基于模态分析方法的有源声学结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有源声学结构是近年来提出的一种控制结构低频声辐射的有效方案,它是智能结构在噪声控制领域中的具体应用。本论文采用模态分析方法,将传统的结构振动模态理论和新兴的声辐射模态理论结合起来,对有源声学结构的关键问题进行深入的理论和实验研究。论文完成如下工作:
     (1)系统地总结了结构声辐射有源控制的各种方法及特点,对有源声学结构组成及特点做了分析说明,在总结国内外研究成果的基础上,阐述了有源声学结构的研究发展历程及研究现状,指出了尚需解决的关键问题。
     (2)分别采用振动模态和声辐射模态方法对结构声辐射进行分析,给出了结构表面法向速度、声场声压分布以及声功率近场计算的求解方法;将振动模态和声辐射模态联合起来对结构声辐射进行分析,解决了两个问题:1)确定了结构在不同的激励频率(或振动模态)下的主导声辐射模态;2)确定了结构各个振动模态间的耦合对辐射声功率的影响。
     (3)建立了声-振耦合下的有源声学结构理论模型,基于“角落单极子”模型对有源声学结构的降噪机理进行了解释并给出了次级声源的布放准则;基于声辐射模态理论,结合振动模态对次级声源的布放规律进行了定量研究,得出了次级源在各种情况下的最优布放位置以及次级声源的面积、模态分布等因素对控制效果的具体影响。通过增加次级声源个数拓宽对大面积平板声辐射的降噪频带,并从振动模态角度对次级声源的布放方案进行了研究。
     (4)研究了适用于有源声学结构的两种近场误差传感策略:基于振速的分布式误差传感和基于离散点近场声压的误差传感,对两种传感策略的原理及实现分别进行了深入分析。提出分频段设计法解决了声辐射模态传感器设计中PVDF对形状系数的最高阶次和振动模态的最高阶次选取之间的矛盾,给出了PVDF对的中心线选取原则,在此基础上对PVDF传感器进行了优化设计。分别研究了基于结构表面声压传感和基于测量面声压传感的有源控制,针对单频和宽带辐射噪声构建不同的有源控制目标函数,给出了相应的计算有源控制效果的公式,结合实例仿真结果进行了分析说明。对比了两种传感方式下的有源控制效果,从理论与工程实现两方面讨论了两种误差传感策略的优劣及应用中需要注意的问题。
     (5)从不同的角度对有源声学结构的降噪机理进行深入研究。首先从声辐射模态的角度进行分析,并得出了次级声源个数与所能抵消的辐射模态之间的定量关系;然后根据初级结构和次级结构各自的“净”辐射声功率的变化,得出了初、次级结构的能量转化机制,利用结构表面声强的变化对此进行了验证;最后对控制前后声场中的声强和声压分布变化进行了计算分析,揭示了次级板的面积、布放位置及个数对降噪效果的影响。
     (6)采用分布式平面声源作为次级声源,对振动钢板的声辐射进行了抵消实验,验证了以往研究中的一系列关键理论结果。主要内容包括:1)次级声源的布放准则验证;2)平面声源的面积和布放位置对降噪效果的影响;3)基于近场声压的误差传感策略有效性验证,将近场测量面声功率作为有源控制目标函数的有效性验证;4)控制前后声场中声压和声强的变化规律。
Active acoustic strt, cture (AAS) proposed in recent years has been viewed as anencouraging approach to actively control sound radiation from vibrating structures,which is an application of intelligent structures into the field of noise control. In thisdissertation, the key problems encountered in the implementation of such a structurehave been investigated theoretically and experimentally based on modal analysisapproach which links structural vibration modes to acoustic radiation modes. The mainresearch works done are listed as follows.
     (1) Active control of sound radiation from vibrating structure are summarizedsystematically, and the configuration and main features of AAS are analyzed and thekey technical problems needed to be solved are pointed out.
     (2) Sound radiation from vibrating structures is analyzed based on structuralvibration mode and acoustic radiation mode respectively. The approach used tocalculate the normal velocity of vibrating structure surface and sound pressure isprovide, and a near-field approach is used to obtain the sound power output of avibrating body. Then structural vibration modes and acoustic radiation modes arecombined to investigate sound radiation from a vibrating structure and two key issuesare solved: 1) the dominant radiation modes corresponding to different structuralvibration modes or frequencies are determined; 2) the effects of structural modalcoupling on the total radiated sound power are assessed quantitatively.
     (3)The structural-acoustic coupled model of AAS has been established. Physicalmechanisms of active control of sound radiation with AAS are investigated and therules for secondary sound sources arrangement are given. Based on structural vibrationmode and acoustic radiation mode, the laws of the arrangement optimization ofsecondary sound sources are derived for different kinds of conditions. The effects of thearea and modal distribution of secondary panel on active reduction are examined.
     (4)Two kinds of near-field error sensing strategies for AAS based on distributeddisplacement and near-field sound pressure have been studied. A limited number ofPVDF film pairs could be boned to the surface of the primary panel and secondarypanels for measuring the total the radiated sound power. The shape of the PVDF pairsand corresponding reduction in the radiated sound power are achieved. In designingPVDF sensors, it is difficult but important to choose the maximum order of shapecoefficients and the order of the structural modes, and to determine the location of the center line for placing the PVDF pairs. A new approach of designing PVDF pairs inpartitioned frequency band is presented to resolve the conflict in the choosing process.The optimized design approach and the criterion for determining the location of thecenter line for placing the PVDF pairs is given. Active control using structure surfacepressure and measuring plane pressure sensing is investigated respectively. Three kindof near-field pressure based active control cost functions for AAS are presented andapplied to active control of radiated single and broadband noise. Computer simulationson sound power reduction under three cost functions are conducted to show the validityof the control strategies. Active control effect from two different kinds of error sensingstrategies is compared.
     (5) Physical mechanism of noise reduction in AAS is investigated from severaldifferent points of view. Firstly, the physical mechanism is analyzed based on acousticradiation mode and the relationship between the radiation modes which could becancelled and the number of secondary sound sources is obtained. Secondly, under theminimization of the total sound power output, the physical mechanism is investigatedby analyzing the sound power output change of the primary and secondary structures.The results show that there are three mechanisms in active control, which are energyrestraint, energy absorption and energy un-absorption. The change of sound intensitydistribution of structure surface is calculated to validate the above conclusion. Finally,the change of sound intensity and pressure distribution is calculated and analyzed. Fornear-field sound intensity distribution, the effect of active control is revealed byamplitude restraint and direction adjusting for sound intensity.
     (6) Experiments for active control of sound radiation from a vibrating steel plateusing distributed planar secondary sources are conducted. The experimental resultsshow that: 1) using one planar secondary source, the sound power of (odd, odd)modescan be reduced. 2) Using two planar secondary sources, the sound power of not only(odd, odd) modes but also (odd, even) modes can be reduced. 3) The area andarrangement location of planar secondary sources have important influence on noisereduction. Using one planar secondary source, the larger the area is, the better thecontrol effect is. 4) The near field pressure based error sensing strategies are effectiveand feasible. The sound power calculated in terms of the sound pressures abovenear-field measuring plane can be used as an objective function, which is consistentwith the total radiated sound power. 5) After control, the far field pressure and intensitycan be reduced and partial acoustic energy is transferred into near field, the distributionof near field pressure and intensity are also changed distinctly.
引文
[1] 陈克安,有源噪声控制,北京:国防工业出版社,2003
    [2] 马大猷,噪声与振动控制工程手册,北京:机械工业出版社,2002
    [3] Warnaka G E, Active attenuation of noise-the state of the art, Noise Control Engineering Journal, 1982, 18:100-110
    [4] Eriksson L J, A brief social history of active sound control, Sound and Vibration, 1999, 33(7): 14-17
    [5] Nelson P A, Elliott S J, Active control of sound, Academic Press, London, 1992
    [6] Fuller C R, Elliott S J, Nelson P A, Active control of vibration, Academic Press, San Diego, 1996
    [7] 尹雪飞,陈克安,有源声学结构:概念、实现及应用,振动工程学报,2003;16(3):261-268
    [8] Lueg P, Process of silencing sound oscillations, German patent DRP No.655508, 1933
    [9] Lueg P, Process of silencin-g sound oscillations, US patent No.2043416, 1936
    [10] Guicking D, On the invention of active noise control by Paul Lueg, Journal of the Acoustical Society of America, 1990, 87:2251-2254
    [11] 陈克安,马远良,自适应有源噪声控制——原理、算法及实现,西安:西北工业大学出版社,1993
    [12] Hansen C H, Active noise control: from laboratory to industrial implementation, Proceedings of NOISE-CON 97, State College, Pennsylvania, 1997, 3-39
    [13] Eriksson L J, Allie M C, A practical system for active attenuation in ducts, Sound and Vibration, 1988, 22:30-34
    [14] Kim H S, Hong J S, Sohn D G, et al, Development of an active muffler system for reducing exhaust noise and flow restriction in a heavy vehicles, Noise Control Engineering Journal, 1999, 47(2): 57-63
    [15] Casali J G, Robinson G S, Narrow band digital active noise reduction in a siren-canceling headset: real-ear and acoustical manikin insertion loss, Noise Control Engineering Journal, 1994, 42(3):101-115
    [16] Zeta J, Brammer A J, Pan G J, Comparison between subjective and objective measures of active hearing protector and communication headset attenuation, Journal of the Acoustical Society of America, 1997, 101 (6): 3486-3497
    [17] Goodfellow E G, A prototype active noise reduction in-ear heating protector, Applied Acoustics, 1994, 42:299-312
    [18] Garcia-Bonito J, Elliont S J, Boucher C C, Generation of zones of quiet using a virtual microphone arrangement, Journal of the Acoustical Society of America, 1997,101:3498- 3516
    [19] Auweraer H V, Otte D, Venet G, et al, Aircraft interior sound field analysis in view of active control: Results from the ASANCA project, Proceedings of Noise-Con'93, 1993,219-224
    [20] Dorling C M, A demonstration of active noise reduction in an aircraft cabin, Journal of Sound and Vibration, 1989,128:358-360
    [21] Elliott S J, Nelson P A, Stothers I M, et al, Preliminary results of in-flight experiments on the active control of propeller-induced cabin noise, Journal of Sound and Vibration, 1989,128:355-357
    [22] Elliott S J, Nelson P A, Stothers I M, et al, In-flight experiments on the active control of propeller-induced cabin noise, Journal of Sound and Vibration, 1990, 140: 219-238
    [23] Elliott S J, Stothers I M, Nelson P A, et al, The active control of engine noise inside cars, Proceedings of Inter-Noise' 88,1988,987- 990
    [24] Sutton T J, Elliott S J, McDonald A M, et al, Active control of road noise inside vehicles, Noise Control Engineering Journal, 1994, 42(4):137-147
    [25] Benhard R J, Active control of road noise inside automobiles, Proceedings of Active'95,1995,21-32
    [26] Deffayet C, Nelson P A, Active control of low-frequency harmonic sound radiated by a finite panel, Journal of the Acoustical Society of America, 1988, 84(6):2192~ 2199
    [27] Fuller C R, Experiments on reduction of aircraft interior noise using of active control of fuselage vibration, Journal of the Acoustical Society of America, 1985,78(S1), S79
    [28] Lester H C, Fuller C R, Active control of propeller-induced noise fields inside a flexible cylinder, AIAA Journal, 1990, 28:1374-1380
    [29] Simpson M A, Luong T M, Fuller C R, et al, Full scale demonstration tests of cabin noise reduction using vibration, AIAA Journal of Aircraft, 1991, 28:208-215
    [30] Fuller C R, Hansen C H, Snyder S D, Active control of sound radiation from a vibration rectangular panel by sound sources and vibration inputs: an experimental comparison, Journal of Sound and Vibration, 1991,145:195-215
    [31] Fuller C R, Active control of sound transmission/radiation from elastic plates by vibration inputs, I: Analysis, Journal of Sound and Vibration, 1990,136(1):1-15
    [32] Pan J, Synder S D, Hansen C H, et al, Active control of far-field sound radiated by a rectangular panel a general analysis, Journal of the Acoustic Society of America, 1992,91: 2056-2066
    [33] Fuller C R, Hansen C H, and Snyder S D, Experiments on active control of sound radiated from a panel using piezoelectric actuators, Journal of Sound and Vibration, 1991,150:179-190
    [34] Wang B, Fuller C R, Dimitriadis E K, Active control of noise transmission through rectangular plates using multiple piezoelectric or point force actuators, Journal of the Acoustic Society of America, 1991,90(5):2820- 2830
    [35] Bao C, Pan J, Experimental study of different approach for active control of sound transmission through double walls, Journal of the Acoustic Society of America, 1997,102:1662-1670
    [36] Wang B, Optimal placement of microphone and piezoelectric transducer actuators for far-field sound radiation control, Journal of the Acoustic Society of America, 1996,99(5): 2975-2984
    [37] Salikuddin M, Tanna H K, Burrin R H, et al, Application of active noise control to model propeller noise, Journal of Sound and Vibration, 1990,137: 9-41
    [38] Hirsch S M, Sun J Q, An analytical study of interior noise control using segmented panels, Journal of Sound and Vibration, 2000, 231:1007-1021
    [39] Hirsch S M, Meyer N E, Westervelt M A, et al, Experimental study of smart segmented trim panels for aircraft interior noise control, Journal of Sound and Vibration, 2000,231:1023-1037
    [40] Chen Ke'an, Koopmann G H, Theoretical study on active control of sound radiation based on planar sound sources, Chinese Journal of Acoustics, 2003, 22(4): 360-368
    [41] Takagi T, A concept of intelligent materials, Adaptive structures, Journal of Intelligent Material Systems and Structures, 1990,1:149-156
    [42] Wada B K, Fanson J L, Crawley E F, Adaptive structures, Journal of Intelligent Material Systems and Structures, 1990,1:157-174
    [43] Spillman W B Jr, Sirkis J S, Gardiner P T, Smart materials and structures: What are they ?, Smart Materials and Structures, 1996,5: 247-254
    [44] Clark R L, Saunders W R, Adaptive structures: dynamics & control, John Wiley & Sons, INC., 1998
    [45]杨大智,智能材料与智能系统,天津:天津大学出版社,2000
    [46] 陶宝祺,智能材料结构,北京:国防工业出版社,1997
    [47] Chen Ke'an, Nykanen H, Koopmann G. H, Application of EMFi acoustic actuators into active control of sound radiation, Proceedings of the 4-th European Con. On Noise Control, Patras, Greece, 2001
    [48] Pierre R L St Jr, Koopmann G. H, Chen W, Volume velocity control of sound transmission through composite panels, Journal of Sound and Vibration, 1998, 210(4): 441-460
    [49] Gibbs G P, Clark R L, Cox D E, et al, Radiation modal expansion: Application to active structural acoustic control, Journal of the Acoustical Society of America, 2000, 107(1): 332-339
    [50] Guigou C, Li Z, Fuller C R, The relationship between volume velocity and far field radiated pressure of a planar structure, Journal of Sound Vibration, 1996, 197(2): 252-254
    [51] Wang B, the PVDF-based wave number domain sensing techniques for active sound radiation control from a simply supported beam, Journal of the Acoustical Society of America, 103(4), 1904-1915, 1998
    [52] Borgiotti G V, The determination of the acoustic far field of a radiating body in an acoustic fluid from boundary measurements, Journal of the Acoustical Society of America, 1993, 93:2788-2797
    [53] Berry A, Qiu X, Hansen C H, Near-field sensing strategies for the active control of the sound radiated from a plate, Journal of the Acoustical Society of America, 1999, 106(6): 3394-3406
    [54] Berkhoff A P, Sensor scheme design for active structural acoustic control, Journal of the Acoustical Society of America, 2000, 108(3):1037-1045
    [55] 陈克安,尹雪飞,基于结构表面声压的自适应有源吸收控制研究,振动工程学报,1999,12(3):309-315
    [56] Clark R L, Saunders W R, Adaptive structures: dynamics & control, John Wiley & Sons,—INC., 1998
    [57] Fuller C R, Rogers C A, Robertshaw H H, Control of sound radiation with active/adaptive structure, Journal of Sound and Vibration, 1992, 157:19-39
    [58] Paajanen M, Valimaki H, Lekkala J, Modelling the electromechanical film (EMFi), Journal of Electrostatics, 2000, 48:193-204
    [59] Heydt R, Pelrine R, Joseph J, et al, Acoustical performance of an electrostrictive polymer film, Journal of the Acoustical Society of America, 2000, 107:833-839
    [60] Samejima T, Development of panel loudspeaker system: design, evaluation and enhancement, Journal of Acoustical Society of America, 2001, 109(6): 2751-2761
    [61] Berger I, Deep thoughts on shallow speaker, Audio Magazine, April 1999
    
    [62] Nykanen H, Antila M, Kataja J, et al, Active control of sound based on utilizing EMFi technology, ACTIVE'99, Fort Lauderdale, Florida, 1999
    
    [63] Nykanen H, Aimasso R, Bondoux D, et al, EMFi based ANC systems in transporation system, FACTS Report PR.7.1,2000
    
    [64] DAFNOR, Distributed Active Foils for Noise Reduction, Final Technical Report, Brite-EuRam III project No. BE97-4970
    
    [65] FACTS, Film Actuators and Active Control of Sound for Comfort in Tranportation System, Brite-EuRam III project No.BE95-1578
    
    [66] SMARTCUS, Smart Acoustics House, Brite-EuRam III project No.BE97-4970
    
    [67] Gentry C A, Guigou C, Fuller C R, Smart foam for applications in passive/active noise radiation control, Journal of the Acoustical Society of America, 1997, 101(4):1771-1778
    
    [68] Johnson B D, Fuller C R, Broadband control of plate radiation using a piezoelectric double-amplifier active-skin and structural acoustic sensing, Journal of the Acoustical Society of America, 2000,107: 876-884
    
    [69] Guigou C, Fuller C R, Control of aircraft interior broadband noise with foam-PVDF smart skin, Journal of Sound and Vibration, 1999, 220: 541-557
    
    [70] Howarth T R, Varadan V K, Bao X, et al, Piezocomposite coating for active underwater sound reduction, Journal of the Acoustical Society of America, 1991, 91: 823-831
    [71] Corsaro R D, Houston B, Bucaro J A, Sensor—actuator tile for underwater surface impedance control studies, Journal of the Acoustical Society of America, 1997, 102:1573-1581
    [72] Lacour O, Galland M A, Thenail D, Preliminary experiments on noise reduction in cavities using active impedance changes, Journal of Sound and Vibration, 2000,230: 69-99
    [73] Rossetti D J, Norris M A, A comparison of actuation and sensing techniques for aircraft cabin noise control, Noise Control Engineering Journal, 1996,44(1):53-58
    
    [74] Chen Ke'an, Koopmann G H, Active control of low-frequency sound radiation from vibrating panel using planar sound sources, ASME, Journal of Vibration and Acoustics, 2002,124(1): 2-9
    [75] Chen Ke'an, Koopmann G H, Active enhancement of low frequency sound transmission loss using planar sound sources, Proceedings of the ASME International Mechanical Engineering Congress & Exposition, Orlando, Florida, Dec, 2000
    [76] 陈克安,有源吸声层理论研究,西北工业大学学报,1999,17(2):181-186
    [77] 陈克安,有源声吸收单元吸声量计算及机理研究,振动工程学报,1998,11(4):402-409
    [78] 陈克安,有源声吸收的自适应控制方法研究,西北工业大学学报,1999,17(3):382-386
    [79] 陈克安,柯谱曼,基于平面声源实施结构声辐射有源控制的理论研究,声学学报,2003,28(4):279-293
    [80] 陈克安,仲维彬,曾向阳,平面扬声器及其声学特性,电声技术,2003,9:21-23
    [81] Chen Ke'an, Yin Xuefei, Active control of radiated sound using near field pressure sensing, Chinese Journal of Acoustics, 2004, 23(3): 193-202
    [82] 陈克安,自适应声学结构声压误差传感策略,振动工程学报,2004,17(3):301-305
    [83] 仲维彬,陈克安,李宏伟,平板扬声器用于结构声有源噪声控制实验研究,应用声学,2006,25(4):246-251
    [84] 潘浩然,有源声学结构系统配置优化设计,硕士学位论文,西北工业大学,2006
    [85] 尹雪飞,多通道自适应逆控制系统研究,博士学位论文,西北工业大学,2005
    [86] Borgiotti G V, The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements, Journal of the Acoustical Society of America, 1990, 88:1884-1893
    [87] Johnson M E, Elliott S J, Active control of sound radiation using volume velocity cancellation, Journal of the Acoustical Society of America, 1995, 98(4): 2174-2186
    [88] Elliott S J, Johnson M E, Radiation modes and the active control of sound power, Journal of the Acoustical Society of America, 1993, 94(4): 2194-2204
    [89] 毛崎波,姜哲,通过声辐射模态研究结构声辐射的有源控制,声学学报,2001,26(3):277-281
    [90] Cunefare K A, Currey M N, Johnson M E, The radiation efficiency grouping of free-space acoustic radiation modes. Journal of the Acoustical Society of America, 2001, 109(1): 203-215
    [91] Wallance C E, Radiation Resistance of a Rectangular Panel, Journal of the Acoustical Society of America, 1972, 51(3): 946-952
    [92] Bolton J S, Gardner B K, Beauvilain T A, Sound cancellation by the use of secondary multipoles. Journal of the Acoustical Society of America, 1995, 98: 2343-2362
    [93] 姜哲,声辐射问题中的模态分析:Ⅰ理论,声学学报,2004,29(4):3737-378
    [94] 赵志高,黄其柏,复杂结构的声辐射解耦及其声辐射分析,振动工程学报,2004,17(3):326-331
    [95] 黎胜,赵德有,结构声辐射的振动模态分析和声辐射模态分析,声学学报,2004,29(3):200-208
    [96] 何祚镛,结构振动与声辐射,哈尔滨:哈尔滨工程大学出版社,2001
    [97] Cunefare K A, Effect of modal interaction on sound radiation from vibrating structure, AIAA Journal, 1992, 30(2):2819-2828
    [98] 张建润,孙庆鸿,陈南等,结构声辐射主动控制中模态辐射效率分析,南京大学学报,1998,34(1):40-47
    [99] 孙进才,王冲,机械噪声控制原理,西安:西北工业大学出版社,1993
    [100] Cunefare KA, Currey M N, On the exterior acoustic radiation modes of structures, Journal of the Acoustical Society of America,1994, 96, 2302-2312
    [101] Currey M N, Cunefare K A, The radiation modes of baffled finite plates, Journal of the Acoustical Society of America, 1995, 98:1570-1580
    [102] 姜哲,声辐射问题中的模态分析:Ⅱ实例,声学学报,2004,29(6):507-515
    [103] Bank G, The distributed mode loudspeaker (DML). In: Loudspeaker and Headphone Handbook. 3rd ed. Oxford: Focal Press, 2001
    [104] Koopmann G H, Fahnline J B, Designing Quiet Structures: a Sound Power Minimization Approach. London: Academic Press, 1997
    [105] Maidanik G, Response of ribbed panels to reverberant acoustic fields, Journal of Acoustic Society of America, 1962, 34:809-826
    [106] Sors T C, Elliott S J, Volume velocity estimation with accelerometer arrays for active structural acoustic control, Journal of Sound and Vibration, 2002, 258(5): 867-883
    [107] Maillard J P, Fuller C R, Advanced time-domain wave-number sensing for structural acoustic systems, Ⅰ: theory and design, Journal of the Acoustical Society of America, 1994, 95(6): 3252-3261
    [108] Masson P, Berry A, Nicolas J, Active structural acoustic control using strain sensing, Journal of the Acoustical Society of America, 1997, 102(3): 1588-1599
    [109] Charette F, Berry A, Guigou C, Active control of sound radiation from a plate using a polyvinydene fluoride volume displacement sensor, Journal of the Acoustical Society of America, 1998, 103(3): 1493-1503
    [110] 吴锦武,姜哲,毛崎波,利用PVDF设计两维简支结构声辐射模态传感器.江苏大学学报(自然科学版),2002,23(6):15-20
    [111] 顾俭,姜哲,任意边界梁的声辐射模态伴随系数测量,振动工程学报,2004,17(1):86-90
    [112] Berkhoff A P, Piezoelectric Sensor Configuration for Active Structural Acoustic Control, Journal of Sound and Vibration, 2001, 246(1): 175-183
    [113] Marcellin B Z, Naghshineh K, Kamman J W, Narrow Band Active Control of Sound Radiated from a Baffled Beam Using Local Volume Displacement Minimization, Applied Acoustics, 2001, 62: 47-64
    [114] Clark R L, Fuller C R, Modal sensing of efficient radiators with PVDF distributed sensors in active structural acoustic control approaches, Journal of the Acoustical Society of America, 1990, 91(6): 3321-3329
    [115] Borgiotti G V, Jones K E, Frequency independence property of radiation spatial filters, Journal of the Acoustical Society of America,1994, 96: 3516-3524
    [116] 姜哲,基于声辐射模态讨论声能量辐射与传递,声学学报,2005,30(2):125-131
    [117] http://www.lmschina.com
    [118] 陈克安,曾向阳,李海英,声学测量,北京:科学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700