胃癌差异表达基因的筛选及ERBB2、ERBB3与胃癌相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     过去的20年,胃癌在病因学、发病机制及治疗学上均取得了巨大进步。特别是随着更多癌基因和抑癌基因的不断发现,人们对胃癌病理机制的认识也不断深化和逐步清晰;如CDH1基因和表皮生长因子受体(EGFR)家族在胃癌发病机制中的作用被人们发现和认识。随之而来的是治疗学上的不断创新和突破(如针对ERBB2的人源性单抗Herceptin已用于伴有ERBB2过表达的肿瘤病人的治疗)。此外,不断出现的新的研究方法也为我们进一步揭示胃癌的病理机制提供了有力支持,如基因芯片技术的“高通量”特性为我们深入探讨肿瘤发病过程中的“多分子变化”提供了重要手段。
     尽管ERBB2在肿瘤病理机制中的研究比较深入,但在胃癌的研究方面国内还缺乏对它的系统研究;加之近年来“ERBB2、ERBB1酪氨酸激酶编码区基因突变”的研究成为该领域研究的热点,国内却未见相关的研究报道。基于此,我们利用基因芯片技术,对2例胃癌(lauren分类:肠型胃癌)的癌组织及其癌旁组织表达谱的基因学变化进行了观察;在此基础上,我们选取基因芯片被证实上调表达的重要的癌基因-EGFR受体家族中的ERBB2和ERBB3(ratio分别为:7.8,2.6)进行了免疫组织化学分析(IHC);并检测了ERBB2 mRNA水平的表达;同时,在基因组水平对ERBB2酪氨酸激酶编码区基因变异进行了观察。
     本文旨在进一步阐述胃癌病理过程中基因表达方面的差异、深入探讨癌基因-ERBB2、ERBB3在胃癌发病过程中的作用,并试图揭示我国胃癌病人是否也存在基因组水平ERBB2酪氨酸激酶编码区基因突变。
     方法
     ①选取2例新鲜胃癌组织(lauren分类:肠型胃癌)及其对应的癌旁组织进行表达谱的基因芯片分析。②利用免疫组织化学方法对65例胃癌及25例癌旁正常组织的ERBB2和ERBB3在蛋白水平的表达进行了观察,并与临床资料进行了比较分析。③利用real-time RT-PCR对12例新鲜配对胃癌和癌旁组织中ERBB2 mRNA表达情况进行了相对定量,对比分析其mRNA表达。④对55例胃癌及25例癌旁组织提取基因组,利用套式PCR方法扩增ERBB2酪氨酸激酶编码区(18-23外显子),对PCR产物进行了测序、序列比对,观察其是否存在酪氨酸激酶编码区基因变异。
     结果
     1. 14,000点基因芯片实验结果:2例肠型胃癌上调表达的基因分别有1101条、986条;下调表达的基因分别为762条、553条。2例胃癌共同上调表达的基因有154条,共同下调表达的基因有79条。上调表达基因中包括了癌基因(如ERBB2、ERBB3等)、细胞周期调节蛋白(如cyclinD1、cyclinB1)、细胞代谢类分子(如CYP3A5、CYP2C8等)、上皮细胞分类化分子(如PGC、MUC1、MUC6等)及其他类分子。
     2. 65例胃癌及25例癌旁组织的ERBB2和ERBB3的免疫组织化学观察:胃癌组织中ERBB2和ERBB3表达阳性率分别为12.3%和10.8%,两者阳性分布区域相同,均定位于胞膜,癌旁组织均为阴性表达。其中ERBB2和ERBB3共表达2例,占3.1%。且ERBB2在肠型胃癌的阳性率高于弥散型(16.3% vs 4.5%,P<0.05),而ERBB3在弥散型胃癌的表达阳性率高于肠型胃癌(27.6% vs 2.3%,P<0.05)。
     3.实时定量RT-PCR结果:胃癌组织与癌旁组织中ERBB2 mRNA的表达存在差异,12例胃癌中8例ERBB2 mRNA的表达阳性(8/12),而12例癌旁组织中ERBB2 mRNA的表达阳性(3/12),两者相差显著(66.7% vs 25.0%,P<0.01)。进一步的Ct值分析表明,与癌旁组织相比,胃癌组织ERBB2表达平均增高5.76倍(P<0.01)。
     4.套式PCR及DNA测序:55例胃癌及25例正常胃组织均获得了ERBB2酪氨酸激酶编码区18-23外显子的扩增,并进行了测序。在胃癌组织中仅发现了1例TGC-TCC错义突变,且存在于其内含子内,ERBB2胞内段的酪氨酸激酶编码区(18-23外显子)未发现基因变异;所有癌旁组织均无ERBB2基因突变。
     结论
     1.对2例肠型胃癌进行的基因芯片的表达谱分析结果表明,与癌旁组织相比,胃癌组织内基因表达产生了严重紊乱,多种基因表达得以上调和下调,部分癌基因被活化。这些基因影响到细胞的生长、代谢、增生、细胞周期及细胞间信号传导等多个方面。
     2. ERBB2蛋白和ERBB3蛋白在胃癌组织中均存在过表达,且ERBB2更多见于肠型胃癌,而ERBB3则更多见于弥散型胃癌。提示作为受体酪氨酸激酶重要成员的ERBB2和ERBB3可能在不同病理类型的胃癌中发挥不同的作用。
     3.癌基因ERBB2在胃癌组织中存在明显的转录水平(mRNA)的活化。4.55例胃癌基因组水平未发现ERBB2酪氨酸激酶区的基因突变,提示我国胃癌患者ERBB2酪氨酸激酶编码区的基因突变率低,最少不是胃癌发生过程中的“频发事件”。
Background In the past two decades many important dicoveries and improvements have been made in the gastric cancer research regarding the etiology, pathogenesis and therapeutic methods. Especially with the dicovery of more and more oncogenes and tumor reppressor genes, for example, the identification of CDH1 and human epithelial growth factor receptors family, the carcinogenesis of gastric cancer is becoming more and more clear, and our insight into gastric cancer is deepening step by step. Subsequently, more new innovations and even some breakthrough were made therapeutically,and herceptin- a humanized monoclonal antibody used in the gastric cancer patient with ERBB2 over expression, is the case. Additionally, the development of new approaches to functional genomics, for example the characteristic of“high output”of microarray, has markedly improved our ability to explore molecular alterations underlying gastric carcinogenesis and progression.
     In the first part of our article, we screened the differentially expressed genes by studing two cases of intestinal type of gastic cancer tissue using cDNA microarray compared with the adjacent normal part. Subsequently immunohistochemistry (IHC) was appllied to investigate the expression of ERBB2 and ERBB3- the up regulated oncogenes which have been identified in the first part. At the same time, real-time quantitative reverse transcriptional ploymerase chain reaction was performed to quantify the relative expression of mRNA of ERBB2 in the gastric cancer tissue. And the genomic mutations of ERBB2 coding sequence of tyrosine kinase were detected by nested PCR and then sequenced. The aim of the study is to elicit the carcinogenesis of the receptor tyrosine kinases (especially ERBB2 and ERBB3) in the gastric cancer, and ascertain whether there exist genomic mutations in the coding sequence of ERBB2 tyrosine kinases. Methods Two pairs of fresh resected samples (intestinal type of gastric caner tissue and the matched adjacent normal tissue according to the Lauren classfication) were appllied to cDNA microarray to screen the differentially expressed genes. The expression of ERBB2 and ERBB3 which were confirmed to be over-expressed in the microarray test, also known as the important members of epithelial growth factor receptor(EGFR) family, were detected in 65 cases of gastric cancer and 25 cases of adjacent normal tissue using immunohistochemistry (IHC). The results of expression of ERBB2 and ERBB3 in gastric cancer tissue were compared with the clinical parameters. Relative quantification of mRNA of ERBB2 in 12 pairs of fresh specimens (the gastric cancer tissue and the matched adjacent noraml tissue) was quantified by real-time reverse transcriptional polymerase chain reaction. The genome was extracted from 55 gastric caner tissues and 25 adjacent normal tissues, and the coding sequence of tyrosine kinase of ERBB2 was amplified by nested-PCR. The PCR products were sent to be sequenced.
     Results
     1. The results of gene expression profile by cDNA microarray analysis (1,4000 unique human cDNA sequences): Over 1000 genes were over-expressed in the 2 cases, and 762 genes and 553 genes were under-expressed respectively. Among the two cases, 154 genes were identified as the co-over-expressed genes and 79 genes as the co-under-expressed genes. Oncogenes such as ERBB2 and ERBB3,cell cycle regulating proteins such as cyclinD1 and cyclinB1, molecules of cell metabolism such as CYP3A5、CYP2C8, and cell epithelial cluster antigens such as mucin 1 and mucin 6,were identified.
     2. IHC demonstrated that ERBB2 and ERBB3 were over-expressed, accounting for 12.3% and 10.8% respectively in the gastric cancer tissues, while there was no positive stain in the adjacent normal tissues. The localization of ERBB2/ERBB3 was mainly the cytomembrane and/or cytoplasma. There were two cases of co-over-expressed ERBB2 and ERBB3, accounting for 3.3%. Furthermore, the rate of positive stain of ERBB2 in the intestinal type of gastric cancer is higher than that in the diffuse type; while the expression of ERBB3 demonstrated the opposite results.
     3. The results of real-time RT-PCR: The significant difference of the expression of mRNA between cancer tissue and the matched adjacent normal tissue was observed. Of the 12 gastric cancer cases, eight were postive for mRNA of ERBB2;while only three were positive in the 12 adjacent normal tissues. There was 5.76 folds elevation of ERBB2 mRNA in gastric cancer tissue than that in the adjacent tissue by evaluation of Ct.
     4. Results of amplification of coding sequence of tyrosine kinase of ERBB2 by nested PCR: Fifty-five cases of cancer tissue got the complete amplification of all the exons of ERBB2 tyrosine kinase for sequencing, and twenty five cases of normal tissue got the complete amplification. No mutations were found in the coding sequence of tyrosine kinase of ERBB2 both in cancer and normal tissues except one missense mutation of TGC-TCC in the intron.
     Conclusions
     1. Severe disturbance of genes expression profile in gastric cancer is a common phenomenon. The over-expressed and under-expressed genes extensively and intensively affect cell biocycle, especially the cell growth, proliferation, metabolism, signal communication and so on.
     2. The different expresson of ERBB2 and ERBB3 detected by IHC in our study suggested that ERBB2 and ERBB3 may play different role in the gastric carcinogenesis of the two gastric cancer types(intestinal and diffuse type according to Lauren’s classfication).
     3. There exists marked activation of ERBB2 in the transcriptive process in gastric cancer tissue than that of matched adjacent normal tissue.
     4. The analysis of genomic mutation of coding sequence of tyrosine kinase of ERBB2 implied that the genomic mutation of ERBB2 is not common in Chinese gastric cancer patients, or that is at least not a“high molecular incidence”in Chinese gastric cancer patients. Our results seemed to differ from the reports of abroad published papers.
引文
1. Hieter P, Boguski M. Functional genomics: It's all how you read it. Science, 1997,278(5338):601-602.
    2. Saghizadeh M,Brown DJ,Tajbakhsh J,et al.Evaluation of techniques using amplified nucleic acid probes for gene expression profiling. Biomolecular Engineering, 2003,20(3):97-106.
    3. Pennie WD.Custom cDNA microarrays, technologies and applications.Toxicology, 2002,181-182:551-554.
    4. DeRisi J, Penland L,Brown.PO,et al.Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nature Genet, 1996,14(4):457-460.
    5. Golub TR, Slonim DK,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring. Science, 1999,286(5439):531-537.
    6. Eisen MB, Brown PO.DNA arrays for analysis of gene expression.Meth Enzymol, 1999,303:179-205.
    7. Ross DT.Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet, 2000,24(3):227-235.
    8. Bonham MJ, Danielpour D.Improved purification and yields of RNA by RNeasy. Biotechniques, 1996,21(1):57-60.
    9. Chomczynski P,Mackey K.Short technical reports.Modification of the TRI reagent procedure for isolation of RNA from polysaccharide and proteoglycan-rich sources. Biotechniques,1995,19(6):942-945.
    10. Vincent VA,DeVoss JJ,Ryan HS,et al.Analysis of neuronal gene expression with laser capture microdissection. J Neuroscience Res, 2002,69(5):578-586.
    11. Perou CM,Sorlie T,Eisen MB,et al.Molecular portraits of human breast tumours.Nature, 2000,406(6797):747-752.
    12. Xie L,Xu L,He Z,et al.Identification of differentially expressed genes in nasopharyngeal carcinoma by means of the Atlas human cancer cDNA expression array. J Cancer Res Clin Oncol, 2000,126(7):400-406.
    13. Turbett GT,Barnett TC,Dillon EK,et al.Single-tube protocol for the extraction of DNA or RNA from paraffin-embedded tissues using a starch-based adhesive. Biotechniques, 1996,20(5):846-853.
    14. Going JJ,Lamb RF.Practical histological microdissection for PCR analysis. J Pathol, 1996,179(1):121-124.
    15. Harsch M,Bendrat K,Hofmeier G,et al.A simple,precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections. Virchows Arch,1998,433(4):305-309.
    16. Michael H,Klaus B,Gerhard H,et al.A new method for histological microdissection utilizing an ultrasonically oscillating needle.Am J Patho1,2001,158(6):1985-1990.
    17. Emmert-Buck MR,Bonner RF,Smith PD,et al.Laser capture microdissection. Science,1996,274(5289):998-1001.
    18. Crnogorac-Jurcevic T,Efthimiou E,Nielsen T,et al.Expression profiling of microdissected pancreatic adenocarcinomas. Oncogene, 2002,21(29):4587-4594.
    19. Alevizos I,Mahadevappa M,Zhang X,et al.Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene,2001,20(43):6196-6204.
    20. Kitahara O,Furukawa Y,Tanaka T,et al.Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia.Cancer Res,2001,61(9):3544-3549.
    21. Mori M,Mimori K,Yoshikawa Y,et al.Analysis of the gene-expression profile regarding the progression of human gastric carcinoma.Surgery,2002,131(1 Suppl):S39-S41.
    22. Fend F,Emmert-Buck MR,Chuaqui R,et al.Immuno-LCM:capture microdissection of immunostained frozen sections for mRNA analysis.Am J Pathol,1999,154(1):61-66.
    23. Eisen MB,Spellman PT,Brown PO,et al.Cluster analysis and display of genome-wide expression patterns.Proc Natl acad Sci USA,1998,95(25):14863-14868.
    24. Kobayashi M, Iwamatsu A, Shinohara-Kanda A, Ihara S, Fukui Y. Activation of ErbB3-PI3-kinase pathway is correlated with malignant phenotypes of adenocarcinomas.Oncogene. 2003 Mar 6;22(9):1294-301.
    25. Motoyama AB, Hynes NE, Lane HA. The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides.Cancer Res. 2002 Jun 1;62(11):3151-8.
    26. Noguchi H, Sakamoto C, Wada K, Akamatsu T, Uchida T, Tatsuguchi A, Matsui H, Fukui H, Fujimori T, Kasuga M. Expression of heregulin alpha, erbB2, and erbB3 and their influences on proliferation of gastric epithelial cells.Gastroenterology. 1999 Nov; 117(5):1119-27.
    27. Lin HY, Tang HY, Shih A, Keating T, Cao G, Davis PJ, Davis FB. Thyroid hormone is a MAPK-dependent growth factor for thyroid cancer cells and is anti-apoptotic. Steroids. 2007 Feb;72(2):180-7. Epub 2006 Dec 15.
    28. Tornillo L, Lugli A, Zlobec I, Willi N, Glatz K, Lehmann F, Spichtin HP, Maurer R, Stoios D, Sauter G, Terracciano L. Prognostic value of cell cycle and apoptosis regulatory proteins in mismatch repair-proficient colorectal cancer: a tissue microarray-based approach. Am J Clin Pathol. 2007 Jan;127(1):114-23.
    29. Glinsky GV. Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle. 2006 Jun;5(11):1208-16
    30. Tsai CJ, Herrera-Goepfert R, Tibshirani RJ, Yang S, Mohar A, Guarner J, Parsonnet J. Changes of gene expression in gastric preneoplasia following Helicobacter pylori eradication therapy.Cancer Epidemiol Biomarkers Prev. 2006 Feb;15(2):272-80.
    31. Shimamura T, Ito H, Shibahara J, et al. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci. 2005 May;96(5):265-73.
    32. Wang T, Lee K, Rehman A, Daoud SS. PRIMA-1 induces apoptosis by inhibiting JNK signaling but promoting the activation of Bax.Biochem Biophys Res Commun. 2007 Jan 5;352(1):203-12.
    33. Yamabuki T, Takano A, Hayama S, et al. Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas.Cancer Res. 2007 Mar 15;67(6):2517-25.
    34. Essner R, Huynh Y, Nguyen T, Rose M, Kojima M, Hoon DS. Functional interleukin-4 receptor and interleukin-2 receptor common gamma chain in human gastric carcinoma:a possible mechanism for cytokine-based therapy. J Gastrointest Surg. 2001 Jan-Feb;5(1):81-90.
    35. Morisaki T, Yuzuki DH, Lin RT, Foshag LJ, Morton DL, Hoon DS. Interleukin 4 receptor expression and growth inhibition of gastric carcinoma cells by interleukin 4. Cancer Res. 1992 Nov 1;52(21):6059-65
    36. Wang M, Liu YE, Greene J, Sheng S, Fuchs A, Rosen EM, Shi YE. Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4.Oncogene. 1997 Jun 12;14(23):2767-74.
    37. Chu Z, Li J, Eshaghi M, Peng X, Karuturi RK, Liu J. Modulation of Cell Cycle-specific Gene Expressions at the Onset of S-Phase Arrest Contributes to the Robust DNA Replication Checkpoint Response in Fission Yeast.Mol Biol Cell. 2007 Mar 1; [Epub ahead of print]
    1. Yang-Feng TL,Schechter, AL,Weinberg, RA,Francke, U.Oncogene from rat neuro/glioblastomas (human gene symbol NGL) is located on the proximal long arm of human chromosome 17 and EGFR is confirmed at 7p13-q11.2. Cytogenet. Cell Genet. 1985. 40: 784.
    2. Coussens L, Yang-Feng TL, Liao YC, et al.Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with NEU oncogene. Science. 1985, 230: 1132-1139.
    3. Folgiero V, Bachelder RE, Bon G, Sacchi A, Falcioni R, Mercurio AM. The alpha6beta4 integrin can regulate ErbB-3 expression: implications for alpha6beta4 signaling and function.Cancer Res. 2007 Feb 15;67(4):1645-52.
    4. Park DI,Yun JW,Park JH,Oh SJ, Kim HJ. HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig Dis Sci. 2006 Aug;51(8):1371-9.
    5. Gong Y, Yan K, Lin F, et al. Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study.Lancet Oncol. 2007 Mar;8(3):203-11.
    6. Yano T, Doi T, Ohtsu A, Boku N, Hashizume K, Nakanishi M, Ochiai A. Comparison of HER2 gene amplification assessed by fluorescence in situ hybridization and HER2 protein expression assessed by immunohistochemistry in gastric cancer. Oncol Rep. 2006 Jan;15(1):65-71
    7. Solit DB, Rosen N.Targeting HER2 in prostate cancer: where to next?J Clin Oncol. 2007 Jan 20;25(3):241-3
    8. Im SA, Lee KE, Nam E, et al. Potential prognostic significance of p185(HER2) overexpression with loss of PTEN expression in gastric carcinomas.Tumori. 2005 Nov-Dec;91(6):513-21.
    9. Yano T, Doi T, Ohtsu A, et al. Comparison of HER2 gene amplification assessed by fluorescence in situ hybridization and HER2 protein expression assessed by immunohistochemistry in gastric cancer.Oncol Rep. 2006 Jan;15(1):65-71.
    10. Srinivasan R, Leverton KE, Sheldon H, Hurst HC, Sarraf C, Gullick WJ. Intracellular expression of the truncated extracellular domain of c-erbB-3/HER3. Cell Signal. 2001 May;13(5):321-30.
    11. Michimoto Kobayashi, Akihiro Iwamatsu, Azusa Shinohara-Kanda, Sayoko Ihara1 and Yasuhisa Fuku. ACtivation of ErbB3–PI3-kinase pathway is correlated with malignant phenotypes of adenocarcinomas. Oncogene (2003) 22, 1294–1301
    12. Park DI, Yun JW, Park JH, Oh SJ, Kim HJ, Cho YK, Sohn CI, Jeon WK, Kim BI, Yoo CH, Son BH, Cho EY, Chae SW, Kim EJ, Sohn JH, Ryu SH, Sepulveda AR. HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig Dis Sci. 2006 Aug;51(8):1371-9. Epub 2006 Jul 26.
    13. Im SA, Lee KE, Nam E, et al.Potential prognostic significance of p185(HER2) overexpression with loss of PTEN expression in gastric carcinomas.Tumori. 2005 Nov-Dec;91(6):513-21.
    14. Matsui Y, Inomata M, Tojigamori M, et al.Suppression of tumor growth in human gastric cancer with HER2 overexpression by an anti-HER2 antibody in a murine model.Int J Oncol. 2005 Sep;27(3):681-5.
    15. Liu JM, Chen LT, Li AF, et al. Prognostic implications of the expression of erbB2, topoisomerase II alpha and thymidylate synthase in metastatic gastric cancer after fluorouracil-based therapy.Jpn J Clin Oncol. 2004 Dec;34(12):727-32.
    16. Junttila TT, Laato M, Vahlberg T, et al. Identification of patients with transitional cell carcinoma of the bladder overexpressing ErbB2, ErbB3, or specific ErbB4 isoforms: real-time reverse transcription-PCR analysis in estimation of ErbB receptor status from cancer patients. Clin Cancer Res. 2003 Nov 1;9(14):5346-57
    17. Hsu SC, Hung MC. Characterization of a Novel Tripartite Nuclear Localization Sequence in the EGFR Family.J Biol Chem. 2007 Apr 6;282(14):10432-40.
    18. Lee TY, Kim KT, Han SY. Expression of ErbB Receptor Proteins and TGF-alpha during Diethylnitrosamine-induced Hepatocarcinogenesis in the Rat Liver.Korean J Hepatol. 2007 Mar;13(1):70-80.
    19. Bueter W, Dammann O, Zscheppang K, Korenbaum E, Dammann CE. ErbB receptors in fetal endothelium-A potential linkage point for inflammation-associated neonatal disorders.Cytokine. 2006 Dec;36(5-6):267-75.
    20. Thompson M, Lauderdale S, Webster MJ, Chong VZ, McClintock B, Saunders R, Weickert CS. Widespread expression of ErbB2, ErbB3 and ErbB4 in non-human primate brain.Brain Res. 2007 Mar 30;1139:95-109.
    1. Hirsch DS, Wu WJ. Cdc42: an effector and regulator of ErbB1 as a strategic target in breast cancer therapy. Expert Rev Anticancer Ther. 2007 Feb;7(2):147-57.
    2. Ozcelik H, Pinnaduwage D, Bull SB, Andrulis IL. Type of TP53 mutation and ERBB2 amplification affects survival in node-negative breast cancer. Breast Cancer Res Treat. 2007 Jan 13; [Epub ahead of print]
    3. Itamochi H, Kigawa J, Kanamori Y, Oishi T, Bartholomeusz C, Nahta R, Esteva FJ, Sneige N, Terakawa N, Ueno NT. Adenovirus type 5 E1A gene therapy for ovarian clear cell carcinoma: a potential treatment strategy. Mol Cancer Ther. 2007 Jan;6(1):227-35.
    4. Spector N, Xia W, El-Hariry I, Yarden Y, Bacus S. HER2 therapy. Small molecule HER-2 tyrosine kinase inhibitors. Breast Cancer Res. 2007 Mar 2;9(2):205)(Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeuticsCurr Opin Cell Biol. 2007 Apr;19(2):124-34.
    5. Potemski P, Pluciennik E, Bednarek AK, Kusinska R, Pasz-Walczak G, Jesionek-Kupnicka D, Watala C, Kordek R A comparative assessment of HER2 status in operable breast cancer by real-time RT-PCR and by immunohistochemistry. Med Sci Monit. 2006 Dec;12(12):MT57-61. Epub 2006 Nov 23.
    6. Potemski P, Pluciennik E, Bednarek AK,et al. A comparative assessment of HER2 status in operable breast cancer by real-time RT-PCR and by immunohistochemistry. Med Sci Monit. 2006;12(12):MT57-61
    7. Sahin FI, Yilmaz Z, Yagmurdur MC, Atac FB, Ozdemir BH, Karakayali H, Demirhan B, Haberal M. Clinical findings and HER-2/neu gene amplification status of breast carcinoma patients. Pathol Oncol Res. 2006;12(4):211-5
    8. Sauter SM, Bohm D, Bartels I, Burfeind P, Laccone FA, Neesen J, Wilken B, Liehr T, Zoll B. Partial trisomy of distal 19q detected by quantitative real-time PCR and FISH in a girl with mild facial dysmorphism, hypotonia and developmental delay.Am J Med Genet A. 2007 Apr 12; [Epub ahead of print]
    9. Yim HJ, Byun KS, Chang YJ, Suh YS, Yeon JE, Lee CH, Kwon JA, Yoo W, Kim SO, Hong SP. Levels of Hepatitis B Virus (HBV) Replication During the NonreplicativePhase: HBV Quantification by Real-Time PCR in Korea.Dig Dis Sci. 2007 Apr 11; [Epub ahead of print]
    10. 利用实时定量 PCR 技术通过 2 -△△CT 方法分析相对基因表达差异 , http://www.bio168.com/mag/402A1123371/5A1AB126109.html
    11. Morrison TB, Weis JJ. Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques, 1998,24:954-962.
    12. Amutan M, Batey D. Real-time quantification of lamda and human genomic DNA using DyNAzyme II DNA polymerase in combination with SYBR Green I dye. MJ Research, Inc2002. (Application Note Vol.1, No.1).
    13. Apostolaki S, Perraki M, Pallis A, Circulating HER2 mRNA-positive cells in the peripheral blood of patients with stage I and II breast cancer after the administration of adjuvant chemotherapy: evaluation of their clinical relevance. Ann Oncol. 2007 Feb 14;
    14. Varis A, Zaika A, Puolakkainen P, Nagy B,et al. Coamplified and overexpressed genes at ERBB2 locus in gastric cancer. Int J Cancer. 2004 Apr 20;109(4):548-53.
    15. Memon AA, Sorensen BS, Melgard P, Fokdal L, Thykjaer T, Nexo E. Expression of HER3, HER4 and their ligand heregulin-4 is associated with better survival in bladder cancer patients.Br J Cancer. 2004 Dec 13;91(12):2034-41.
    16. Kolb A, Kleeff J, Arnold N, Giese NA, Giese T, Korc M, Friess H. Expression and differential signaling of heregulins in pancreatic cancer cells. Int J Cancer. 2007 Feb 1;120(3):514-23
    1. Bae NB, Chae MH, Lee MH, et al. EGFR, ERBB2, and KRAS mutations in Korean non-small cell lung cancer patients. Cancer Genet Cytogent. 2007;173(2):107-13.
    2. Tsao AS, Tang XM, Sabloff B, Xiao L, Shigematsu H, Roth J, Spitz M, Hong WK, Gazdar A, Wistuba I. Clinicopathologic characteristics of the EGFR gene mutation in non-small cell lung cancer.J Thorac Oncol. 2006 Mar;1(3):231-9.
    3. Yoshida K, Yatabe Y, Park JY, Shimizu J, Horio Y, Matsuo K, Kosaka T, Mitsudomi T, Hida T. Prospective validation for prediction of gefitinib sensitivity by epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer.J Thorac Oncol. 2007 Jan;2(1):22-8.
    4. Jong WL,Young HS, Si HS et al. Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clin Cancer Res, 2006;12(1):57-61
    5. Dubska L, Andera L, Sheard MA. HER2 signaling downregulation by trastuzumab and suppression of the PI3K/Akt pathway: an unexpected effect on TRAIL-induced apoptosis.FEBS Lett. 2005 Aug 1;579(19):4149-58.
    6. Soderlund K, Perez-Tenorio G, Stal O. Activation of the phosphatidylinositol 3-kinase/Akt pathway prevents radiation-induced apoptosis in breast cancer cells.Int J Oncol. 2005 Jan;26(1):25-32.
    7. Kobayashi M, Iwamatsu A, Shinohara-Kanda A, Ihara S, Fukui Y. Activation of ErbB3-PI3-kinase pathway is correlated with malignant phenotypes of adenocarcinomas.Oncogene. 2003 Mar 6;22(9):1294-301.
    8. Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–2139.
    9. Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004;304:1497–1500.
    10. Pao W, Miller V, Zakowski M et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004; 101:13306–13311.
    11. Pham D, Kris MG, Riely GJ et al. Use of cigarette-smoking history to estimate the likelihood of mutations in epidermal growth factor receptor gene exons 19 and 21 in lung adenocarcinomas. J Clin Oncol 2006;24:1700–1704
    12. Irmer D, Funk JO, Blaukat A. EGFR kinase domain mutations - functional impact and relevance for lung cancer therapy. Oncogene. 2007 Mar 12
    13. Gu D, Scaringe WA, Li K, Saldivar JS, Hill KA, Chen Z, Gonzalez KD, Sommer SSDatabase of somatic mutations in EGFR with analyses revealing indel hotspots but no smoking-associated signature.Hum Mutat. 2007 Apr 11; [Epub ahead of print]
    14. Yoshida K, Yatabe Y, Park JY, Shimizu J, Horio Y, Matsuo K, Kosaka T, Mitsudomi T, Hida T. Prospective validation for prediction of gefitinib sensitivity by epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer. J Thorac Oncol. 2007 Jan;2(1):22-8.
    15. Mulloy R, Ferrand A, Kim Y, Sordella R, Bell DW, Haber DA, Anderson KS, Settleman J. Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib.Cancer Res. 2007 Mar 1;67(5):2325-30.
    16. Uchida A, Hirano S, Kitao H et al. Activation of downstream epidermal growth factor receptor (EGFR) signaling provides gefitinib-resistance in cells carrying EGFR mutation. Cancer Sci. 2007;98(3):357-63
    17. Marchetti A, Felicioni L, Buttitta F. Assessing EGFR mutations. N Engl J Med 2006;354:526–528.
    1. J. Wolff, B. Ayoub and S. Jarcho, The science of cancerous disease from earliest times to present, Amerind, New Delhi (1989):3–260.
    2. B. Sokoloff, Predisposition for cancer in the Bonaparte family, Am J Surg 40 (1938): 673–678.
    3. B.J. Marshall and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration, Lancet 1 (1984), pp. 1311–1315.
    4. IARC, IARC monographs on the evaluation of carcinogenic risks to humans Volume 61, World Health Organization, Lyon (1994), pp. 177–240.
    5. D.M. Parkin, F. Bray and J. Ferlay et al., Global cancer statistics, 2002, CA Cancer J Clin 55 (2005), pp. 74–108.
    6. 史奎雄 胃癌的流行病学,胃肠病学,2002,7(3):166-167
    7. T.J. Koh and T.C. Wang, Tumors of the stomach. In: M. Feldman, Editor (7th ed.), Sleisenger and Fordtran’s gastrointestinal and liver disease pathophysiology, diagnosis, and management Volume 1, Saunders, Philadelphia (2001), pp. 829–851.
    8. Jemal, T. Murray and E. Ward et al., Cancer facts & figures 2004, American Cancer Society, Atlanta (2004).
    9. Nardone, Review article molecular basis of gastric carcinogenesis, Aliment Pharmacol Ther 17 (2003) (Suppl 2), pp. 75–81.
    10. Lauren and T.J. Nevalainen, Epidemiology of intestinal and diffuse types of gastric carcinoma. A time-trend study in Finland with comparison between studies from high- and low-risk areas, Cancer 71 (1993), pp. 2926–2933.
    11. Nardone, A. Rocco and P. Malfertheiner, Review article helicobacter pylori and molecular events in precancerous gastric lesions, Aliment Pharmacol Ther 20 (2004), pp. 261–270.
    12. Danesh, Helicobacter pylori infection and gastric cancer systematic review of the epidemiological studies, Aliment Pharmacol Ther 13 (1999), pp. 851–856.
    13. IARC, IARC monographs on the evaluation of carcinogenic risks to humans Volume 61, World Health Organization, Lyon (1994), pp. 177–240.
    14. Brenner, V. Arndt and C. Stegmaier et al., Is Helicobacter pylori infection a necessary condition for noncardia gastric cancer?, Am J Epidemiol 159 (2004), pp. 252–258.
    15. Caputo, C. Tuccillo and B.A. Manzo et al., Helicobacter pylori VacA toxin up-regulates vascular endothelial growth factor expression in MKN 28 gastric cells through an epidermal growth factor receptor-, cyclooxygenase-2-dependent mechanism, Clin Cancer Res 9 (2003), pp. 2015–2021
    16. Vermeer, M.M. Gerrits and E.J. Moonen et al., Helicobacter pylori does not mediate the formation of carcinogenic N-nitrosamines, Helicobacter 7 (2002), pp. 163–169.
    17. Zarrilli, V. Ricci and M. Romano, Molecular response of gastric epithelial cells to Helicobacter pylori-induced cell damage, Cell Microbiol 1 (1999), pp. 93–99.
    18. Correa, Helicobacter pylori and gastric carcinogenesis, Am J Surg Pathol 19 (1995) (Suppl 1), pp. S37–S43.
    19. Webb, J.E. Crabtree, D. Forman and The Eurogst Study Group, Gastric cancer, cytotoxin-associated gene A-positive Helicobacter pylori, and serum pepsinogens an international study, Gastroenterology 116 (1999), pp. 269–276.
    20. Blanchard and S.J. Czinn, Review article immunological determinants that may affect the Helicobacter pylori cancer risk, Aliment Pharmacol Ther 12 (1998) (Suppl 1), pp. 83–90.
    21. Fox, C.A. Dangler and N.S. Taylor et al., High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice, Cancer Res 59 (1999), pp. 4823–4828.
    22. van Loon, A.A. Botterweck and R.A. Goldbohm et al., Intake of nitrate and nitrite and the risk of gastric cancer a prospective cohort study, Br J Cancer 78 (1998), pp. 129–135.
    23. H.S. Lee, M.S. Chang and H.K. Yang et al., Epstein-Barr virus-positive gastric carcinoma has a distinCt protein expression profile in comparison with Epstein-Barr virus-negative carcinoma, Clin Cancer Res 10 (2004), pp. 1698–1705.
    24. G.J. Offerhaus, M.M. Entius and F.M. Giardiello, Upper gastrointestinal polyps in familial adenomatous polyposis, Hepatogastroenterology 46 (1999), pp. 667–669.
    25. M.H. Wallace and R.K. Phillips, Upper gastrointestinal disease in patients with familial adenomatous polyposis, Br J Surg 85 (1998), pp. 742–750.
    26. S.M. Powell, N. Zilz and Y. Beazer-Barclay et al., APC mutations occur early during colorectal tumorigenesis, Nature 359 (1992), pp. 235–237.
    27. N. Oue, Y. Oshimo and H. Nakayama et al., DNA methylation of multiple genes in gastric carcinoma association with histological type and CpG island methylator phenotype, Cancer Sci 94 (2003), pp. 901–905.
    28. T. Etoh, Y. Kanai and S. Ushijima et al., Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers, Am J Pathol 164 (2004), pp. 689–699.
    29. M. Toyota, N. Ahuja and M. Ohe-Toyota et al., CpG island methylator phenotype in colorectal cancer, Proc Natl Acad Sci U S A 96 (1999), pp. 8681–8686.
    30. M. Werner, K.F. Becker and G. Keller et al., Gastric adenocarcinoma pathomorphology and molecular pathology, J Cancer Res Clin Oncol 127 (2001), pp. 207–216.
    31. A.B. Buermeyer, S.M. Deschenes and S.M. Baker et al., Mammalian DNA mismatch repair, Annu Rev Genet 33 (1999), pp. 533–564.
    32. P.M. Das and R. Singal, DNA methylation and cancer, J Clin Oncol 22 (2004), pp. 4632–4642.
    33. P. Correa, Helicobacter pylori and gastric carcinogenesis, Am J Surg Pathol 19 (1995) (Suppl 1), pp. S37–S43.
    34. Y.H. Shiao, M. Rugge and P. Correa et al., p53 alteration in gastric precancerous lesions, Am J Pathol 144 (1994), pp. 511–517.
    35. H.S. Kim, D.K. Woo and S.I. Bae et al., Allelotype of the adenoma-carcinoma sequence of the stomach, Cancer Detect Prev 25 (2001), pp. 237–244.
    36. E. Tahara, Genetic alterations in human gastrointestinal cancers. The application to molecular diagnosis, Cancer 75 (1995), pp. 1410–1417.
    37. S. Nakatsuru, A. Yanagisawa and S. Ichii et al., Somatic mutation of the APC gene in gastric cancer frequent mutations in very well differentiated adenocarcinoma and signet-ring cell carcinoma, Hum Mol Genet 1 (1992), pp. 559–563.
    38. M. Esteller, A. Sparks and M. Toyota et al., Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer, Cancer Res 60 (2000), pp. 4366–4371
    39. S. Han, H.Y. Kim and K. Park et al., Expression of p27Kip1 and cyclin D1 proteins is inversely correlated and is associated with poor clinical outcome in human gastric cancer, J Surg Oncol 71 (1999), pp. 147–154.
    40. N. Kuzushita, A.B. Rogers and N.A. Monti et al., p27kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice, Gastroenterology 129 (2005), pp. 1544–1556.
    41. C. Xiangming, S. Natsugoe and S. Takao et al., The cooperative role of p27 with cyclin E in the prognosis of advanced gastric carcinoma, Cancer 89 (2000), pp. 1214–1219.
    42. J.D. Hunt, R. Mera and A. Strimas et al., Kras mutations are not prediCtive for progression of preneoplastic gastric lesions, Cancer Epidemiol Biomarkers Prev 10 (2001), pp. 79–80.
    43. F.J. Vizoso, M.D. Corte and A. Alvarez et al., Membranous levels of c-erbB-2 oncoprotein in gastric cancer their relationship with clinicopathological parameters and their prognostic significance, Int J Biol Markers 19 (2004), pp. 268–274.
    44. L.F. Brown, B. Berse and R.W. Jackman et al., Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract, Cancer Res 53 (1993), pp. 4727–4735.
    45. S.Y. Leung, S.T. Yuen and L.P. Chung et al., hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability, Cancer Res 59 (1999), pp. 159–164.
    46. P. Guilford, J. Hopkins and J. Harraway et al., E-cadherin germline mutations in familial gastric cancer, Nature 392 (1998), pp. 402–405.
    47. G. Keller, H. Vogelsang and I. Becker et al., Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation, Am J Pathol 155 (1999), pp. 337–342.
    48. G. Tamura, J. Yin and S. Wang et al., E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas, J Natl Cancer Inst 92 (2000), pp. 569–573.
    49. K. Kawanishi, Y. Doki and H. Shiozaki et al., Correlation between loss of E-cadherin expression and overexpression of autocrine motility factor receptor in association with progression of human gastric cancers, Am J Clin Pathol 113 (2000), pp. 266–274.
    50. T. Hara, A. Ooi and M. Kobayashi et al., Amplification of c-myc, K-sam, and c-met in gastric cancers detection by fluorescence in situ hybridization, Lab Invest 78 (1998), pp. 1143–1153.
    51. Y. Hattori, H. Odagiri and H. Nakatani et al., K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes, Proc Natl Acad Sci U S A 87 (1990), pp. 5983–5987.
    52. R.C. Fitzgerald and C. Caldas, Clinical implications of E-cadherin associated hereditary diffuse gastric cancer, Gut 53 (2004), pp. 775–778.
    53. R.C. Fitzgerald and C. Caldas, E-cadherin mutations and hereditary gastric cancer prevention by resection?, Dig Dis 20 (2002), pp. 23–31.
    54. F.M. Giardiello, J.D. Brensinger and A.C. Tersmette et al., Very high risk of cancer in familial Peutz-Jeghers syndrome, Gastroenterology 119 (2000), pp. 1447–1453.
    55. D.C. Fang, J.R. Jass and D.X. Wang et al., Infrequent loss of heterozygosity of APC/MCC and DCC genes in gastric cancer showing DNA microsatellite instability, J Clin Pathol 52 (1999), pp. 504–508.
    56. W.F. Bodmer, C.J. Bailey and J. Bodmer et al., Localization of the gene for familial adenomatous polyposis on chromosome 5, Nature 328 (1987), pp. 614–616.
    57. N.N. Hanna and R.M. Mentzer Jr, Molecular genetics and management strategies in hereditary cancer syndromes, J Ky Med Assoc 101 (2003), pp. 100–107.
    58. L.B. Saltz, N.J. Meropol and P.J. Loehrer Sr et al., Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor, J Clin Oncol 22 (2004), pp. 1201–1208.
    59. J. Tabernero, T. Macarulla and F.J. Ramos et al., Novel targeted therapies in the treatment of gastric and esophageal cancer, Ann Oncol 16 (2005), pp. 1740–1748.
    60. Y. Matsui, M. Inomata and M. Tojigamori et al., Suppression of tumor growth in human gastric cancer with HER2 overexpression by an anti-HER2 antibody in a murine model, Int J Oncol 27 (2005), pp. 681–685.
    61. C. Rebischung, R. Barnoud and L. Stefani et al., The effectiveness of trastuzumab (Herceptin) combined with chemotherapy for gastric carcinoma with overexpression of the c-erbB-2 protein, Gastric Cancer 8 (2005), pp. 249–252.
    62. T. Doi, W. Koizumi and S. Siena et al., Efficacy, tolerability, and pharmacokinetics of gefitinib (ZD 1839) in pretreated patients with metastatic gastric cancer (abstr), Proc Am Soc Clin Oncol 22 (2003), p. 258.
    63. F. Ciardiello, R. Caputo and R. Bianco et al., Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor, Clin Cancer Res 6 (2000), pp. 2053–2063.
    64. A.I.D. Shah and L. Saltz et al., A multicenter phase II study of irinotecan (CPT), cisplatin (CIS), and bevacizumab (BEV) in patients with unresectable or metastatic gastric or gastroesophageal adenocarcinoma (abstr 26), Proc Gastrointestinal Am Soc Clin Oncol Symposium 98 (2005), p. 116.
    65. J. Tokuyama, T. Kubota and Y. Saikawa et al., Tyrosine kinase inhibitor SU6668 inhibits peritoneal dissemination of gastric cancer via suppression of tumor angiogenesis, Anticancer Res 25 (2005), pp. 17–22.
    66. M.A. Shah, J. Kortmansky and M. Gonen et al., Phase I study of weekly irinotecan (CPT), cisplatin (CIS), and flavopiridol (F) (abstr), Proc Am Soc Clin Oncol 23 (2004), p. 319.
    67. S. Maeda, H. Yoshida and Y. Mitsuno et al., Analysis of apoptotic and antiapoptotic signalling pathways induced by Helicobacter pylori, Mol Pathol 55 (2002), pp. 286–293.
    68. A.J.S.-S.F. Ocean and X. Chen et al., Phase II study of PS-341 (bortezomib) with or without irinotecan in patients with advanced gastric adenocarcinomas (abstr 31), Proc Gastrointestinal Am Soc Clin Oncol 98 (2005), p. 117.
    69. S.R. Bramhall, M.T. Hallissey and J. Whiting et al., Marimastat as maintenance therapy for patients with advanced gastric cancer a randomised trial, Br J Cancer 86 (2002), pp. 1864–1870.
    70. James P, Hamilton and Stephen J. Meltzer. A Review of the Genomics of Gastric Cancer,clinical gastroenterology and hepatology,4(2006),pp.416-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700