DVB-T COFDM接收系统中关键技术研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地面数字视频广播(Digital Video Broadcasting-Terrestrial,DVB-T)作为当今世界最主要的数字电视地面传输标准之一,其采用编码正交频分复用(CodedOrthogonal Frequency Division Multiplexing,COFDM)技术进行调制,是一种典型的OFDM系统。OFDM技术具有抗多径干扰能力强、频谱利用率高等诸多优点,应用前景非常广阔;但是OFDM系统对同步误差和信道估计误差比较敏感,如何快速可靠的实现系统同步和信道估计对接收系统来说非常重要。本文将重点研究DVB-T COFDM接收中的定时同步、载波同步和信道估计等关键技术难点,给出适合DVB-T系统应用的解决方法。主要内容包括:
     (1)首先简要介绍地面无线信道的基本特性和OFDM技术基本原理,建立了完整的DVB-T系统传输模型;通过分析各种非理想因素对系统性能的影响,设计了一种采用捕获和跟踪两级同步机制及时频级联信道估计技术的内接收机方案。
     (2)分析了基于循环前缀和导频的定时同步方法的性能。根据循环前缀的重复特性,实现传输模式/保护间隔类型检测、时域符号粗同步和小数倍子载波频偏估计各模块的复用,并应用截短相关长度及门限方法提高估计性能;根据导频的功率特性,设计了一种简单快速的符号类型检测方法;根据导频相关和的相位特性确定了适当的符号精同步方案,将符号内导频相关与符号间导频相关相结合,在保证精度的同时扩大了估计范围;根据最小平方准则实现采样时钟频偏与剩余载波频偏的联合估计,克服了系统中连续导频分布不对称的缺点。
     (3)提出了一种基于保护带功率检测和连续导频相关的两级整数倍频偏估计新方案;第一级判断整数倍频偏的正负,降低一半计算复杂度;第二级采用部分连续导频估计整数倍频偏,估计性能变化不大但复杂度大大降低。
     (4)在研究现有估计方法的基础上,确定了时频级联的信道估计。通过对导频位置LS估计结果进行自适应滤波,大大降低了噪声影响;针对非导频位置应用传统DFT方法存在的缺憾,给出了基于变换域方法、两种DCT/IDCT变换法及时域迭代处理等多种改进方法;在分析各种插值算法性能的基础上,设计了一种低复杂度的实现方案。
     (5)确定了系统同步和信道估计各模块的结构;提出了一种新的基16/8混合基FFT实现结构,采用单个基16/8复用的蝶形运算单元顺序处理,并通过减少乘法器数目,有效降低硬件消耗;运算单元内部采用“基4+基4/2”级联流水线方式,大大加快运算速度;此外,应用对称乒乓RAM结构提高了蝶形运算单元的连续运算能力;并且使用改进的块浮点防溢出机制保证运算精度。
     (6)最后简单讨论了进一步工作的方向。
Digital Video Broadcasting-Terrestrial (DVB-T) has been one of the most important standards for terrestrial transmission and undoubtedly been shown as a great success in delivering high quality digital television. DVB-T adopts coded orthogonal frequency division multiplexing (COFDM) as the modulation technique and is a typical OFDM system. OFDM has found its wide application in many scientific areas due to its high-spectrum efficiency, its robustness against both multi-path and pulse noises, etc. However, the OFDM system is vulnerable to synchronization errors and channel estimation errors. How to effectively do the synchronization and do the channel estimation at the OFDM receiver are important issues, which need be addressed in OFDM systems. Hence, the dissertation focuses on the timing synchronization, carrier frequency synchronization and channel estimation methods design for DVB-T. The main contribution of this dissertation can be concluded as following:
     Firstly, this dissertation gives a brief introduction about the characteristics of the terrestrial wireless channels and basic principles about OFDM technologies. A complete DVB-T transmission system model is established and the effects of non-ideal transmission conditions are thoroughly analyzed. A inner receiver scheme, consists of two-stage synchronization (acquisition and tracking) and two-dimension channel estimation, is adopted.
     Secondly, in this dissertation, a whole timing synchronization scheme including symbol synchronization and sampling clock synchronization is presented. Employing cyclic property of GI, the blind Mode/GI detection, coarse symbol synchronization and fractional frequency offset are exploited. For more accurate symbol timing, we will illustrate the pilot phase property. In sampling clock synchronization, an estimation based on least square algorithm with the multi-stage tracking loop is proposed which improved the conventional designs.
     Thirdly, a two-stage scheme is proposed for the integer carrier frequency offset acquisition to reduce the search range. Besides, two low complexity methods are also proposed to detect the accurate integer carrier frequency offset value and many multiplications can be saved without any performance loss to the overall system compared with the conventional approach.
     Fourthly, we propose the adaptive channel estimator for pilot signal which can average out the noise effects under portable environments. Furthermore, the channel response is estimated by means of two-dimension interpolation of scattered pilots. We analyze several polynomial interpolation methods under channels specified by standards.
     Fifthly, A novel mixed radix-16/8 FFT algorithm and architecture are presented. By using a single radix-16/8 butterfly processing element and reducing the number of multipliers, the proposed approach obtained significant hardware reduction. To achieve high speed processing, the "radix-4+radix-4/2" cascade pipeline architecture is designed in radix-16/8 butterfly unit. Furthermore, a symmetry ping-pang RAM structure is adopted to increase the continuous computing capability of the butterfly core. Computing precision is also enhanced through a modified block floating point anti-overflow scheme.
     Finally, the problems requiring further studies are discussed.
引文
[1] European Telecommunications Standards Institute (ETSI). EN 300 421 V1. 1. 2. Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for 11/12 GHz satellite services. Switzerland: ETSI, Aug. 1997
    [2] European Telecommunications Standards Institute (ETSI). EN 300 429 V1. 2. 1. Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for cable systems. Switzerland: ETSI, Apr. 1998
    [3] European Telecommunications Standards Institute (ETSI). EN 300 744 vl. 5. 1. Digital Video Broadcasting (DVB); Frame structure, channel coding and modulation for digital terrestrial television. Switzerland: ETSI, Nov. 2004
    [4] Advanced Television Systems Committee (ATSC). ATSC Standard A/53. ATSC Digital Television Standard. Sept. 1995
    [5] ITU-R WP 11A/59. Channel coding, frame structure and modulation scheme for terrestrial integrated service digital broadcasting (ISDB-T). ITU-R WP 11A/59-E. May. 1999
    [6] 中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会.GB20600-2006.数字电视地面广播阐述系统帧结构、信道编码和调制.北京:中国标准出版社,2006
    [7] Simon M K, Alouini M S. Digital communication over fading channels. New York: John Wiley & Sons, Inc., 2000. 26~27
    [8] Berezdivin R, Breinig R, Topp R. Next-generation wireless communications concepts and technologies. IEEE Commun. Mag., 2002, Vol. 40(3): 108~116
    [9] Huang V, Zhuang W H. QoS-oriented access control for 4G mobile multimedia CDMA communications. IEEE Commun. Mag., 2002, Vol. 40(3): 118~125
    [10] Ohmori S, Yamao Y, Nakajima N. The future generations of mobile communicationgs based on broadband access technologies. IEEE Commun. Mag., 2000, Vol. 38(2): 134~142
    [11] Chuang J, Sollenberger N. Beyond 3g: wideband wireless data access based an OFDM and dynamic packet assignment. IEEE Commun. Mag., 2000, Vol. 38(7): 78~87
    [12] Adachi F F, Sawahashi M. Challenges in realizing the multimedia mobile communications era: IMT-2000 and beyond. In: Proc. PIMRC'99, 1999
    [13] European Telecommunications Standards Institute (ETSI). EN 302 304 vl. 1. 1. Digital Video Broadcasting (DVB); Frame structure, channel coding and modulation for handheld terminals. Switzerland: ETSI, Jun. 2004
    [14] Lu W W. Broadband wireless mobile: 3G and Beyond. New York: John Wiley and Sons, 2002.
    [15] Bauer F, Gueguen A, Mayrargue S, et al. Synthesis report on worldwide research on 4G systems. European Commission IST-2001-32620 MATRICE Deliverable D7.1,2003
    [16] Hara S, Prasad R. Multicarrier techniques for 4G mobile communications. Boston, Mass: Artech House, 2003
    [17] Doeltz M L, Heald E T, Martin D L, et al. Binary data transmission techniques for linear systems. In: Proc. IRE. 1957, Vol. 45: 656-661
    [18] Mosier R R, Clabaugh R G. Kineplex, a bandwidth efficient binary transmission system. AIEE Trans., 1958, Vol. 76: 723-728
    [19] Chang R W. Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Syst. Tech. Journal, 1966, Vol. 45: 1775-1796
    [20] Saltzberg B R. Performance of an efficient parallel data transmission system. IEEE Transactions on Communications, 1967, Vol. 15: 805-811
    [21] Zimmerman M S, Kirsch A L. The AN/GSC-10(KATHRYN) variable rate data modem for HF radio. IEEE Trans. Comm., 1967, Vol. 15: 197-203
    [22] Weinstein S B, Ebert P M. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications, 1971, Vol. 19: 628-634
    [23] Peled A, Ruiz A. Frequency domain data transmission using reduced computational complexity algorithm, In: Proc. IEEE Int. Conf. Acoust, Speech, Signal Processing. Denver, 1980. 964-967
    [24] Hirosaki B. An orthogonally multiplexed QAM system using the discrete Fourier transform. IEEE Trans. Comm. 1981, Vol. COM-29: 982-989
    [25] Hirosaki B. A 19.2 kbit/s voice band data modem based on orthogonality multiplexed QAM techniques. In: Proc, of IEEE ICC'85. 1985. 661-665
    [26] Keasler W E, Bitzer D I. High speed modem suitable for operating with a switched network. U.S. Patent No.4,206, 320, 1980.
    [27] Cimini L J. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun., 1985, Vol. COM-33(7): 665-675
    [28] ANSI. T1.413 Issue 2. ANSI T1E1.4/98-007R4, 1998
    [29] Chow P S, Tu J C, Cioffi J M. Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services. IEEE J. on Selected Area in Comm., 1991, Vol. 9(6): 909-919
    [30] Chow P S, Tu J C, Cioffi J M. A discrete multitone transceiver system for HDSL application. IEEE J. Selected Area in Comm., 1991, Vol. 9(6): 895-908
    [31] European Telecommunications Standards Institute (ETSI). EN 300 401 vl.3.1. Digital Audio Broadcasting (DAB); DAB to Mobile, Portable and Fixed Receivers. Switzerland: ETSI, Apr. 2004
    [32] ANSI/IEEE Std 802.11-1999, Part 11: wireless LAN medium access control(MAC) and physical layer(PHY) specifications.
    [33] ANSI/IEEE Std 802.11a-2000, Part 11: wireless LAN medium access control(MAC) and physical layer(PHY) specifications: amendment 1: high-speed physical layer in the 5-GHz band.
    [34] Jush J K, Schramm P, Wachsmann U, et al. Structure and performance of the HIPERLAN/2 physical layer. IEEE 49~(th) Vehicular Technology Conf. 1999, Vol. 5: 2667~2671
    [35] IEEE Std for local and metropolitan area networks 802. 16, Part 16: Air interface for fixed broadband wireless access systems.
    [36] Morinaga N, Nakagawa M, Kohno R. New concepts and technologies for achieving highly reliable and high-capacity multimedia wireless communications systems. IEEE Commun. Magazine, 1997, Vol. 35(1): 34~40
    [37] Chuang J, Sollenberger N. Beyond 3G: wideband wireless data access based on OFDM and dynamic packet assignment. IEEE Commun. Magazine, 2000, Vol. 38(7): 78~87
    [38] Giannakis G B, Anghel P A, Wang Z. Wideband generalizes multi-carrier CDMA over frequency-selective wireless channels. In: Proc. ICASSP. Istanbul, Turkey. 2000. 5~9
    [39] Hara S, Prassad R. Overview of multicarrier CDMA. IEEE Commun. Magazine. 1997, Vol. 35(12): 126~133
    [40] Zhou S, Giannakis G B, Scaglione A. Long codes for generalized FH-OFDMA through unknown multipath channel. IEEE Trans. on Communication. 2001, Vol. 49(4): 721~733
    [41] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. on Infor. Theory, 1998, Vol. 44(2): 744~765
    [42] Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, June 1998, (6): 311~335
    [43] Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE J. Selected Area in Commun., 1998, Vol. 16(8): 1451~1458
    [44] Classon B, Blankenship K, Desai V. Channel coding for 4G systems with adaptive modulation and coding. IEEE Wireless Communications, 2002, Vol. 9(2): 8~13
    [45] Gesbert D, Haumonte L, Bocskei H, et al. Technologies and performance for non-line-of-sight broadband wireless access networks. IEEE Commun. Magazine, 2002, Vol. 40(4): 86~95
    [46] Nogueroles R, Bossert M, Donder A, et al. Improved performance of a random OFDMA mobile communication system. In: Proc. IEEE VTC. Ottawa, Canada. 1998, 2502~2506
    [47] 张海滨.正交频分复用基本原理与关键技术.北京:国防工业出版社,2006,6~7
    [48] Rappaport T S. Wireless communication principles and practice. Prentice-Hall Inc. 1996.
    [49] Ahmad R, Bahai S, Saltzberg B R. Multicarrier digital communication theory and application of OFDM. Kluwer Academic/Plenum Publisher, New York, 1999
    [50] Rappaport T S, Annamalai A, Tranter R M, et al. Wireless communications: past events and a future perspective. IEEE Communication Magazine, 2002, 148~161
    [51] Zou W Y, Wu Y Y. COFDM: an overview. IEEE Trans. on Broadcasting, 1995, Vol. 41(1): 1~8
    [52] 佟学俭,罗涛.OFDM移动通信技术原理与应用.北京:人民邮电出版社,2003.16~17
    [53] Ormondroyd R F, Maxey J J, Alsusa E. COFDM: An alternative strategy for future-generation mobile communications. Mobile communications towards the next millennium and beyond, IEE Colloquium on, 1996, (8): 1~6
    [54] Molish A F. Wideband wireless digital communications. Pearson Education, Inc., 2001
    [55] Pauli M, Kuchenbecker H P. Minimization of the intermodulation distortion of a nonlinearly amplified OFDM signal. Wireless Personal Communications, 1997, Vol. 4(1): 93~101
    [56] Rapp C. Effects of HPA-nonlinearity on a 4-DPSK/OFDM signal for a digital sound broadcasting system. In: Proceedings of the second European conference on satellite communications, 1991, 179~184
    [57] Moose P H. Atechnique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Signal Processing, 2004, Vol. 52(20): 483~494
    [58] Speth M, Classen F, Meyr H. Frame synchronization of OFDM systems in frequency selective fading channels. Vehicular Technology Conference, 1997. 1807~1811
    [59] Speth M, Fechtel S, Fock G, et al. Optimum receiver design for wireless broadband systems using OFDM: part Ⅰ. IEEE Transactions on Communications, 1999, Vol. 47(11): 1668~1677
    [60] Pollet T, Van Bladel M, Moeneclaey M. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Transactions on Communications, 1995, 43(2/3/4): 191~193
    [61] Orthogonal frequency division multiplexing. U. S. Patent No. 3, 488, 4555, 1970
    [62] Van de Beek J J, Sandell M, Borjesson P O. ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 1997, Vol. 45 (7): 1800~1805
    [63] Lee C H. Synchronization system for DVB-T/H standard: [dissertation]. Hsinchu: National Chiao Tung University, 2006
    [64] Lee D, Cheum K. A new symbol timing recovery algorithm for OFDM systems. IEEE Transactions on Consumer Electronics, 1997, Vol. 43(3): 767~775
    [65] Liu H, Tureli U. A high-efficiency cartier estimator for OFDM communications. IEEE Communications Letters, 1998, Vol. 2(4): 104~q06
    [66] Chen B. Maximum likelihood estimation of OFDM carrier frequency offset. IEEE Communications Letters, 2002, Vol. 9(4): 123~126
    [67] Kuang C W. Timing synchronization for DVB-T system: [dissertation]. Hsinchu: National Chiao Tung University, 2004
    [68] Keller T, Piazzo L. Orthogonal frequency division multiplex synchronization techniques for frequency-selective fading channels. IEEE Journal on Selected Areas in Communications, 2001, Vol. 19(6): 999~1008
    [69] Schmidl T M, Cox D C. Robust frequency and timing synchronization for OFDM. IEEE Trans. on Comm., 1997, Vol. 45(12): 1613~1621
    [70] Nogami H, Nagashima T. A frequency and timing period acquisition technique for OFDM system. Personal, Indoor and Mobile Radio Commun. (PIMRC), 1995. 1010~1015
    [71] Hsieh M H, Wei C H. A low-complexity frame synchronization and frequency offset compensation Scheme for OFDM systems over fading channels. IEEE Trans on Veh. Tech., 1999, Vol. 48(5): 1596~1609.
    [72] Santella G. A frequency and symbol synchronization system for OFDM signals: architecture and simulation results. IEEE Trans. on Vehicular Technology, 2000, Vol. 49(1): 254~275
    [73] Boleskei H. Blind estimation of symbol timing and cartier frequency offset in wireless OFDM system. IEEE Trans. on Comm., 2001, Vol. 49(6): 988~999
    [74] Van de Beek J J, Sandell M, Isaksson M, et al. Low-complex frame synchronization in OFDM systems. In: Universal Personal Communications 1995 Record, 4~(th) IEEE International Conference on, 1995. 982~986
    [75] Liu D Z, Wei C H, Chang C J. An extension of guard-interval based symbol and frequency synchronization technique for wireless OFDM transmission. In: Vehicular Technology Conference 2001. New York, USA: ACM Press, 2001. 2324~2328
    [76] Lee D, Cheun K. Coarse symbol synchronization algorithms for OFDM systems in multipath channels. IEEE Comm Letters, 2002, Vol. 6(10): 446~448
    [77] Liu P, Li B B, Li Z Y, et al. A novel symbol synchronization scheme for OFDM. In: Communications, Circuits and Systems, 2005. Proceedings, 2005, Vol. 1: 247~251
    [78] Prasetyo B Y, Aghvami A H. Simplied frame structure for MMSE-based fast burst synchronization in OFDM systems. Electronics Letters, 1999, Vol. 35(8): 617~618
    [79] 陈晨,李建东,李夏等,OFDM 码元定时和频率偏差估计中的最佳相关长度分析,西安电子科技大学学报,2003,30(5):640~644
    [80] Wang X B, Wu Y Y, Yi K C, et al. A fast synchronization technique for DVB-H receiver using in-band pilots and cyclic prefix. IEEE Transactions on Consumer Electronics, 2006. 407~408
    [81] Huang D F, Yang L, Xing H Q, et al. Multiplexing guard intervals and time domain pilots in OFDM systems. IEEE Conference, 2001. 68~69
    [82] Daffara F, Chouly A. Maximum likehood frequency detectors for orthogonal multicarrier systems. ICC'93, 1993. 766~771
    [83] Kim D K, Cho H B, Choi H J, et al. A new joint algorithm of symbol timing recovery and sampling clock adjustment for OFDM systems. IEEE Transactions on Consumer Electronics, 1998, Vol. 44(3): 1142~1149
    [84] Ai B, Yang Z X, Pan C Y, et al. On the synchronization technique for wireless OFDM systems. IEEE Transactions on Broadcasting, 2006, Vol. 52(2): 236~244
    [85] Wang X B, Wu Y, Caron B. Transmitter identification using embedded pseudo random sequences. IEEE Transactions on Broadcasting, 2004, Vol. 50(3): 244-252
    [86] Zheng Z W, Yang Z X, Pan C Y, et al. Novel synchronization for TDS-OFDM-based digital television terrestrial broadcast systems. IEEE Transactions on Broadcasting, 2004, Vol. 50(2): 148-153
    [87] Wang J, Yang Z X, Pan C Y, et al. A combined code acquisition and symbol timing recovery method for TDS-OFDM. IEEE Transactions on Broadcasting, 2003, Vol. 49(3): 304-308
    [88] Minn H, Zeng M, Bhargava V K. On timing offset estimation for OFDM systems. IEEE Communications Letters, 2000, Vol. 4(7): 242-244
    [89] Shi K, Serpedin E. Coarse frame and carrier synchronization of OFDM systems: a new metric and comparison. IEEE Transactions on Wireless Communications, 2004, Vol. 3(4): 1271-1284
    [90] Keller T, Hanzo L. Orthogonal frequency division multiplex synchronization techniques for wireless local area networks. Personal, Indoor and Mobile Radio Communications, PIMRC'96, Seventh IEEE International Symposium on, 1996, Vol. 3: 963-967
    [91] Muller-Weinfurtner S H. Burst frame and frequency synchronization with a sandwich preamble. Global Telecommunications Conference, 2001, Vol. 2(25): 1366-1370
    [92] Lambrette U, Speth M, Meyr H. OFDM burst frequency synchronization by single carrier training data. IEEE Communications Letters, 1997, Vol. 1(2): 46-48
    [93] Fan P Z, Darnell M. Sequence design for communications applications. London: John Wiley & Sons Ltd., 1996
    [94] Tufvesson F, Faulkner M, Edfors O. Time and frequency synchronization for OFDM using PN-sequence preambles. Proceedings of IEEE Vehicular Technology Conference, 1999. 2203-2207
    [95] Tufvesson F. Design of wireless communication systems - issues on synchronization, channel estimation and multicarrier systems: [Doctoral Dissertation]. Lund, Sweden: Lund University, 2000
    [96] Speth M, Fechtel S, Meyr H. Optimum receiver design for OFDM-based broadband transmission - part II: a case study. IEEE Trans, on Comm., 2001, Vol. 49(4): 571-578
    [97] Chen L F, Chen Y, Chien L C, et al. A 1.8V 250mW COFDM baseband receiver for DVB-T/H applications. IEEE ISSCC2006,2006. 262-263
    [98] Schmidl T M, Cox D C. Low-overhead, low-complexity burst synchronization for OFDM communications. ICC'96 Conference Record, Converging Technologies for Tomorrow's Applications, 1996 IEEE International Conference on, Vol. 3: 1301-1306
    [99] Sliskovic M. Carrier and sampling frequency offset estimation and correction in multicarrier systems. Global Telecommunications Conference, GLOBECOM'01. IEEE, 2001, Vol. 1:285-289
    [100] Luise M, Marselli M, Reggiannini R. Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels. IEEE Transactions on Communications, 2002, Vol. 50(7): 1182-1188
    [101] Chen B. Maximum likelihood estimation of OFDM carrier frequency offset. IEEE Signal Processing Letters, 2002, Vol. 9(4): 123-126
    [102] Tureli U, Kivanc D, Liu H. Experimental and analytical studies on a high resolution OFDM carrier frequency estimator. IEEE Transactions on Vehicular Technology, 2001, Vol. 50(2): 629-643
    [103] Kim D K, Do S H, Lee H J, et al. Performance evaluation of the frequency detectors for orthogonal frequency division multiplexing. IEEE Trans. Consumer Electronics, 1997, Vol. 43(3): 509-512
    [104] Lu C C. Low complexity for carrier frequency synchronization for DVB-T/H system: [dissertation]. Hsinchu: National Chiao Tung University, 2005
    [105] Prasetyo B Y, Said F, Aghvami A H. Fast burst synchronization technique for OFDM-WLAN systems. IEE Proceeding-Communications, 2000, Vol. 147(5): 292-298
    [106] Classen F, Meyr H. Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channels. IEEE Vehicular Technology Conference, 1994. 1655-1659
    [107] Seo B S, Kim S C, Park J. Fast coarse frequency offset estimation for OFDM systems by using differentially modulated subcarriers. IEEE Transactions on Consumer Electronics, 2002, Vol. 48(4): 1075-1081
    [108] Kim Y H, Song L, Yoon S, et al. An efficient frequency offset estimator for OFDM systems and its performance characteristics. IEEE Transactions on Vehicular Technology, 2001, Vol. 50(5): 1307-1311
    [109] Moose P H. A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 1994, Vol. 42(10): 2908-2914
    [110] Proakis J G. Digital communication, 4~(th) Edition. New York: McGraw-Hill Inc. 2001
    [111] Li Y, Cimini L J, Nelson J, et al. Robust channel estimation for OFDM system with rapid dispersive fading channels. IEEE Trans. Communications, 1998, Vol. 46(7): 902-915
    [112] Molisch A F. Wideband wireless digital communications. Pearson Education Inc. 2001
    [113] Leonard J, Cimini J R. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications, 1985, Volume. COM-33(7): 665-675
    [114] Kaiser S. OFDM with code division multiplexing and transmit antenna diversity for mobile communications. Personal, Indoor and Mobile Radio Communications, 2000. PIMRC'00, The 11~(th) IEEE International Symposium on. 2000, Vol. 2: 804-808
    [115] Negi R, Cioffi J. Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Trans Consumer Electronics, 1998, Vol. 44(3): 1122-1128
    [116] Moreli M, Mengali U. A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Trans. on Signal Processing, 2001, Vol. 49(2): 3065-3073
    [117] Ma Y H. Channel equalizer for DVB-T/H system: [dissertation]. Hsinchu: National Chiao Tung University, 2006
    [118] Yeh C S, Lin Y Y. Channel estimation using pilot tones in OFDM systems. IEEE Transactions on Broadcasting, 1999, Vol. 45(4): 400-409
    [119] Zhao Y P, Huang A P. A novel channel estimation method for OFDM mobile communication systems based on pilot signals and transform-domain processing. IEEE 47~(th) Vehicular Technology Conference, 1997, Vol. 3: 2089-2093
    [120] Hmimy H H. Channel estimation based on coded pilot for OFDM. IEEE 47~(th) Vehicular Technology Conference, 1997, Vol. 3: 1375-1379
    [121] Hsieh M H, Wei C H. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels. IEEE Transactions on Consumer Electronics, 1998, Vol. 44(1): 217-225
    [122] Yang B G, Letaief K B, Chen R S, et al. Windowed DFT based pilot-symbol-aided channel estimation for OFDM systems in multipath fading channels. In: IEEE 51~(st) Vehicular Technology Conference Proceedings, VTC'00, Tokyo, 2000. Vol. 2: 1480-1484
    [123] Morelli M, Mengali U. A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Transactions on Signal Processing, 2001, Vol. 49(12): 3065-3073
    [124] Ito M, Suyama S, Fukawa K, et al. An OFDM receiver with decision-directed channel estimation for the scattered pilot scheme in fast fading environments. The 57~(th) IEEE Semiannual Vehicular Technology Conference, VTC'03-Spring, 2003, Vol. 1: 368-372
    [125] Simeone O, Barness Y, Spagnolini U. Pilot-based channel estimation for OFDM systems by tracking the delay-subsequence. IEEE Transactions on Wireless Communications, 2004, Vol.3(1): 315-325
    [126] Li Y. Pilot-symbol-aided channel estimation for OFDM in wireless systems. IEEE 49~(th) Vehicular Technology Conference, 1999, Vol. 2: 1131-1135
    [127] Coleri S, Ergen M, Puri A, et al. Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, 2002, Vol. 48(3): 223-229
    [128] Tang H Y, Lau K Y, Brodersen R W. Interpolation-based maximum likelihood channel estimation using OFDM pilot symbols. IEEE Global Telecommunications Conference, GLOBECOM'02,2002, Vol. 2:1860-1864
    [129] Zheng Y J. A novel channel estimation and tracking method for wireless OFDM systems based on pilots and Kalman filtering. IEEE Transactions on Consumer Electronics, 2003, Vol. 49(2): 275-283
    [130] Song W G, Lim J T. Pilot-symbol aided channel estimation for OFDM with fast fading channels. IEEE Transactions on Broadcasting, 2003, Vol. 49(4): 398-402
    [131] Negi R, Cioffi J. Pilot tone selection for channel estimation in a mobile OFDM system. In: Consumer Electronics, ICCE'98 Digest of Technical Papers, International Conference on, 1998. 466-467
    [132] Said F, Aghvami H. Linear two-dimensional pilot assisted channel estimation for OFDM systems. In: 6~(th) IEE Conference on Telecommunications, 1998. 32~36
    [133] Brink S, Sanzi F, Speidel J. Two-dimensional iterative APP channel estimation and decoding for OFDM systems. IEEE Global Telecommunications Conference, GLOBECOM'OO, 2000, Vol. 2(27): 741-745
    [134] Said F, Aghvami A H. Two dimensional pilot assisted channel estimation for turbo coded OFDM systems. IEE Colloquium on Turbo Codes in Digital Broadcasting - Could It Double Capacity, 1999. Vol. 19: 1-6
    [135] Woo G J, Kyung H P, Cho Y S. Two-dimensional MMSE channel estimation for OFDM systems with transmitter diversity. In: IEEE VTS 54 Vehicular Technology Conference, VTC'01-Fall, 2001, Vol. 3: 1682-1685
    [136] Woo G J, Kyung H P, Cho Y S. An efficient channel estimation technique for OFDM systems with transmitter diversity. In: IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC'00, 2000, Vol. 2: 1246-1250
    [137] Fernandez G G, Paez B, Zazo S. DFT-based channel estimation in 2D-pilot-symbol-aided OFDM wireless systems. In: IEEE VTC'01,2001. 810-814
    [138] Van de Beek J J, Edfors O, Sandell M. On channel estimation in OFDM systems. 1995, 815-819
    [139] Edfors O, Sandell M, Van de Beek J J, et al. Analysis of DFT-based channel estimators for OFDM. Wireless Personal Communications, 2000, Vol. 12(1): 55-70
    [140] Zhao Y, Huang A. A novel channel estimation methods for OFDM mobile communication systems based on pilot signals and transform domain processing. In: IEEE 47~(th) Vehicular Technology Conference, Phoenix, USA: Proc. IEEE 47~(th) VTC. 1997.2089-2093
    [141] Edfors O, Sandell M, Van de Beek J J, et al. OFDM channel estimation by singular value decomposition. IEEE Transactions on Communications, 1998, Vol. 46(7): 931-939
    [142] Henrik S, Friedrich J. Adaptive channel estimation OFDM based high speed mobile communication systems. http://www.comcaar.de/papers/paper36.pdf
    [143] Frieder S, Joachim S. An adaptive two-dimensional channel estimation estimator for wireless OFDM with application to mobile DVB-T. IEEE Transactions on Broadcasting, 2000, Vol. 46(2): 128-133
    [144] Yang B G, Khaled B L, Cheng R S, et al. Channel estimation for OFDM transmission in multipath fading channel based on parametric channel modeling. IEEE Transactions on Communications, 2001, Vol. 49(3): 467-478
    [145] Wang X W, Liu K J. OFDM channel estimation based on time-frequency polynomial model of fading multipath channels. In: IEEE GLOBECOM'01,2001. 212-216
    [146] Ma X Q, Kobayashi H, Schwartz S C. An EM-based estimation of OFDM signals. Wireless Communications and Networking Conference, 2002. 228-232
    [147] Minn H, Bhargava V K. An investigation into time-domain approach for OFDM channel estimation. IEEE Transactions on Broadcasting, 2000, Vol. 46(4): 240-248
    [148] Yeh C S, Lin Y Y, Wu Y Y. OFDM system channel estimation using time-domain training sequence for mobile reception of digital terrestrial broadcasting. IEEE Transactions on Broadcasting, 2000, Vol. 46(3): 215-220
    [149] Shu F, Lee J, Wu L N, et al. Time-frequency channel estimation for digital amplitude modulation broadcasting systems based on OFDM. IEE Proceedings Communications, 2003, Vol. 150(4): 259-264
    [150] Cheng Z L, Dahlhaus D. Time versus frequency domain channel estimation for OFDM systems with antenna arrays. In: 6~(th) International Conference on Signal Processing, 2002, Vol. 2: 1340-1343
    [151] Suh C, Hwangt C S, Choi H. Comparative study of time-domain and frequency-domain channel estimationin MIMO-OFDM systems. In: 14~(th) IEEE Proceedings on Personal, Indoor and Mobile Radio Communications,PIMRC03,2003, Vol. 2: 1095-1099
    [152] Mignone V, Morello A, Visintin M. CD3-OFDM: a new channel estimation method to improve the spectrum efficiency in digital terrestrial television systems. In: International Broadcasting Convention, IBC'95, 1995. 122-128
    [153] Chini A, Wu Y Y, El T M, et al. Filtered decision feedback channel estimation for OFDM-based DTV terrestrial broadcasting system. IEEE Transactions on Broadcasting, 1998, Vol.44(1): 2-11
    [154] Schafhuber D, Matz G, Franz H. Predictive equalization of time-varying channels for code OFDM/BFDM systems. In: Proc. IEEE GLOBECOM-2000, San Franscisco, CA. 2000. 721-725
    [155] Minjoong R, Jaemin A, Kim Y S. Decision-directed channel estimation for M-QAM-modulated OFDM systems, In: IEEE 55~(th) Vehicular Technology Conference, VTC'02,2002, Vol. 4:1742-1746
    [156] Ran J J, Grunheid R, Rohling H. Decision-directed channel estimation method foe OFDM systems with high velocities, In: The 57~(th) IEEE Seminnual Vehicular Technology Conference, VTC'03,2003, Vol. 4: 2358-2361
    [157] Heath R W, Giannakis G B. Exploiting input cyclostationarity for blind channel identification in OFDM system. IEEE Trans. Sig. Processing, 1999, Vol. 47(3): 848-856
    [158] Zhang R F. Blind OFDM channel estimation through linear precoding: a subspace approach. In: Signals, Systems and Computers, Conference Record of the 36~(th) Asilomar Conference on, 2002, Vol. 1: 631-633
    [159] Lin R, Petropulu A P. Linear block precoding for blind channel estimation in OFDM systems, In: Signal Processing and Its Applications Proceedings, 7~(th) International Symposium on, 2003, Vol. 2: 395-398
    [160] Petropulu A, Zhang R F, Lin R. Blind OFDM channel estimation through simple linear precoding. IEEE Transactions on Wireless Communications, 2004, Vol. 3(2): 647-655
    [161] Muquet B, Courville M. Blind and semi-blind channel identification methods using second order statistics for OFDM systems. In: Proc. ICASSP'99,1999, Vol. 5: 2745-2748
    [162] Chin K H, Boroujeny B F, Chin F. A comparison of blind channel estimation schemes for OFDM in Fading channels. In: Proc. Intl. Conf. on Commun. Systems, 2000. 1~5
    [163] Zhou S, Gianmakis G B. Finite-alphabet based channel estimation for OFDM and related multicarrier systems. IEEE Trans. on Communications, 2001, Vol. 49(8): 1402~1414
    [164] Chotikakamthom N, Suzuki H. On identifiability of OFDM blind channel estimation. In: IEEE VTS 50~(th) Vehicular Technology Conference, VTC'99, 1999, Vol. 4: 2358~2361
    [165] 杨大成.移动传播环境:理论基础、分析方法和建模技术.北京:机械工业出版社,2003.2~3
    [166] Lee W C Y. Mobile communications engineering. America: McGraw-Hill Companies, Inc., 1998
    [167] Moon J K, Chio S. Performance of channel estimation methods for OFDM systems in multipath fading channels. IEEE Transaction on consumer electronics. 2000, 161~170
    [168] Meyr H, Moeneclaey M, Fechtel S A. Digital communication receivers: synchronization, channel estimation, and signal processing. New York: John Wiley & Sons, Inc., 1997. 1~3
    [169] Chen S H, He W H, Chen H S, et al. Mode detection, synchronization, and channel estimation for DVB-T OFDM receiver. GLOBECOM'03, 2416~2419
    [170] Gardner F M. Interpolation in digital modems part Ⅰ: fundamental. IEEE Trans. Comm., 1993, Vol. 41(3): 501~507
    [171] 张公礼.全数字接收机理论与技术.北京:科学出版社,2005.70~71
    [172] Richard van N, Ramjee P. OFDM wireless multimedia communications. Bosten, London: Artech House, 2000
    [173] Song B W, Gui L, Zhang W J. Comb type pilot aided channel estimation in OFDM systems with transmit diversity. IEEE Transactions on Broadcasting, 2006, Vol. 52(1): 50~57
    [174] 周加铳,陈咏恩.OFDM系统中基于离散余弦变换的信道估计.计算机工程与应用,2007,Vol.43(4):115~118
    [175] 周加铳,陈咏恩.一种适用于OFDM系统的多径衰落信道估计.电子测量与仪器学报,2006,Vol.20(增):1155~1158
    [176] Li M Q, Tan J G, Zhang W J. A channel estimation method based on frequency-domain pilots and time-domain processing for OFDM systems. IEEE Transactions on Consumer Electronics, 2004, Vol. 50(4): 1049~1057
    [177] 周加铳,陈咏恩.一种适用于DVB-T系统的新型FFT处理器设计.计算机工程与应用,2006,Vol.42(27):16~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700