10) : 918-922
    [96] 鞠儒生, 陈宝贤, 邱晓刚, 等. UPFC 控制方法研究. 中国电机工程学报, 2003, 23(6): 60-65
    [97] Liu Liming, Zhu Pengcheng, Kang Yong, et al. Design and dynamic performance analysis of a unified power flow controller. Proc. of IEEE IECON’05, North Carolina, USA, 2005: 1300-1305
    [98] Amir H. Norouzi, A. M. Sharaf. Two Control Schemes to Enhance the Dynamic Performance of the STATCOM and SSSC. IEEE Transactions on Power Delivery, 2005, 20(1): 435-442
    [99] El-Moursi, M. S. ; Sharaf, A. M. Novel controllers for the 48-pulse VSC STATCOM and SSSC for voltage regulation and reactive power compensation. IEEE Transactions on Power System, Nov. 2005, 20(4): 1985-1997
    [100] B. Han, S. Baek, H. Kim, G. Karady. Dynamic Characteristic Analysis of SSSC Based on Multibridge Inverter. IEEE Transactions on Power Delivery, 2002, 17(2): 623-629
    [101] Sang-Joon Lee, Hyosung Kim, Seung-Ki Sul, et al. A Novel Control Algorithm for Static Series Compensators by Use of PQR Instantaneous Power Theory. IEEE Transactions on Power Electronics, May 2004, 19(3): 814-827
    [102] Rafael Mihalic, Uros Gabrijel. A Structure-Preserving Energy Function for a Static Series Synchronous Compensator. IEEE Transactions on Power Systems, August 2004, 19(3): 1501-1507
    [103] L. Sunil Kumar, Arindam Ghosh. Modeling and Control Design of a Static Synchronous Series Compensator. IEEE Transactions on Power Delivery, October 1999, 14(4): 1448-1453
    [104] C. J. Hatziadoniu and A. T. Funk. Development of a Control Scheme for a Series-connected Solid-state Synchronous Voltage Source. IEEE Transactions on Power Delivery, April 1996, 11(2) : 1138-1144
    [105] Chandrakar V. K., Kothari A. G.. Fuzzy logic based static synchronous series compensator (SSSC) for transient stability improvement. IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, 2004. (DRPT 2004), April 2004, (1): 240-245
    [106] Kannan S., Jayaram S., Salama, M. M. A.. Fuzzy logic based supplementary controller for static synchronous series compensator. IEEE Canadian Conference on electrical and Computer Engineering, May 1998, (2) : 489-492
    [107] J. J. Vithayathil, C. W. Tayor, M. Kinger, W. A. Mittelstadt. Case studies of conventional and novel methods of reactive power control of an AC transmission system, in CIGRE Paper, 1988, 38-02
    [108] Kalyan K. Sen. SSSC-Static Synchronous Series Compensator: Theory, Modeling, and Applications. IEEE Transactions on Power Delivery, January 1998, 13(1): 241-246
    [109] L. Gugyi. Solid-state control of AC transmission. Proc. Int. Symp. Electric Energy Conversion in power Systems, Capri, Italy, 1989. Paper NO. T-IP. 4
    [110] X. Wang, S. Z. Dai, B. T. Ooi. A series capacitive reactance compensator based on voltage source PWM converter. IEEE Industry Applications Society Annual Meeting, Dearborn Michigan, October 1991: 918-924
    [111] S. Z. Dai, B. T. Ooi, X. Wan. Solid-State Series Capacitive Reactance Compensators. IEEE Transactions on power delivery, April 1992, 7(2): 914-919
    [112] S. Z. Dai, B. T. Ooi, X. Wan. Series-Type Solid-State Static VAR Compensator. IEEE Transactions on Power Electronics, April 1993, 8(2): 164-169
    [113] R. G Harley, B. S Rigby, G. D Jennings. Design of a controlled converter which emulates a series capacitive compensator for long power lines, IPEMC '94, Warsaw, Poland, September 1994: 213-218
    [114] G. Joos, X. Huang, and B. T. Ooi. Direct-coupled Multilevel Cascaded Series Var Compensators. IEEE Transactions on. Industry Applications, 1998, 34(5): 786-793
    [115] G. N. Pillai, A. Ghosh, A. Joshi. Torsional Interaction between an SSSC and a PSS in a Series Compensated Power System. IEE Proceedings on Generation, Transmission and Distribution, November 2002, 149(6): 653-658
    [116] 朱鹏程. 用于 UPFC 的串、并联双变流器控制策略研究[博士学位论文]. 武汉: 华中科技大学图书馆, 2005
    [117] Fawzi A. Rahman Al Jowder, Boon-Teck Ooi. Series Compensation of Radial Power System by a Combination of SSSC and Dielectric Capacitors. IEEE Transactions on Power Delivery, January 2005, 20(1): 458-464
    [118] 王庆红, 胡国根. 一种基于 48 脉波电压源逆变器的静止同步串联补偿器的设计与建模. 中国电机工程学报, 2001, 21(5): 61-66
    [119] 颜 伟, 吴文胜, 华智明, 徐国禹, 黄尚廉. SSSC 非线性控制的直接反馈线性化方法. 中国电机工程学报, 2003, 23(3): 65-68
    [120] 王海风, 李 敏, 陈 珩. 统一潮流控制器的多变量控制设计. 电机工程学报, 2000, 20(8): 51-55
    [121] C. D. Shauder, D. M. Hamai, A. Edris, et al. Operation of the Unified Power Flow Controller (UPFC) under Practical Constrains. IEEE Transactions on Power Delivery, April 1998, 13(2): 630-639
    [122] J. Bian, D. G. Ramey, R. J. Nelson, et al. Study of Equipment Sizes and Constrains for a Unified Power Flow Controller. IEEE Transactions on Power Delivery, July 1997, 12(3): 1385-1391
    [123] B. S. Rigby, R. G. Hariey. The Development of an Advanced Series Compensator based on a Single Voltage Source. IEEE AFRICON 4th 1996, South Africa, 24th-27th Sept. 1996, 1: 215-220
    [124] N. Dizdarevic, S. Tesnjak, G. Andersson. Converter Rating Power of Unified Power Flow Controller. 2002 IEEE Power Engineering Society Summer Meeting, Chicago, USA, 21st-25th July 2002, 1: 603-609
    [125] Q. Yu, S. D. Round, L. E. Norum, et al. Dynamic Control of a Unified Power Flow Controller. 27th Annual IEEE Power Electronics Specialists Conference, 1996. PESC '96 Record., New York, U. S. A, 23rd-27th June 1996, 1: 508-514
    [126] Q. Yu, Lars Norum, Tore Undeland, et al. Investigation of Dynamic Controllers for a Unified Power Flow Controller. Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996, Taipei, Taiwan, 5th-10th Aug. 1996, 3: 1764-1769
    [127] C. M. Yam, M. H. Haque. Dynamic Decoupled Compensator for UPFC Control. International Conference on Power System Technology, 2002. Proceedings. PowerCon 2002, Kunming, China, 13rd-17th Oct. 2002, 3: 1482-1487
    [128] Hideaki Fujita, Hirofumi Akagi, Yasuhiro Watanabe. Dynamic Performance of a Unified Power Flow Controller for Stabilizing AC Transmission Systems. IEEE 33rd Annual Power Electronics Specialists Conference, 2002. PESC’ 02, New York, U. S. A, 23rd-27th June 2002, 1: 81-87
    [129] Hideaki Fujita, Yasuhiro Watanabe, Hirofumi Akagi. Control and Analysis of a Unified Power Flow Controller. IEEE Transactions on Power Electronics, November 1999, 14(6): 1021-1027
    [130] L. Y. Dong, L. Zhang, M. L. Crow. A New Control Strategy for the Unified Power Flow Controller. IEEE Power Engineering Society Winter Meeting, 2002, U. S. A, 27th-31st Jan. 2002, 1: 562-566
    [131] Mahinda Vilathgamuwa, Choi San Shing, Tseng King Jet, et al. A Synchronous Reference Frame Based Control of an Unified Power Flow Controller. 1997 International Conference on Power Electronics and Drive Systems, Singapore, 26th-29th May 1997, 2: 844-849
    [132] S. Kannan, Shesha Jayaram, M. M. Salama. Real and Reactive Power Coordination for a Unified Power Flow Controller. IEEE Transactions on Power Systems, August 2004, 19(3): 1454-1461
    [133] P. Garcia-Gonzalez, A. Garcia-Cerrada. Detailed analysis and experimental results of the control system of a UPFC. IEE Proceedings on Generation, Transmission and Distribution, March 2003, 150(2): 147-154
    [134] I. Papic, P. Zunko, D. Povh, et al. Basic Control of Unified Power Flow Controller, IEEE Transactions on Power Systems, November 1997, 12(4): 1734-1739
    [135] D. G. Cho, E. Ho. Song. A Simple UPFC Control Algorithm and Simulation on Stationary Reference Frame. IEEE International Symposium on Industrial Electronics, 2001. Proceedings, ISIE 2001, Pusan, Korea, 12th-16th June 2001, 3: 1810-1815
    [136] Mitsuhiro Takeshita, Hirofumi Sugihara. Effect of Fault Current Limiting of UPFC for Power Flow Control in Loop Transmission. IEEE/PES Transmission andDistribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, 6th-10th Oct. 2002, 3: 2032-2036
    [137] M. Zouiti, S. Saadate, X. Lombard, et al. Electronic Based for Filter Mitigation. The 8th International Conference on Harmonics and Quality of Power ICHQP’ 98, Athens, Greece, October 14th-16th, 1998: 1182-1187
    [138] Yasuo Morioka, Yasuhiro Mishima, Yoshiki Nakachi. Implementation of Unified Power Flow Controller and Verification for Transmission Capability Improvement. IEEE Transactions on Power Systems, May 1999, 14(2): 575-581
    [139] P. K Dash, A. K. Pradhan, Ganapati Panda, et al. Adaptive Relay Setting for Flexible AC Transmission Systems (FACTS). IEEE Transactions on Power Delivery, January 2000, 15(1): 38-43
    [140] Kang Y. L, G. B. Shrestha, Lie T. T. Consideration of DC Capacitor and Line Inductance in the Design of UPFC to Improve Transient Stability. IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA, 2001, 28th Jan. -1st Feb. 2001, 3: 1277-1282
    [141] 雷绍兰, 王婧予, 周林. 统一潮流控制器中逆变器特定谐波消去调制方法研究. 电力自动化设备, 2003. 8, 23(8): 13-16
    [142] A. Sonnenmoser, P. W. Lehn. Line Current Balance with a Unified Power Flow Controller. IEEE Transactions on Power Delivery, July 1999, 14(3): 1151-1157
    [143] Zhengyu Huang, Yixin Ni, C. M. Shen et al. Application of Unified Power Flow Controller in Interconnected Power Systems-Modeling, Interface, Control Strategy and Case Study. IEEE Transactions on Power Systems, May 2000, 15(2): 817-824
    [144] Kouichi Hidese, Toshiharu Monai, Ichiro Takano, et al. A Collaborative Operation Method of UPFC Type Dispersed Power Supply System using Fuel Cell and Electric Double Layer Capacitor. 2003 IEEE PES Transmission and Distribution Conference and Exposition, 7th-12th Sept. 2003, 2: 711-716
    [145] C. W. Edwards. Advanced static var generator employing GTO thyristors. IEEE Transactions on Power Delivery, 1988, 3(4): 78-85
    [146] Mori S, Matsuno K, Hasgawa T, et al. Development of a Large Static VAR Generator Using Self-Commutated Inverters for Improving Power System Stability. IEEETransactions on PWRS, 1993, 8(1): 371-377
    [147] H. K. Tyll. GTO-SVC Technology for improved use of the rejsby mode windfarm. CEPSI, Kuala, 1996
    [148] Schauder, C., Stacey, E., Lund, M. et al. AEP UPFC project: installation, commissioning and operation of the ±160 MVA STATCOM (phase I). IEEE Transactions on Power Delivery, October 1998, 13(4): 1530-1535
    [149] Peng F Z, Lai J S. Dynamic performance and control of a static var generator using cascade multilevel inverters. IEEE Transactions on Industry Applications, 1997, 33(3): 748-755
    [150] Reed G., Paserba J., Groasdaile T.. The VELCO STATCOM based transmission system project. Power Engineering Society Winter Meeting, 2001, (3): 1109-1114
    [151] Reed G., Paserba J., Groasdaile T.. STATCOM application at VELCO Essex substation. Transmission and Distribution Conference and Exposition, 2001, (2): 1133-1138
    [152] L. Dong, M. L. Crow, Z. Yang, et al. A Reconfigurable FACTS System for University Laboratories. IEEE Transactions on Power Systems, Feb. 2004, 19(1): 120-128
    [153] A. S. Mehraban, A. Edris, C. D. Schauder, et al. Installation, Commission, and Operation of the World’s First UPFC on the AEP System. 1998 International Conference on Power System Technology, 1998, Proceedings, POWERCON '98, Beijin, China, 18th-21st Aug. 1998, 1: 323-327
    [154] Ben Mehraban, Len Kovalsky. Unified Power Flow Controller on the AEP System: Commissioning and Operation. IEEE Power Engineering Society 1999 Winter Meeting, New York, USA, 31st Jan-4th Feb 1999, 2: 1287-1292
    [155] Bakari Mwinyiwiwa, Boon-Teck Ooi, Zbigniew Wolanski. Multimodular UPFC Operated by Phase-Shifted Triangle Carrier SPWM Strategy. 1997 IEEE Industry Applications Conference, 1997, Thirty-Second IAS Annual Meeting, IAS '97, New Orleans, Louisiana, USA, 5th-9th Oct. 1997, 2: 1641-1646
    [156] Bakari Mwinyiwiwa, Zbigniew Wolanski, Boon-Teck Ooi. Microprocessor Implemented SPWM for Multi-converters with Phase-Shifted Triangle Carriers. IEEE Transactions on Industrial Applications, May/June 1998, 34(3): 487-494
    [157] Bakari Mwinyiwiwa, Zbigniew Wolanski, Boon-Teck Ooi. UPFC Using Multi-converter Operated by Phase-Shifted Triangle Carrier SPWM Strategy. IEEE Transactions on Industrial Applications, May/June 1998, 34(3): 495-500
    [158] Diego E. Soto-Sanchez, Tim C. Green. Voltage Balance and Control in a Multi-Level Unified Power Flow Controller. IEEE Transactions on Power Delivery, October 2001, 16(4): 732-738
    [159] Diego Soto, Tim. C. Green. A Comparison of High-Power Converter Topologies for the Implementation of FACTS Controllers. IEEE Transactions on Industrial Electronics. October 2002, 49(5): 1072-1080
    [160] Boon-Teck Ooi, Mehrdad Kazerani. Unified Power Flow Controller Based on Matrix Converter. 27th Annual IEEE Power Electronics Specialists Conference, 1996, PESC '96, Universita degli Studi di Milano, Italy, 23rd-27th June 1996, 1: 502 - 507
    [161] Ray, S, Seungwon An, Gedra, T. W. Introduction of power electronics to electric machines lab. The 2002 45th Midwest Symposium on Circuits and Systems, 2002, MWSCAS-2002, Tulsa, Oklahoma, U. S. A, 4th-7th Aug. 2002, 2: II-383-II-386
    [162] 熊健. 三相电压型高频 PWM 整流器研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 1999
    [163] Blasko V, Kaura V. A New mathematical model and control of a three-phase AC-DC voltage Source converter. IEEE Trans on Power Electronics, 1997, 12(1): 116~123
    [164] P. W. Lehn. Exact Modeling of the Voltage Source Converter. IEEE Transactions on Power Delivery, January 2002, 17(1): 217-222
    [165] 杨德刚, 赵良炳, 刘润生. 三相高功率因数整流器的建模及闭环控制. 电力电子技术, 1999, 5: 49-51
    [166] 毛鸿, 吴兆麟, 王毅. 三相电压型 PWM 整流器无电流传感器控制策略研究. 电工技术学报, 2001. 4, 16(2): 56-60
    [167] 史伟伟, 蒋全, 胡敏强等. 三相电压型 PWM 整流器的数学模型和主电路设计. 东南大学学报(自然科学版), 2002. 1, 32(1): 50-55
    [168] 赵振波, 李和明. 单位功率因数 PWM 整流器双闭环 PI 调节器设计. 电工技术杂志, 2003, (5): 68~71
    [169] IEEE Special Stability Controls Working Group. Static Var Compensator Models forPower Flow and Dynamic Performance Simulation. IEEE Transactions on Power System. February 1994, 9(1): 229-240
    [170] Kalyan K. Sen, Albert J. F. Keri. Comparison of Field Results and Digital Simulation Results of Voltage-Sourced Converter-Based FACTS Controllers. IEEE Transactions on Power Delivery, January 2003, 18(1): 300-306
    [171] D. Dickmander, B. Thorvaldsson, G. Stromberg, et al. Control System Design and Performance Verification for the Chester, Maine Statice Var Compensator. IEEE Transactions on Power Delivery, July 1992, 7(3): 1492-1503
    [172] 栗春, 姜齐荣, 王仲鸿. STATCOM 电压控制系统性能分析. 中国电机工程学报, 2000, 20(8): 46-50
    [173] C. K. Sao, P. W. Lehn, M. R. Iravani, J. A. Martinez. A benchmark system for digital time-domain simulation of a pulse-width-modulated D-STATCOM. IEEE Trans. on Power Delivery, 2002, 17(4): 1113-1120
    [174] S. A. Al-Mawsawi. Comparing and evaluating the voltage regulation of a UPFC and STATCOM. Electrical power and energy systems, 2003, (25): 735-740
    [175] 黄振宇, 刁勤华, 倪以信, 陈寿孙. 统一潮流控制器的控制系统分析及控制策略设计. 电网技术, 1999.7, 23(7)
    [176] F. W. Huang, B. S. Rigby, R. G. Harley. A Static Synchronous Series. Compensator Model for EMTDC. IEEE Africon 2002: 933-939
    [177] Y. Ye, M. Kazerani. Operating Constraints of FACTS Devices. Power Engineering Society Summer Meeting, Seattle, Washington, July 2000, 3: 1579-1584
    [178] M. H. Haque. Stability Improvement by FACTS Devices: A Comparison between STATCOM and SSSC. Power Engineering Society General Meeting, San Francisco, California USA, 12-16 June 2005, 2: 1708-1713
    [179] 康勇. 高频大功率 SPWM 逆变电源输出电压控制技术研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 1994
    [180] 彭力. 基于状态空间理论的 PWM 逆变电源控制技术研究. [博士学位论文]. 武汉: 华中科技大学图书馆, 2004
    [181] H. Award, J. Svensson. Charging Technique for Energy-Storage Capacitors for Static Series Compensator. Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, ISIE 2002, (3): 930-935
    [182] H. Award, J. Svensson. Self-startup of static series compensator. Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, ISIE 2002, (4): 1306-1311
    [183] W. Leonhard. Introduction to control engineering and linear control systems. New Delhi: Allied, 1976
    [184] W. Leonhard. Control of electrical drives. Springer Verlag, Berlin, 1985
    [185] T. J. E Miller. Reactive Power Control in Electric Systems[M]. New York, John Wiley & Sons, 1982
    [186] Arnez, R. L. V. Zanetta, L. C. Unified power flow controller (UPFC): its versatility in handling power flow and interaction with the network. IEEE PES Transmission and Distribution Conference and Exposition 2002, Oct. 2002, 2: 1338- 1343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700