携带BRCA杂合性突变的卵巢表面上皮细胞BTAK的表达和卵巢癌发生机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     明确BRCA1/2杂合性突变卵巢表面上皮细胞形态学的改变,在预防性卵巢切除标本中BTAK和p53的表达水平,进一步探讨BRCA杂合性突变的卵巢上皮细胞中BTAK与p53的关系以及卵巢癌的发生机制。
     方法:
     1.携带BRCA杂合性突变的卵巢表面上皮细胞形态学的改变:
     选取32例BRCA1/2杂合性突变病人的卵巢、27例正常卵巢,HE染色后,在显微镜下观察其病理形态学改变。观察指标:表面上皮内陷,上皮包涵囊肿,皮质间质增生,砂粒体,子宫内膜异位,表面乳头状突起,乳头状瘤病,上皮增生(专指上皮细胞假复层,即有多层核),上皮细胞的异型性(专指在上皮增生基础上有不典型性、多形性和极性消失)。
     2.携带BRCA杂合性突变的卵巢表面上皮细胞BTAK的表达:
     32例BRCA1/2杂合性突变病人的卵巢、27例正常卵巢以及194例卵巢癌的组织芯片,免疫组织化学标记BTAK蛋白,图像分析检测光密度值,统计分析表达水平的差异;1个BRCA1突变的细胞株OSE76和3个没有突变的细胞株OSE72,OSE103和OSE137,用Western Blot方法检测BTAK蛋白表达的差异。
     3.携带BRCA杂合性突变的卵巢表面上皮细胞p53的表达及卵巢癌的发生机制的研究:
     32例BRCA1/2杂合性突变病人的卵巢、27例正常卵巢以及194例卵巢癌的组织芯片,用免疫组织化学方法标记p53蛋白,统计分析表达水平的差异以及BTAK与p53表达的关系;用逆转录病毒载体方法构建含p53siRNA的表达载体,阻断p53基因,来研究BTAK的表达情况,从而进一步掌握BTAK与p53的相互关系,认识其在卵巢癌发生机制中的作用。
     结果:
     1.BRCA突变组和正常卵巢组的表面上皮细胞,两者的病理形态学改变有显著差异,表现在上皮增生和上皮细胞的异型性(p=0.0418和p=0.0289),BRCA突变组的病变的发生率比正常卵巢组病变的发生率显著增高;而正常卵巢组无病理改变,比BRCA突变组显著减低(p=0.0341)。同时BRCA突变组与正常卵巢组比较,出现表面上皮内陷、间质增生和表面乳头状突起的,BRCA突变组的发生率比正常卵巢组的发生率高,但是统计学没有显著意义。
     2.在正常卵巢、BRCA突变卵巢和卵巢癌中BTAK的表达:组织学标本中BTAK在21/32(66%)的杂合性BRCA突变携带者的卵巢中表达,在正常卵巢4/27(15%)中表达(p<0.05)。杂合性BRCA突变携带者卵巢与卵巢癌表达194/194(100%)相比,两者之间有显著差异(p<0.05)。在携带或不携带BRCA1杂合性突变的原代卵巢上皮细胞株中,Western blot检查结果显示,3个不携带BRCA突变的上皮细胞株(OSE72,OSE103和OSE137)没有检测到BTAK的条带,而携带BRCA1突变的上皮细胞株(OSE76)有特异性的BTAK蛋白的强表达(46 kDa)。
     3.在正常卵巢、BRCA突变卵巢和卵巢癌中p53的表达:组织学标本中p53仅在正常卵巢的1例中(4%)表达,在BRCA突变携带者的卵巢中有10/32(31%)的表达,这两者之间无统计学差异(p>0.05)。卵巢癌表达最高,有139/194(72%)表达,与杂合性BRCA突变携带者卵巢之间存在显著差异(p<0.05)。用秩和检验证实BTAK表达与p53表达有直接的相互关系(r=0.306,p<0.001)。
     4.我们建立了一个稳定的SiRNA沉默p53基因。Western blot检测了OSE76和OSE76/p53i的原代卵巢上皮细胞中BTAK的表达水平显示,感染p53siRNA OSE76细胞没有检测到BTAK的条带,而携带BRCA1突变的上皮细胞株(OSE76)有特异性的BTAK蛋白的强表达(46kDa)。
     结论:
     1.证明了BRCA杂合性突变的卵巢表面上皮细胞更易于显示不典型增生;卵巢癌发生存在早期病变:表面上皮的不典型增生;预防性卵巢切除标本是研究卵巢癌发病机制和早期病变的最佳标本。
     2.人类携带杂合性BRCA胚细胞突变的卵巢表面上皮细胞BTAK的蛋白表达水平增高,且在卵巢表面上皮细胞内可以由杂合性BRCA1或BRCA2突变激活;提出BTAK基因在卵巢癌发生的早期阶段扮演重要角色,BTAK表达水平升高可能是早期卵巢癌发生的信号,它可能是潜在的诊断指标和基因治疗的靶标。
     3.携带杂合性BRCA胚细胞突变的卵巢表面上皮细胞p53表达水平升高,且在卵巢表面上皮细胞内可以由杂合性BRCA1或BRCA2突变激活;证实BTAK高表达和p53高表达密切相关且可能在卵巢癌的发生机制中两者相互作用,与BRCA基因一起共同在卵巢癌的发生机制中扮演重要角色。
Purpose:
     This study was to determine the morphologic changes in ovariansurface epithelial cells, and BTAK & p53 expression patterns inprophylactically removed ovaries with heterozygous BRCA1/2 mutationas compared with normal ovaries and ovarian cancer controls. We soughtto determine the relationship between BTAK and p53 so as to understandthe tumorigenesis of ovarian carcinoma.
     Methods:
     1. Morphologie features in ovarian surface epithelial cells withheterozygous BRCA1/2 mutation:
     Two pathologists (ZZ and DGR) observed the morphologic changesunder microscopy independently in a blinded manner in ovaries of 32patients with known BRCA1/2 mutation that underwent prophylacticoophorectomy and 27 normal ovaries from patients without any knownmutation. The evaluation of the following morphologic features in H&Estained slides includes deep surface epithelial invaginations, epithelialinclusion cysts, cortical stromal hyperplasia, psammoma bodies,endometriosis, surface papillations, papillomatosis, epithelial hyperplasia (defined by epithelial nuclear stratification), epithelial dysplasia (definedby epithelial hyperplasia with atypia, pleomorphism, and loss of polarity).
     2. Expression of BTAK in primary ovarian epithelial cells with orwithout BRCA1 heterozygous mutation:
     We performed immunohistochemical staining of morphologically normalovaries in a cohort of 32 patients who had prophylactic surgery andcompared these with 27 normal ovaries and 194 ovarian cancer controls.The BTAK intensity of staining was analyzed by computerized imageanalysis. The mean relative optical density was expressed as arbitraryunits of intensity and used for analysis. For statistical purposes opticaldensity values were grouped in a 4 score grading system as the meanoptical density±SD (177.46±15.10). Absence of staining was defined asnegative and given a score of 0, weak expression a score of 1, moderateexpression a score of 2 and strong expression a score of 3. Western blotanalysis of BTAK was performed in a primary cell culture carryingheterozygous BRCA1 mutation (OSE76) and three normal ovariansurface epithelial cell cultures (OSE72, OSE103, OSE137).
     3. Expression of p53 in primary ovarian epithelial cells with orwithout BRCA1 heterozygous mutation and study oftumorigenesis on ovarian carcinoma:
     We performed immunohistochemical staining in 32 patients with BRCAmutation compared these with 27 normal ovaries and 194 ovarian cancercontrols. Evaluation of the average expression for p53 expression wasperformed visually by two pathologists (ZZ and DGR) as follows: 0, lessthan 10% nuclear staining; 1, more than10%, less than25% nuclear staining; 2, more than 25%, less than 50% nuclear staining; 3, more than50% nuclear staining, discrepancy was resolved by third pathologist (JL).The relationship between expression of BTAK and p53 was analyzedwith Spearman Rank Order Correlation test. We developed aretrovirus-based system for stably expressing siRNA against p53 geneand then analyzed the BTAK expression by Western Blot. Withunderstanding of the relationship between BTAK expression and p53expression, the carcinogenesis of ovarian carcinoma was analyzed.
     Results:
     1. Morphologic Change:
     There was significantly difference in histological alterations betweencases and controls, especially including hyperplastic or dysplastic lesions(p=0.0418 and p=0.0289) on hematoxylin and eosin-stained sections.Normal ovaries have less frequency of pathologic lesions than BRCAmutation group (p=0.0341). The two groups both have deep surfaceepithelial invaginations, cortical stromal hyperplasia, surface papillations,but there were no significance.
     2. Expression of BTAK:
     The expression of BTAK was increased in 21 of 32 (66%) ovariescarrying a heterozygous BRCA mutation as compared with 27 normalcontrol ovaries which 4 of 27 (15%) positive for BTAK expression(p<0.05; Mann-Whitney test). While ovarian cancer showed furtherincrease in BTAK as compared with BRCA heterozygous ovaries ina11-194 cases (p<0.001; Mann-whitney test). The BTAK expression was significantly increased in primary culture carrying a heterozygousBRCA1 mutation (OSE76) as compared to those with no knownBRCA1/2 mutation (OSE72, OSE103 and OSE137) by Western blotanalysis. A specific band of BTAK protein (46 kDa) was detectedstrongly in OSE76 cell line, but no clear bands were found in OSE72,OSE 103 and OSE137.
     3. Expression of p53:
     The expression of p53 was positive in 1 of 27 cases (4%) in normal ovary,weakly increased in 10 of 32 (31%) positive in ovaries with knownBRCA mutation and highly expressed in 139 of 194 (72%) positive inovarian carcinomas. There were significantly difference expressionbetween ovarian carcinomas and ovaries with BRCA mutation (p<0.05;Mann-Whitney test). Using Spearman correlation rank order test, weobserved BTAK was correlated with p53 (r=0.306, p<0.001).
     4. Study of tumorigenesis:
     We developed a retrovirus-based system for stably expressing siRNAagainst p53 gene. SiRNA targeting p53 reduces expression of BTAK inOSE76 Cell Line. High expression of BTAK was in OSE76 cell line(46kDa) and no expression of BTAK was detected in OSE76 after p53siRNA introduction.
     Conclusions:
     1. The current study suggests pathologic evidence for the existence ofpreneoplastic changes in ovarian surface epithelium and support thepreviously proposed concept of ovarian dysplasia. The specimen of prophylactic oophorectomy is the best sample for findingpremalignant alterations in histology and early change intumorigenesis of ovarian carcinoma.
     2. Increased expression of BTAK is directly correlated with mutationstatus of BRCA1/2 genes, suggesting that mutation in a single alleleof either BRCA1 or 2 may be responsible for the activation of BTAK.This activation may be a key early genetic event in the developmentof hereditary ovarian cancer. Increased expression of BTAK may bean early signal in ovarian cancer and can be a potential diagnosticmarker and offer a novel target for chemoprevention.
     3. Increased expression of p53 is directly correlated with mutation statusof BRCA1/2 genes, suggesting that mutation in a single allele ofeither BRCA1 or 2 may be responsible for the activation of p53.BTAK expression correlates with p53 and their expressions may be anearly genetic event in the development of human ovarian cancer,especially in BRCA mutant patient. The interaction of BRCA, BTAKand p53 regulates the initiation of tumorigenesis in ovariancarcinoma.
引文
1. Jemal, A., Siegel, R., Ward, E., et al. 2007. Cancer statistics, 2007. CA Cancer J Clin. 57: 43-66.
    2. Finch, A., Beiner, M., Lubinski, J., et al. 2006. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 Mutation. Jama. 296: 185-92.
    3. Easton, D.F., Ford, D., and Bishop, D.T. 1995. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet. 56: 265-71.
    4. Ford, D., Easton, D.F., Stratton, M., et al. 1998. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 62: 676-89.
    5. Struewing, J.P., Hartge, P., Wacholder, S., et al. 1997. The risk of cancer associated with specific mutations of BRCAl and BRCA2 among Ashkenazi Jews. N Engl J Med. 336: 1401-8.
    6. Shah, N., Lepre, J., Tu, Y., et al. 2003. Can we identify cellular pathways implicated in cancer using gene expression data? Proc IEEE Comput Soc Bioinform Conf. 2: 94-103.
    7. Kennedy, R.D. and D'Andrea, A.D. 2005. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19: 2925-40.
    8. Somasundaram, K., MacLachlan, T.K., Burns, T.F., et al. 1999. BRCA1 signals ARF-dependent stabilization and coactivation of p53. Oncogene. 18:6605-14.
    9. Chai, Y.L., Cui, J., Shao, N., et al. 1999. The second BRCT domain of BRCAl proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene. 18: 263-8.
    10. MacLachlan, T.K., Dash, B.C., Dicker, D.T., et al. 2000. Repression of BRCA1 through a feedback loop involving p53. J Biol Chem. 275: 31869-75.
    11.Gowen, L.C., Avrutskaya, A.V., Latour, A.M., et al. 1998. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science. 281: 1009-12.
    12.Xu, X., Weaver, Z., Linke, S.P., et al. 1999. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 3: 389-95.
    13.Bischoff, J.R., Anderson, L., Zhu, Y., et al. 1998. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. Embo J. 17: 3052-65.
    14.Sen, S., Zhou, H., and White, R.A. 1997. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene. 14: 2195-200.
    15.Katayama, H., Brinkley, W.R., and Sen, S. 2003. The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev. 22:451-64.
    16.Ducat, D. and Zheng, Y. 2004. Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res. 301: 60-7.
    17.Meraldi, P., Honda, R., and Nigg, E.A. 2004. Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev. 14: 29-36.
    18.Stenoien, D.L., Sen, S., Mancini, M.A., et al. 2003. Dynamic association of a tumor amplified kinase, Aurora-A, with the centrosome and mitotic spindle. Cell Motil Cytoskeleton. 55: 134-46.
    19.Zhou, H., Kuang, J., Zhong, L., et al. 1998. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet. 20: 189-93.
    20.Sakakura, C, Hagiwara, A., Yasuoka, R., et al. 2001. Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer. 84:824-31.
    21.Hu, W., Kavanagh, J.J., Deaver, M, et al. 2005. Frequent overexpression of STK15/Aurora-A/BTAK and chromosomal instability in tumorigenic cell cultures derived from human ovarian cancer. Oncol Res. 15: 49-57.
    22.Kamada, K., Yamada, Y, Hirao, T., et al. 2004. Amplification/overexpression of Aurora-A in human gastric carcinoma: potential role in differentiated type gastric carcinogenesis. Oncol Rep. 12:593-9.
    23.Warner, S.L., Bearss, D.J., Han, H., et al. 2003. Targeting Aurora-2 kinase in cancer. Mol Cancer Ther. 2: 589-95.
    24.Ouchi, M., Fujiuchi, N., Sasai, K., et al. 2004. BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem. 279: 19643-8.
    25.Hsu, L.C., Doan, T.P., and White, R.L. 2001. Identification of a gamma-tubulin-binding domain in BRCA1. Cancer Res. 61: 7713-8.
    26.Xu, X., Wagner, K.U., Larson, D., et al. 1999. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet. 22: 37-43.
    27.Barakat, R.R., Federici, M.G., Saigo, P.E., et al. 2000. Absence of premalignant histologic, molecular, or cell biologic alterations in prophylactic oophorectomy specimens from BRCA1 heterozygotes. Cancer. 89: 383-90.
    28.Rosenthal, A. and Jacobs, I. 1998. Ovarian cancer screening. Semin Oncol. 25: 315-25.
    29.Narod, S.A. and Boyd, J. 2002. Current understanding of the epidemiology and clinical implications of BRCA1 and BRCA2 mutations for ovarian cancer. Curr Opin Obstet Gynecol. 14: 19-26.
    30.Rebbeck, T.R., Lynch, H.T., Neuhausen, S.L., et al. 2002. Prophylactic oophorectomy in carriers of BRCAl or BRCA2 mutations. N Engl J Med. 346: 1616-22.
    31.Kauff, N.D., Satagopan, J.M., Robson, M.E., et al. 2002. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med. 346: 1609-15.
    32.Plaxe, S.C., Deligdisch, L., Dottino, P.R., et al. 1990. Ovarian intraepithelial neoplasia demonstrated in patients with stage I ovarian carcinoma. Gynecol Oncol. 38: 367-72.
    33.Schlosshauer, P.W., Cohen, C.J., Penault-Llorca, F., et al. 2003. Prophylactic oophorectomy: a morphologic and immunohistochemical study. Cancer. 98: 2599-606.
    34.Mulligan, R.M. 1976. A survey of epithelial inclusions in the ovarian cortex of 470 patients. J Surg Oncol. 8:61-6.
    35.Radisavljevic, S.V. 1977. The pathogenesis of ovarian inclusion cysts and cystomas. Obstet Gynecol. 49: 424-9.
    36.Auersperg, N., Edelson, M.I., Mok, S.C., et al. 1998. The biology of ovarian cancer. Semin Oncol. 25: 281-304.
    37.Mittal, K.R., Zeleniuch-Jacquotte, A., Cooper, J.L., et al. 1993. Contralateral ovary in unilateral ovarian carcinoma: a search for preneoplastic lesions. Int J Gynecol Pathol. 12: 59-63.
    38.Resta, L., Russo, S., Colucci, G.A., et al. 1993. Morphologic precursors of ovarian epithelial tumors. Obstet Gynecol. 82: 181-6.
    39.Deligdisch, L., Einstein, A.J., Guera, D., et al. 1995. Ovarian dysplasia in epithelial inclusion cysts. A morphometric approach using neural networks. Cancer. 76: 1027-34.
    40.Grann, V.R., Jacobson, J.S., Thomason, D., et al. 2002. Effect of prevention strategies on survival and quality-adjusted survival of women with BRCA1/2 mutations: an updated decision analysis. J Clin Oncol. 20: 2520-9.
    41.Werness, B.A., Afify, A.M., Bielat, K.L., et al. 1999. Altered surface and cyst epithelium of ovaries removed prophylactically from women with a family history of ovarian cancer. Hum Pathol. 30: 151-7.
    42.Salazar, H., Godwin, A.K., Daly, M.B., et al. 1996. Microscopic benign and invasive malignant neoplasms and a cancer-prone phenotype in prophylactic oophorectomies. J Natl Cancer Inst. 88: 1810-20.
    43.Casey, M.J., Bewtra, C, Hoehne, L.L., et al. 2000. Histology of prophylactically removed ovaries from BRCA1 and BRCA2 mutation carriers compared with noncarriers in hereditary breast ovarian cancer syndrome kindreds. Gynecol Oncol. 78: 278-87.
    44.Piek, J.M., Verheijen, R.H., Menko, F.H., et al. 2003. Expression of differentiation and proliferation related proteins in epithelium of prophylactically removed ovaries from women with a hereditary female adnexal cancer predisposition. Histopathology. 43: 26-32.
    45.Qi Cai, K., Klein-Szanto, A., Karthik, D., et al. 2006. Age-dependent morphological alterations of human ovaries from populations with and without BRCA mutations. Gynecol Oncol.
    46.Stratton, J.F., Buckley, C.H., Lowe, D., et al. 1999. Comparison of prophylactic oophorectomy specimens from carriers and noncarriers of a BRCA1 or BRCA2 gene mutation. United Kingdom Coordinating Committee on Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. J Natl Cancer Inst. 91: 626-8.
    47.Bell, D.A. 2005. Origins and molecular pathology of ovarian cancer. Mod Pathol. 18 Suppl 2: S19-32.
    48.Colgan, T.J., Murphy, J., Cole, D.E., et al. 2001. Occult carcinoma in prophylactic oophorectomy specimens: prevalence and association with BRCA germline mutation status. Am J Surg Pathol. 25: 1283-9.
    49.Deligdisch, L., Gil, J., Kerner, H., et al. 1999. Ovarian dysplasia in prophylactic oophorectomy specimens: cytogenetic and morphometric correlations. Cancer. 86: 1544-50.
    50.Dyck, H.G., Hamilton, T.C., Godwin, A.K., et al. 1996. Autonomy of the epithelial phenotype in human ovarian surface epithelium: changes with neoplastic progression and with a family history of ovarian cancer. Int J Cancer. 69: 429-36.
    51.Arizti, P., Fang, L., Park, I., et al. 2000. Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol. 20: 7450-9.
    52.Roland, I.H., Yang, W.L., Yang, D.H., et al. 2003. Loss of surface and cyst epithelial basement membranes and preneoplastic morphologic changes in prophylactic oophorectomies. Cancer. 98: 2607-23.
    53.Hutson, R., Ramsdale, J., and Wells, M. 1995. p53 protein expression in putative precursor lesions of epithelial ovarian cancer. Histopathology. 27: 367-71.
    54.Bell, D.A. and Scully, R.E. 1994. Early de novo ovarian carcinoma. A study of fourteen cases. Cancer. 73: 1859-64.
    55.Scully, R.E. 1995. Early de novo ovarian cancer and cancer developing in benign ovarian lesions. Int J Gynaecol Obstet. 49 Suppl: S9-15.
    56.Auersperg, N., Wong, A.S., Choi, K.C., et al. 2001. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev. 22: 255-88.
    57.Kruk, P.A., Godwin, A.K., Hamilton, T.C., et al. 1999. Telomeric instability and reduced proliferative potential in ovarian surface epithelial cells from women with a family history of ovarian cancer. Gynecol Oncol. 73: 229-36.
    58.He, Q.Y., Zhou, Y, Wong, E., et al. 2005. Proteomic analysis of a preneoplastic phenotype in ovarian surface epithelial cells derived from prophylactic oophorectomies. Gynecol Oncol. 98: 68-76.
    59.Offit, K. 2000. Are BRCA1- and BRCA2-associated breast cancers different? J Clin Oncol. 18: 104S-6S.
    60.Robson, M., Rajan, P., Rosen, P.P., et al. 1998. BRCA-associated breast cancer: absence of a characteristic immunophenotype. Cancer Res. 58: 1839-42.
    61.Claus, E.B., Risch, N., and Thompson, W.D. 1994. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer. 73: 643-51.
    62.Spitzer, E., Abbaszadegan, M.R., Schmidt, F., et al. 2000. Detection of BRCA1 and BRCA2 mutations in breast cancer families by a comprehensive two-stage screening procedure. Int J Cancer. 85: 474-81.
    63.Tanner, M.M., Grenman, S., Koul, A., et al. 2000. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin Cancer Res. 6: 1833-9.
    64.Chung, C.M., Man, C., Jin, Y., et al. 2005. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells. Mol Carcinog. 43: 165-74.
    65.Rosen, D.G., Yang, G., Deavers, M.T., et al. 2006. Cyclin E expression is correlated with tumor progression and predicts a poor prognosis in patients with ovarian carcinoma. Cancer. 106: 1925-32.
    66.Rosen, D.G., Yang, G., Bast, R.C., Jr., et al. 2005. Use of ras-transformed human ovarian surface epithelial cells as a model for studying ovarian cancer. Methods Enzymol. 407: 660-76.
    67.Hirota, T., Kunitoku, N., Sasayama, T., et al. 2003. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell. 114: 585-98.
    68.Carmena, M. and Earnshaw, W.C. 2003. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol. 4: 842-54.
    69.Kufer, T.A., Nigg, E.A., and Sillje, H.H. 2003. Regulation of Aurora-A kinase on the mitotic spindle. Chromosoma. 112: 159-63.
    70.Miyoshi, Y., Iwao, K., Egawa, C, et al. 2001. Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer. 92: 370-3.
    71.Gritsko, T.M., Coppola, D., Paciga, J.E., et al. 2003. Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res. 9: 1420-6.
    72.Okada, S. and Ouchi, T. 2003. Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization. J Biol Chem. 278: 2015-20.
    73.Andrews, P.D., Knatko, E., Moore, W.J., et al. 2003. Mitotic mechanics: the auroras come into view. Curr Opin Cell Biol. 15:672-83.
    74.Yang, H., Ou, C.C., Feldman, R.I., et al. 2004. Aurora-A kinase regulates telomerase activity through c-Myc in human ovarian and breast epithelial cells. Cancer Res. 64: 463-7.
    75.Katayama, H., Sasai, K., Kawai, H., et al. 2004. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition ofp53. Nat Genet. 36:55-62.
    76.Zhang, Z., Singh, M., Rosen, D.G., et al. 2007. Activation of BTAK Expression in Primary Ovarian Surface Epithelial Cells Carrying Heterozygous BRCA Mutation. . Proceedings of the American Association for Cancer Research (in press):
    77.Goepfert, T.M., Adigun, Y.E., Zhong, L., et al. 2002. Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res. 62: 4115-22.
    78.Morgan, S.E. and Kastan, M.B. 1997. p53 and ATM: cell cycle, cell death, and cancer. Adv Cancer Res. 71: 1-25.
    79.Liu, Q., Kaneko, S., Yang, L., et al. 2004. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem. 279: 52175-82.
    80. Wang, X., Zhou, Y.X., Qiao, W., et al. 2006. Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene.
    81.Yang, G, Rosen, D.G, Mercado-Uribe, I., et al. 2007. Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells. Carcinogenesis. 28: 174-82.
    82.Sui, G, Soohoo, C, Affar el, B., et al. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A. 99: 5515-20.
    83.Yang, G., Cai, K.Q., Thompson-Lanza, J.A., et al. 2004. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 279: 4339-45.
    84.Havrilesky, L., Darcy, M, Hamdan, H., et al. 2003. Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 21:3814-25.
    85.Thor, A.D., Moore, D.H., II, Edgerton, S.M., et al. 1992. Accumulation of p53 tumor suppressor gene protein: an independent marker of prognosis in breast cancers. J Natl Cancer Inst. 84: 845-55.
    86.Zhang, D., Hirota, T., Marumoto, T., et al. 2004. Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene. 23: 8720-30.
    87.Berdnik, D. and Knoblich, J.A. 2002. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr Biol. 12: 640-7.
    88.Bischoff, J.R. and Plowman, G.D. 1999. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 9: 454-9.
    89.Kimura, M., Kotani, S., Hattori, T., et al. 1997. Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1. J Biol Chem. 272: 13766-71.
    90. Xu, B., Kim, S., and Kastan, M.B. 2001. Involvement of Brcal in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol. 21: 3445-50.
    1. Shih Ie, M. and R.J. Kurman, Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol, 2004. 164(5): p. 1511-8.
    2. Wang, N., Cytogenetics and molecular genetics of ovarian cancer. Am J Med Genet, 2002. 115(3): p. 157-63.
    3. Brewer, M.A., et al., Prevention of ovarian cancer: intraepithelial neoplasia. Clin Cancer Res, 2003.9(1): p. 20-30.
    4. Jemal, A., et al., Cancer statistics, 2005. CA Cancer J Clin, 2005. 55(1): p. 10-30.
    5. Ishioka, S., et al., Ultrastructural study of benign, low-malignant potential (LMP), and malignant ovarian tumors. Med Electron Microsc, 2004.37(1): p. 37-44.
    6. Anttila, M.A., et al., The prognostic significance of p53 expression quantitated by computerized image analysis in epithelial ovarian cancer. Int J Gynecol Pathol, 1999.18(1): p. 42-51.
    7. Brugghe, J., et al., Quantitative prognostic features in FIGO I ovarian cancer patients without postoperative treatment. Gynecol Oncol, 1998. 68(1): p. 47-53.
    8. Shirnizu, Y., et al., Toward the development of a universal grading system for ovarian epithelial carcinoma: testing of a proposed system in a series of 461 patients with uniform treatment and follow-up. Cancer, 1998.82(5): p. 893-901.
    9. Wen, W.H., et al., p53 mutations and expression in ovarian cancers: correlation with overall survival. Int J Gynecol Pathol, 1999. 18(1): p. 29-41.
    10. Auer, G., et al., Biological malignancy grading in early-stage ovarian carcinoma. Acta Oncol, 1996.35 Suppl 8: p. 93-8.
    11. Tavassoli FA, D.E, WHO Classification of Tumours: Pathology and Genetics of Tumours of the Breast and Female Genital Organs World Health Organization Classification of Tumours, ed. S.L. Kleihues P. 2003, Lyon: IARCPress. 117-124.
    12. Seidman, J.D. and R.J. Kurman, Pathology of ovarian carcinoma. Hematol Oncol Clin North Am, 2003.17(4): p. 909-25, ⅶ.
    13. Kaku, T., et al., Histological classification of ovarian cancer. Med Electron Microsc, 2003.36(1): p. 9-17.
    14. Fischer-Colbrie, J., et al., EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res, 1997.17(1B): p. 613-9.
    15. Classification and staging of malignant tumours in the female pelvis. Acta Obstet Gynecol Scand, 1971.50(1): p. 1-7.
    16. Silverberg, S.G., Histopathologic grading of ovarian carcinoma: a review and proposal. Int J Gynecol Pathol, 2000.19(1): p. 7-15.
    17. Malpica, A., et al., Grading ovarian serous carcinoma using a two-tier system. Am J Surg Pathol, 2004.28(4): p. 496-504.
    18. Bichel, E and A. Jakobsen, A new histologic grading index in ovarian carcinoma. Int J Gynecol Pathol, 1989.8(2): p. 147-55.
    19. Broders, A., Carcinoma: grading and practical application. Arch Pathol, 1926.2: p. 376-381.
    20.Rabban, J.T. and D.A. Bell, Current issues in the pathology of ovarian cancer. J Reprod Med, 2005. 50(6): p. 467-74.
    21.Bertelsen, K., B. Holund, and E. Andersen, Reproducibility and prognostic value of histologic type and grade in early epithelial ovarian cancer. Int J Gynecol Cancer, 1993. 3(2): p. 72-79.
    22.Finn, C.B., et al., Can we predict a high risk group in stage I epithelial ovarian cancer? Int J Gynecol Cancer, 1993. 3(4): p. 226-230.
    23.Shimizu, Y., et al., Toward the development of a universal grading system for ovarian epithelial carcinoma. I. Prognostic significance of histopathologic features--problems involved in the architectural grading system. Gynecol Oncol, 1998. 70(1): p. 2-12.
    24.Silverberg, S.G., Toward the development of a universal grading system for ovarian epithelial carcinoma. Gynecol Oncol, 1999. 73(1): p. 170-1.
    25.Brugghe, J., et al., Further evaluation of reproducibility and prognostic value of histologic typing and grading in FIGO stage I ovarian cancer patients without systemic locoregional adjuvant treatment. Int J Gynecol Cancer, 1995. 5(4): p. 262-268.
    26.Ross, J.S., et al., HER-2/neu oncogene amplification by fluorescence in situ hybridization in epithelial tumors of the ovary. Am J Clin Pathol, 1999.111(3): p. 311-6.
    27.Mayr, D. and J. Diebold, Grading of ovarian carcinomas. Int J Gynecol Pathol, 2000.19(4): p. 348-53.
    28.Sato, Y., et al., Prognostic value of histologic grading of ovarian carcinomas. Int J Gynecol Pathol, 2003. 22(1): p. 52-6.
    29. Ishioka, S., et al., Clinical factors and biomarkers which affect a new universal grading system for ovarian epithelial carcinoma. J Obstet Gynaecol Res, 2001.27(6): p. 313-8.
    30. Singer, G., et al., Mutational analysis of K-ras segregates ovarian serous carcinomas into two types. invasive MPSC (low-grade tumor) and conventional serous carcinoma (high-grade tumor). Int J Gynecol Pathol, 2003.22(1): p. 37-41.
    31. Levine, A.J., et al., The 1993 Walter Hubert Lecture: the role of the p53 tumour-suppressor gene in tumorigenesis. Br J Cancer, 1994. 69(3): p. 409-16.
    32. Morita, K., et al., Incidence of P53 and K-ras alterations in ovarian mutinous and serous tumors. Pathol Int, 2000. 50(3): p. 219-23.
    33. Singer, G., et al., Patterns of p53 mutations separate ovarian serous borderline tumors and low-and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol, 2005.29(2): p. 218-24.
    34. Kmet, L.M., L.S. Cook, and A.M. Magliocco, A review of p53 expression and mutation in human benign, low malignant potential, and invasive epithelial ovarian tumors. Cancer, 2003. 97(2): p. 389-404.
    35. Schuijer, M. and E.M. Berns, TP53 and ovarian cancer. Hum Mutat, 2003.21(3): p. 285-91.
    36. Geisler, J.P. and H.E. Geisler, Tumor markers and molecular biological markers in gynecologic malignancies. Curr Opin Obstet Gynecol, 2001.13(1): p. 31-9.
    37.Bell, D.A., Origins and molecular pathology of ovarian cancer. Mod Pathol, 2005.18 Suppl 2: p. S19-32.
    38.Nnene, I.O., et al., Cell cycle and apoptotic proteins in relation to ovarian epithelial morphology. Gynecol Oncol, 2004. 92(1): p. 247-51.
    39.Chan, W.Y., et al., Bcl-2 and p53 protein expression, apoptosis, and p53 mutation in human epithelial ovarian cancers. Am J Pathol, 2000. 156(2): p. 409-17.
    40.Ford, D. and D.F. Easton, The genetics of breast and ovarian cancer. Br J Cancer, 1995. 72(4): p. 805-12.
    41.Ford, D., et al., Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet, 1998. 62(3): p. 676-89.
    42.Wooster, R. and B.L. Weber, Breast and ovarian cancer. N Engl J Med, 2003. 348(23): p. 2339-47.
    43.Scully, R., et al., BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A, 1997. 94(11): p. 5605-10.
    44.Geisler, J.P., et al., Frequency of BRCA1 dysfunction in ovarian cancer. J Natl Cancer Inst, 2002. 94(1): p. 61-7.
    45.Hilton, J.L., et al., Inactivation of BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst, 2002. 94(18): p. 1396-406.
    46.Gemignani, M.L., et al., Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma. Gynecol Oncol, 2003. 90(2): p. 378-81.
    47. Cuatrecasas, M., et al., K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases. Cancer, 1997. 79(8): p. 1581-6.
    48. Hogdall, E.V., et al., K-ras alterations in Danish ovarian tumour patients. From the Danish "Malova" Ovarian Cancer study. Gynecol Oncol, 2003.89(1): p. 31-6.
    49. Singer, G., et al., Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst, 2003.95(6): p. 484-6.
    50. Singer, G., et al., Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol, 2002. 160(4): p. 1223-8.
    51. Russell, S.E. and W.G. McCluggage, A multistep model for ovarian tumorigenesis." the value of mutation analysis in the KRAS and BRAF genes. J Pathol, 2004. 203(2): p. 617-9.
    52. Sieben, N.L., et al., In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol, 2004. 202(3): p. 336-40.
    53. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54.
    54. Cohen, Y., et al., BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst, 2003.95(8): p. 625-7.
    55. Pollock, EM., et al., High frequency of BRAF mutations in nevi. Nat Genet, 2003.33(1): p. 19-20.
    56. Shigematsu, H. and A.F. Gazdar, Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer, 2006.118(2): p. 257-62.
    57.Gilks, C.B., Subclassification of ovarian surface epithelial tumors based on correlation of histologic and molecular pathologic data. Int J Gynecol Pathol, 2004. 23(3): p. 200-5.
    58.Iwabuchi, H., et al., Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res, 1995. 55(24): p. 6172-80.
    59.Kiechle, M., et al., Comparative genomic hybridization detects genetic imbalances in primary ovarian carcinomas as correlated with grade of differentiation. Cancer, 2001. 91(3): p. 534-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700