微型平面微波滤波器的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动通信的飞速发展和微波电路的高度集成化,作为通信系统关键部件的滤波器也要求向高性能、小型化的方向发展。同时,随着电子计算机的不断升级,时域有限差分法(FDTD)正成为分析这类电磁问题的强有力工具。本文主要针对平面微波滤波器的小型化和高性能进行了较广泛的研究,结合基片集成波导、双模结构、分形结构等一些新技术,提出了几种新型的低通、带通、带阻滤波器。并用FDTD法对其中的低通微带滤波器做了分析研究。论文主要包括以下内容:
     首先,简述了FDTD方法的基本原理,在此基础上,重点研究了用FDTD计算微带电路的难点问题,如PML层的边界条件处理和传输特性计算等。相关FDTD计算理论是进行微带滤波器研究和分析的基础。后面微带低通滤波器的计算结果表明了本章计算理论的正确性。
     其次,详细研究了一种新型缺陷微带结构(DMS)的阻带特性以及其与缺陷地结构(DGS)的区别。根据电磁仿真结果和等效电路原理提取了相应的集总参数。DMS结构更容易和有源微波电路集成,同时避免了电磁波从接地板的辐射。设计了两种DMS结构的三极点低通滤波器并用FDTD算法分析了相关结果,在此基础上还设计了一种DMS结构的五极点低通滤波器。这三种DMS结构的低通滤波器均具有较好的高频阻带特性和低频通带特性。
     第三,在分析三角形和圆形双模贴片滤波器的基础上,将分形结构应用于双模微带贴片滤波器的设计中。分别设计了一类分形结构的三角形滤波器和一类分形结构的圆形滤波器。分形结构能够更好得激励简并模的耦合,改善通带特性。同时,两类滤波器的通带两侧均出现衰减极点,极大得提高了滤波器的频率选择性。分形结构还能降低滤波器原有的谐振频率,有利于滤波器的小型化。
     第四,介绍了基片集成波导的结构特点,研究了它的一些基本特性,如传播模式、与矩形波导的等效条件等。设计了一种单个腔体的基片集成波导双模带通滤波器。同时,通过使用凹型过渡和接地共面波导过渡两种转换方式,解决了基片集成波导与微带线的过渡问题。该滤波器的品质因数高、插入损耗小,拓宽了窄带滤波器的应用范围。
     最后,讨论了用于开发人工异向介质材料的重要组成单元——金属开口环(SRR)和互补口环谐振器(CSRR),研究了它们的谐振特性及基于这两种结构的平面带阻滤波器。提出将互补开口环谐振器刻蚀在微带线的导带上,从而充分利用电场进行有效激励,降低了谐振器的谐振频率、拓宽了阻带带宽。同时根据电磁仿真结果和等效电路原理提取了互补开口环谐振器的集总电路参数。在此基础上设计了两种一维互补开口环谐振器带阻滤波器,这两种滤波器均具有较宽的带宽和较深的阻带特性。
With the rapid development of mobile communications and the high integration of microwave circuits, microwave filter which act as the key elements of communication system, are demanded toward to high performances and small sizes. At the same time, the incessant upgrade of electronic computers, the finite-difference time-domain (FDTD) method is becoming a powerful tool for analyzing these electromagnetic problems. This paper does a lot of research work on miniaturization and high performance of microwave filters. By taking use of new technologies, such as substrate integrated waveguide (SIW), dual-mode structure, and fractal structure, etc., some kinds of novel filters, such as low-pass filters, band-pass filters and band-stop filters, are proposed. FDTD analysis of low-pass filters is studied. The dissertation is summarized as follows:
     Firstly, the principal theory of FDTD (finite-difference time-domain) is briefly discussed. And then the difficult questions that use FDTD to compute microstrip circuits are researched, such as the boundary conditions of PML and transmission characteristics. These theories are the foundations of studying and analyzing microstrip filters. The compute results of microstrip low-pass filters, which are proposed in the next chapter, indicate that the computing theories about microstrip circuits are correct.
     Secondly, fully analysis the stop-band characteristics of a microstrip structure (DMS) and the differences between DMS and defected grounded structure. The lumped circuit parameters are extracted from EM simulation and equivalent circuit theory. This structure can be easily integrated with other active circuits, and avoids the leakage through the ground plane. Two types of three-pole low-pass filters using DMS are proposed, and the FDTD is used to analysis the related results. Based on two types of three-pole filters, a type of five-pole low-pass filters is proposed. Three types of filters all have good stop-band characteristics in high frequencies and excellent pass-band characteristics in low frequencies.
     Thirdly, based on analysis of triangular and circular dual-mode patch filters, the fractal structures are applied in designing dual-mode microstrip patch filters. A class of fractal-shaped triangular filters and a class of fractal-shaped circular filters are proposed. The degenerate-modes can be well excited, which improves the pass-band characteristics. Two classes of filters all have attenuation poles at each side of pass-band, which efficiently improved the frequency selectivity. Fractal structure also can reduce the resonant frequency of initial filters, which making for the filter's.
     Fourthly, the basic structure of substrate integrated waveguide (SIW) is introduced and some fundamental characteristics, such as transmission mode and the equivalent condition as rectangular waveguide, are researched. A single cavity SIW dual-mode band-pass filter is introduced. The transitions of SIW with microstrip are solved by using concave transition and grounded coplanar waveguide transition. This kind of filter has high quality factor and low insertion loss, which expands the applications of narrow-band filters.
     Finally, the split ring resonator (SRR) and complementary split ring resonator (CSRR) that act as fundamental composite units to make metamaterial are discussed. The resonant performance and the planar band-stop filters that based on SRR and CSRR are researched. The complementary split ring resonator (CSRR) which etched in conductor strip of microstrip line is proposed. The electric field is fully used to excite the CSRR, which can decreases the resonant frequency and widen the stop-band bandwidth. At the same time, the lumped circuit parameters are extracted from EM simulation and equivalent circuit theory. Based on this type CSRR, two 1-D CSRR band-stop filters are proposed, both filters all have wider bandwidth and deeper stop-band.
引文
[1] 甘本祓,吴万春,现代微波滤波器的结构与设计(上下册)[M].科学出版社,1972
    [2] G.L.Matthaei, L.Young, and E.M.T.Jones, Microwave Filters: Impedance-matching network, and coupling structures [M]. New York: McGraw-Hill, 1964
    [3] I.C.Hunter, L.Billonet, B.Jarry and RGuillon, Microwave filter-applications and techology. [J], IEEE Trans. Microwave Theory Techniques, 2002; 50(3): 794-805
    [4] R.Levy, R.V.Snyder, and G.Matthaei, Design of microwave filters [J], IEEE Trans. Microwave Theory Techniques, 2002; 50(3): 783-793
    [5] M.Makimoto,S.Yamashita.无线通信中的微波谐振器与滤波器[M].北京:国防工业出版社,2002
    [6] J.S. Hong and M.J. Lancaster. Microstrip filters for RF/Microwave applications [M]. New York: John Wiley & Sons, Inc, 2001
    [7] J.I. Park, C.S. Kim, J. Kim, et al. Modeling of a photonic bandgap and its application for the low-pass filter design [C] IEEE. Asia Pacific Microwave Conference, Singapore, 1999, 2:331-334
    [8] C.S. Kim, J.S. Park, A. Ahn et al. A novel 1-D periodic defected ground structure for planar circuits [J], IEEE Microwave and Guided Wave Letters, 2000; 10(4): 131-133.
    [9] Dal Ahn, Jun-Seok Park, Chul-Soo Kim, et al. A design of the low-pass filter using the novel microstrip defected ground structure [J], IEEE. Trans. on Microwave Theory and Techniques 2001; 49(1): 86-93
    [10] J.S. Lim, C. H. Kim, D. Ahn, Y. C. Jeong, and S. Nam, Design of low-pass filters using defected grounded structure [J], IEEE.Trans. on Microwave Theory and Techniques, 2005; 53(8): 2539-2554.
    [11] J. Lim, C. Kim, Y. Lee, et al. A Spiral-shaped defected ground structure for coplanar waveguide [J], IEEE Microwave and Guided Wave Letters, 2002; 12(9): 330-332
    [12] Y. J. Sung, M. Kim, Y.-S. Kim, Harmonics reduction with defected ground structure for a microstrip patch antenna [J], IEEE Antennas and Wireless Propagation Letters, 2003; 2(1): 111-113
    [13] Insik Chang, B. Lee. Design of defected ground structure for harmonic control of active microstrip antenna [J], IEEE Antenna and Propagation Society International Symposium 2002, 2(2): 852-855
    [14] Y. Chung, S.-S. Jeon, Dal A., J.-I. Choi, T. Itoh. High Isolation dual-polarized patch Antenna using integrated defected ground structure [J], IEEE Microwave and Wireless Components Letters, 2004; 14(1): 4-6
    [15] J. Lim, Y. Jeong, Dal Ahn, et al. Improvement in performance of power amplifiers by defected ground structure [J], IEICE Trans. on Electronics, 2004; E87-C(1): 60-65
    [16] S.G. Jeong, D.K. Hwang, Y.C. Jeong, et al. Amplifier design using λ/4 high impedance bias line with defected ground structure(DGS) [J], IEEE MTT-S, 2002, 2:1161-1164
    [17] J.S. Lim, C.S. Kim, Y.T. Lee, et al. Vertically periodic defected ground structure for planar transmission lines[J], Electronics Letters, 2002; 38(8): 803-804
    [18] J.S. Lim, J.S. Park, Y.T. Lee, et al. Application of defected ground structure in reducing the size of amplifiers [J], IEEE Microwave and Guided Wave Letters, 2002; 12(7): 261-263
    [19] 刘海文,李征帆,孙晓玮等,一种新颖的蝴蝶结形缺陷接地结构微带线[J],红外与毫米波学报,2004;23(6):431-435
    [20] K. Wu, D. Deslandes, Y. Cassivi. The substrate integrated circuits- a new concept for high-frequency electronics and optoelectronics[C], 6th International Conference on Telecommunications in Modem Satellite, Cable and Broadcasting Service, 2003. TELSIKS. OCT.1-3, 2003: P-Ⅲ-P-X
    [21] D. Deslandes, K. Wu. Single-substrate integration technique of planar circuits and waveguide filters [J], IEEE Trans on Microwave Theory and techniques, 2003; 51(2):593-596
    [22] H. Li, W. Hong, T.J. Cui, K. Wu, Y.L. Zhang, and Li Yah. Propagation characteristics of substrate integrated waveguide based on LTCC [C], IEEE MTT-S International Microwave Symposium Digest, 2003:2045-2048
    [23] 张胜,王子华,肖建康,李英,一种新型基片集成波导双模带通滤波器[J],压电与声光2006年;28(6):674-676
    [24] Y.L. Zhang, W. Hong, K. Wu, J.X. Chen, H. J. Tang. Novel substrate integrated waveguide cavity filter with defected grounded structure [J], IEEE Trans on Microwave Theory and Techniques, 2005; 53(4): 1280-1286
    [25] L. Yan, W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui. Simulation and experiment on SIW slot array antennas[J], IEEE Trans on Microwave and Wireless components Letters, 2004; 14(9):446-448
    [26] Y. Cassivi and K. Wu. Low cost microwave oscillator using substrate integrated waveguide cavity [J], IEEE Trans on Microwave and Wireless components Letters, 2003; 13(2):48-50
    [27] R.A. Shelby, D.R. Smith, S. Schultz. Experimental verification of a negative index of refraction [J], Science, 2001; 292 (6): 77-79
    [28] D.R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. Composite medium with simultaneously negative permeability and permittivity[J], Physical Review Letters, 2000; 84(18): 4184-4187
    [29] J.B. Pendry. Negative refraction makes a perfect lens [J], Physical Review Letters, 2000; 85(18): 3966-3969
    [30] F. Falcone, T. Lopetegi, J.D. Baena, R. Marqués, F. Martin, and M. Sorolla. Effective negative-ε stopband microstrip lines based on complementary split ring resonators [J], IEEE Microwave and Wireless Components Letters, 2004; 14 (6):280-282
    
    [31] F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marque's, F.Martin, and M. Sorolla. Babinet principle applied to the design of metasurfaces and metamaterials [J], Physical Review Letters, 2004; 93 (19): 197401-1-197401-4
    
    [32] J. Bonache, I. Gil, J. Garcia-Garcia, F. Falcone, T. Lopetegi, M.A.G. Laso, J. D. Baena, F. Martin, M. Sorolla, R. Marques. Split rings resonators: Key particles for microwave device design[C], IEEE. 2005 Spanish Conference on Electron Devices, Spanish: IEEE. 2005: 135-138
    
    [33] J.-G. Lee and J.-H. Lee. Suppression of spurious radiations of patch antennas using split-ring resonators (SRRs) [J], Microwave Optical Technology Letters, 2006; 48 (2):283-287
    [34] J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, M. Sorolla, and R. Marques. Spurious passband suppression in microstrip coupled Line band pass filters by means of split ring resonators [J], IEEE Microwave and Wireless Components Letters, 2004; 14(9): 416-418
    
    [35] J. Garcia-Garcia, F.Martin, F.Falcone, J.Bonache, J.D. Baena, I.Gil, E. Amat, T. Lopetegi, M.A.G. Laso, J.A. M. Iturmendi, M. Sorolla, and R. Marques. Microwave filters with improved stopband based on sub-wavelength resonators [J], IEEE Trans. Microwave Theory and Techniques, 2005; 53 (6): 1997-2004
    
    [36] Sheng Zhang, Jian-kang Xiao, Ying Li. Novel microstrip band-stop filters based on complementary split ring resonators (CSRRs) [J], Microwave Journal, Vol.49 (11): 100-112
    [37] J. Garcia-Garcia, J. Bonache, F. Falcone, J.D. Baena, F. Martin, I. Gil, T. Lopetegi, M.A.G. Laso, A. Marcotegui, R. Marque's and M. Sorolla. Stepped-impedance lowpass filters with spurious passband suppression [J], Electronics Letters, 2004; 40 (14): 881- 883
    [38] S.N. Burokur, M. Latrach, and S. Toutain. A novel type of microstrip coupler utilizing a slot Split-ring resonators defected ground plane [J], Microwave Optical Technology Letters, 2006; 48(1): 138-141
    [39] I. Wolff. Microstrip band-pass filter using degenerate modes of a microstrip ring resonator [J], Electronics Letters, 1972; 8(12): 302-303
    
    [40] J.-S. Hong and M.J. Lancaster. Microstrip bandpass filter using degenerate modes of novel meander loop resonator [J], IEEE Trans. Microwave and Guided wave Letters, 1995; 5(11): 371-372.
    [41] Sheng Zhang, Jian-kang Xiao, Shi-wei Ma, Ying Li. Novel Dual-Mode Microstrip Bandpass Filters Using Fractal-Shaped Triangular Patch Resonators [C], The 7th International Symposium on Antenna, Propagation, and EM Theory, Guilin, 2006.. 1217-1220
    [42] J.A. Curtis and S.J. Fiedziuszko. Miniature dual-mode microstrip Filters[C], IEEE MTT-S Digest. Boston, MA, USA: IEEE 1991:443-446
    [1] 葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002
    [2] K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media [J], IEEE Trans. on Antennas and Propagation, 1966; AP-14(5): 302-307
    [3] R. Holland. A free-field EMP coupling and scattering code [J], IEEE Trans. Nuclear Science, 1977, 24:2416-2421
    [4] R. Holland, L. Simpson, R.St. John. Code optimization for solving large 3D EMP problems [J], IEEE Trans. Nuclear Science, 1979; 26 (6): 4964-4969
    [5] R. Holland, L. Simpson, K.S. Kunz, Finite-difference analysis of EMP coupling to lossy dielectric structures [J], IEEE Trans Electromagnetic Compatibility, 1980; EMC-23(2), 203-209
    [6] R Holland. Finite-difference solution of Maxwell's equations in generalized nonorthogonal coordinates [J], IEEE Trans. Nuclear Science, 1983; 30(6): 4589-4591
    [7] K.S Kunz, K. Lee. A three-dimensional Finite-difference solution of the external response of an aircraft to a complex transient EM dash 1, 2 [J], IEEE Trans. Electromagnetic Compatibility, 1978; EMC-20(2):328-341
    [8] K.S. Kunz, L. Simpson. A technique for increasing the resolution of finite-difference solution of the Maxwell equation [J], IEEE Trans. Electromagnetic Compatibility, 1981; EMC-23(4): 419-422
    [9] A Taflove, M E Brodwin. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations [J], IEEE Trans. Microwave Theory and Techniques, 1975; MTT-23,623-630
    [10] A Taflove. Application of the finite-difference time-domain method to sinusoidal steady- state electromagnetic penetration problems [J], IEEE Trans. Electromagnetic Compatibility, 1980; EMC-22(3), 191-202
    [11] A Taflove. Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures [J], Wave Motion, 1988; 10 (6): 547-582
    [12] Byingo Wolff. Application of finite-difference time-domain technique to planar microwave circuits design [J], IEEE Trans. Microwave Theory and Techniques, 1990, 38 (7): 849-856
    [13] L N Merugu, Vincent F Fusco. Concurrent network diakoptics for electromagnetic field problems [J], IEEE Trans. Microwave Theory and Techniques, 1993, 41 (4): 708-716
    [14] Emmanouil Tentzeris, Michael Krumpholz, et al. FDTD characterization of waveguide-probe structures [J] IEEE Trans. Microwave Theory and Techniques, 1998, 46 (10): 1452-1460
    [15] Chen Wu, E.A. Navarro, J. Navasquillo, J. Litva. FDTD signal extrapolation using a finite impulse response neural network model [J], Microwave and Optical Technology Letters, 1999; 21 (5): 325-330
    [16] M.A. Hernandez-Lopez, M.Quintillan. Propagation characteristics of modes in some rectangular waveguides using the finite-difference time-domain method [J], Journal of Electromagnetic Waves and Applications, 2000, 14: 1707-1722
    [17] D. M. Sheen et al. Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits [J], IEEE Trans. on MTT, 1990, 38 (7): 849-857
    [18] 尹家贤,谭怀英,刘克成.FDTD中微带线激励源设置的新方法[J],电波科学学报,2000;15(2):204-207
    [19] 高本庆.时域有限差分法FDTD Method[M].北京:国防工业出版社,1995
    [20] 王秉中.计算电磁学[M].北京:科学出版社,2002
    [21] A Taflove, M E Brodwin. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations [J], IEEE Trans. Microwave Theory and Techniques, 1975; 23(8): 623-630
    [22] G Mur. Modeling of singularities in the finite-difference approximation of the time-domain electromagnetic-field equations [J], IEEE Trans. on Microwave Theory Tech., 1981; 29 (10): 1073-1077
    [23] J.P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves [J], J. Comput. Phys., 1994; 114(2): 185-200
    [24] J.P. Berenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J] Journal of Computational Physics, 1996; 127(2): 363-379
    [25] S.D. Gedey. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices [J], IEEE Trans. on Antennas and Propagation, 1996; 44(12): 1630-1639
    [26] J.B. Verdu, R. Gillard., K. Moustadir., et al. Extension of the PML technique to the FDTD analysis of multilayer planar circuits and antennas [J], Microwave and Optical Technology Letters, 1995; 10 (6): 323-327
    [27] J.P. Berenger. Improved PML for the FDTD solution of wave-structure interaction problems [J], IEEE Trans. on Antennas and Propagation, 1997; 45 (3): 466-473
    [28] J.P. Berenger. Perfectly matched layer for the FDTD solution of wave-structure interaction problems [J], IEEE Trans. on Antenna and Propagation, 1996; 44 (1): 110-117
    [29] K.K. Mei, J Fang. Super absorption—A method to improve absorbing boundary conditions [J], IEEE Trans. on Antennas and Propagation, 1992, 40 (9): 1001-1010
    [30] C. J. Railton, E M Daniel, D L Paul, et al. Optimized absorbing boundary conditions for the analysis of planar circuit using the finite difference time domain method [J], IEEE Trans. Microwave Theory Tech., 1993; 41 (5): 192-203
    [31] P. Zhao, J. Litva, K.Wu. A new stable and very dispersive boundary condition for the FDTD method [C] IEEE MTTs- Digest., 1994; (1): 35-38
    [32] Z. P. Liao, H. L. Wong, B P Yang, et al. A transmitting boundary for transient wave analysis [J], Scientia Sinica (A), 1984; 27 (10): 1063-1076
    [33] J.Y. Zhou, W. Hong. Construction of the Absorbing Boundary Conditions for the FDTD Method with Transfer Functions [J], IEEE Trans. Microwave Theory and Techniques, 1998; 46 (11): 1807-1809
    [34] 袁伟良.时域有限差分法关键问题研究与应用,[D].[博士论文],西安电子科技大学,1998:76-77
    [35] J.G. Maloney, G.S.Smith. The use of surface impedance concepts in the finite-difference time domain method [J], IEEE Trans. on Antennas and Propagation, 1992; 40(1): 38-48
    [36] A. Taflove, K. Umashankar. A hybrid moment/finite-difference time-domain approach to electro-magnetic coupling and aperture penetration into complex geometries [J], IEEE Trans. on Antennas and Propagation, 1982; 30 (4): 617-627
    [37] R. Lee, T. Chia. Analysis of electromagnetic scattering from a cavity with a complex termination by means of a hybrid ray-FDTD method [J], IEEE Trans. on Antennas and Propagation, 1993; 41(11): 1560-1569
    [38] T. Namiki. A new FDTD algorithm based on alternating-direction implicit method [J], IEEE Trans. Microwave Theory and Techniques, 1999; 47 (10): 2003-2007
    [39] T. Namiki. 3-D ADI-FDTD method—unconditionally stable time-domain algorithm for solving full vector Maxwell's equations [J], IEEE Trans. Microwave Theory and Techniques, 2000; 48 (10): 1743 - 1748
    [40] F. Zheng, Z. Chen, J. Zhang. Toward the development of a three-dimensional unconditiona-lly stable finite-difference time-domain method [J], IEEE Trans. Microwave Theory and Techniques, 2000; 48 (9): 1550 -1558
    [41] G.D. Kondylis, F.D. Flaviis, G.J. Pottie, et al. A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell equation [J], IEEE Trans. Microwave Theory and Techniques, 2001; 49 (7): 1310-1320
    [42] K.S. Yee, J.S. Chen. The finite-difference time-domain (FDTD) and finite-volumet imedomain (FVTD) methods in solving Maxwell's equations [J], IEEE Trans. Microwave Theory and Techniques, 1997; 45 (3): 354-363
    [43] M. Yang, Y.Chen, R. Mittra. Hybrid finite-difference/finite-volume time-domain analysis or microwave integrated circuits with curved PEC surfaces using a nonuniform rectangular grid [J], IEEE Trans. Microwave Theory and Techniques, 2000; 48 (6): 969-975
    [44] J.L. Young, D. Gaitonde, J. Shang, et al. Toward the construction of a fourth-order differ- entce scheme for transient EM wave simulation: Staggered grid approach [J], IEEE Trans. on Antennas and Propagation, 1997; 45 (11): 1573-1580
    [45] S.V. Georgakopouls, R.A. Renaut, C.A. Balanis, et al. A hybrid fourth-order utilizing a second-order FDTD subgrid [J], IEEE Microwave and Wireless Components Letters, 2001; 11(11): 462-464
    [46] T. Hirono, W. Lui, Y. Yoshikuni A three-dimensional fourth-order finite-difference timedomain scheme using a symplectic integrator propagator [J], IEEE Trans. Microwave Theory and Techniques, 2001; 49 (9): 1640-1647
    [47] E. A. Navarro et al, Application of PML super absorbing boundary condition to non-orthogonal FDTD method [J], IEE. Electronic Letters, 1994; 30(9): 1654-1656.
    [1] J.I. Park, C.S. Kim, J. Kim, et al. Modeling ofa photonic bandgap and its application for the low-pass filter design [C], IEEE. Asia Pacific Microwave Conference, Singapore, 1999, 2: 331-334
    [2] C.S. Kim, J.S. Park, A. Ahn et al. A novel 1-D periodic defected ground structure for planar circuits [J] IEEE Microwave and Guided Wave Letters, 2000; 10(4): 131-133.
    [3] Dal Ahn, Jun-Seok Park, Chul-Soo Kim, et al. A design of the low-pass filter using the novel microstrip defected ground structure [J], IEEE. Trans. on Microwave Theory and Techniques 2001; 49 (1): 86-93
    [4] J.S. Lim, C.S. Kim, Y.T. Lee, et al. Design of lowpass filters using defected ground structure and compensated line [J] Electronics Letters, 2002; 38(22): 1357-1358
    [5] X.H. Guan, G. H. Li, Z.W. Ma. A novel low-pass filter using defected ground structure [J], Microwave and Optical Technology Letters, 2005; 46(1), 17-20.
    [6] J.S. Lim, C. H. Kim, D. Ahn, Y. C. Jeong, and S. Nam. Design of low-pass filters using defected grounded structure [J] IEEE. Trans. on Microwave Theory and Techniques, 2005; 53(8): 2539-2554.
    [7] Y.J. Sung, M. Kim, Y.-S. Kim. Harmonics reduction with defected ground structure for a microstrip patch antenna [J], IEEE Antennas and Wireless Propagation Letters, 2003; 2(1): 111-113
    [8] Y. Chung, S.-S. Jeon, Dal A., J.-I. Choi, T. Itoh. High Isolation dual-polarized patch Antenna using integrated defected ground structure [J], IEEE Microwave and Wireless Components Letters, 2004; 14(1): 4-6
    [9] Insik Chang, B. Lee. Design of defected ground structure for harmonic control of active microstrip antenna [J], IEEE Antenna and Propagation Society International Symposium 2002; 2(2): 852-855
    [10] Duk-Jae Woo, Taek-Kyung Lee. Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS [J], IEEE Transactions on Microwave Theory and Techniques 2005; 53 (6): 2139—2144
    [11] J. Lim, S Lee, C. Kim, et al. A 4:1 unequal Wilkinson power divider [J] IEEE Microwave and Guided Wave Letters, 2001; 11 (3): 124-126
    [12] J.-S. Park, M.-S. Jung, A novel defected ground structure for an active device mounting and its application to a microwave oscillator [J], IEEE Microwave and Wireless Components Letters, 2004; 14(5), 198-200
    [13] M.-S. Joung,, J.-S. Park, H.-S. Kim, A novel modeling method for defected ground structure using adaptive frequency sampling and its application to microwave oscillator design [J], IEEE Transactions on Magnetics, 41 (2005), 1656-1659
    [14] J. Lim, C. Kim, Y. Lee, et al. A Spiral-shaped defected ground structure for coplanar waveguide [J], IEEE Microwave and Guided Wave Letters, 2002; 12 (9): 330-332
    [15] J. Lim, Y. Jeong, Dal Ahn, et al. Improvement in performance of power amplifiers by defected ground structure [J], IEICE Trans. on Electronics, 2004; E87-C (1): 52-59
    [16] S.G. Jeong, D.K. Hwang, Y.C. Jeong, et al. Amplifier design using λ/4 high impedance bias line with defected ground structure (DGS) [J], IEEE MTT-S, 2002; 2: 1161-1164
    [17] J.S. Lim, C.S. Kim, Y.T. Lee, et al. Vertically periodic defected ground structure for planar transmission lines [J], Electronics Letters, 2002; 38(8): 803-804
    [18] J.S. Lim, J.S. Park, Y.T. Lee, et al. Application of defected ground structure in reducing the size of amplifiers [J], IEEE Microwave and Guided Wave Letters, 2002; 12(7): 261-263
    [19] M.d. Nurunnabi Mollah, Nemai Chandra Karmakar. Compact hybrid defected ground plane [J], Microwave and Optical Technology Letters, 2005; 44 (3): 266-270
    [20] Hai-Wen Liu, Zheng-Fan Li, Xiao-Wei Sun, et al. An Improved 1-D periodic defected ground structure for microstrip line [J], IEEE Microwave and Wireless Components Letters, 2004; 14 (4): 180-182
    [21] 刘海文,李征帆,孙晓玮等,一种新颖的蝴蝶结形缺陷接地结构微带线[J],红外与毫米波学报,2004;23(6):431-435.
    [22] J.A. Tirado-Mendez, H. Jardon-Aguilar, Comparison of defected ground structure (DGS) and defected microstrip structure (DMS) behavior at high frequencies[C], IEEE. Proceeding 1st International Conference on Electrical and Electronics Engineering, 2004. (ICEEE). June 2004: 7-10.
    [23] J.A. Tirado-Mendez, H. Jardon-Aguilar, F. Iturbide-Sanchez, I. Garcia-Ruiz, V. Molina-Lopez, and R. Acevo-Herrera, A proposed defected microstrip structure (DMS) behavior for reducing rectangular patch antenna size [J], Microwave and Optical Technology Letters, 2004; 43(6), 481-484.
    [24] J.S. Hong and M.J. Lancaster, Microstrip filters for RF/Microwave applications [M], New York: John Wiley & Sons, Inc, 2001, 89-102.
    [25] L.Matthaei, L. Young, and E. M. T.Jones. Microwave filters: impedance-matching network, and coupling structures [M], New York: McGraw-Hill, 1964, 360-364.
    [26] 尹家贤,谭槐英,刘克诚.FDTD中微带激励源设置的新方法[J],电波科学学报,2000;15(2):204-207
    [27] 张国华,袁乃昌,付云起.FDTD方法分析光子带隙微带结构[J],微波学报,2001;17(4):14-17
    [28] 李清亮.一种新的PML构造及其在FDTD方法中的应用[J],电子学报,2002;30(9):1396-1399
    [29] An Ping Zhao, Antti V Raisanen, Srba R Cvetkovic. A fast and efficient FDTD algorithm for the analysis of planar microstrip discontinuities by using a simple source excitation scheme [J], IEEE Microwave and Guided Wave Letters, 1998; 5 (10): 341-343
    [30] Mikko K Karkkainen. Efficient excitation of microstrip lines by a virtual transmission line in FDTD [J], IEEE Trans. Microwave Theory and Techniques, 2005; 53 (6): 1899-1903
    [31] R Nilavalan, I J Craddock, C J Railton. Modelling metallic discontinuities with the nonorthogonal finite difference time domain method [J], IEE Proc.-Microw. Antennas Propag, 2004; 151 (5): 425-429
    [32] Y. Yang, S. M. Hu, R. S. Chen, et al. FDTD analysis with modified matrix pencil method for the UC-EBG low-pass filters [J], Microwave and Optical Technology Letters, 2005; 44(1): 37-41
    [33] Laurent Cirio, Alexandre Richardson, Odile Picon. Accurate development of the UPML absorbing boundary conditions in a 3D-FDTD algorithm for CPW and microstrip line on silicon substrate [J], Microwave and Optical Technology Letters, 2005; 44(4): 334-338
    [34] Tao Su, Wenhua Yu, Raj Mittra. A new look at FDTD excitation sources [J], Microwave and Optical Technology Letters, 2005; 45(3): 203—207
    [35] Sheng Zhang, Jian-kang Xiao, Zihua Wang, Ying Li. Novel Low-Pass Filters Using a Defected Microstrip Structure [J], Microwave Journal, 2006; 49(9): 118-128
    [1] J.-S. Hong and M.J. Lancaster. Microstrip bandpass filter using degenerate modes of novel meander loop resonator [J], IEEE Trans. Microwave and Guided wave Letters, 1995; 5(11): 371-372.
    [2] J.-S. Hong and M.J. Lancaster, Microstrip filters for RF/Microwave applications [M]. New York: John Wiley & Sons, Inc, 2001
    [3] J. S. Hong and M.J. Lancaster. Recent advance in microstrip filter for communications and other application[C], IEE Colloquium (Digest), London, UK: IEE 1997:1-6
    [4] Lung-Hwa Hsieh, Kai Chang. High-efficiency piezoelectric-transducer-tuned feedback microstrip ring-resonator oscillators operating at high resonant frequencies [J], IEEE Transactions on Microwave Theory and Techniques, 2003; 51(4): 1141-1145.
    [5] I.Wolff. Microstrip band-pass filter using degenerate modes of a microstrip ring resonator [J], Electronics Letters, 1972; 8(12): 302-303
    [6] D.H.Werner, P.I.Werner, K.H.Church. Genetically engineered multiband fractal antennas[J], Electronics Letters, 2001; 37(19): 1150-1151
    [7] C.P.Baliarda, C.B.Borau, M.N.Rodero, J.R.Robert. An iterative model For fractal antenna: application to the Sierpinski Gasket antenna [J], IEEE Trans. Antennas and Propagation, 2000; 48(5): 713-719.
    [8] 刘海文,孙晓玮,李征帆,钱蓉,周雯.基于分形特征和双层光子带隙结构的宽阻带低通滤波器[J],物理学报,2003;52(12):3082-3086
    [9] 付云起,张国华,袁乃昌.具有分形特征的PBG微带线[J],电子学报,2002;30(6):913-915
    [10] I. Kim, N. Kingsley, M. Morton, R. Bairavasubramanian, J. Papapolymerou, M.M. Tentzeris, and J. Yook. Fractal-shaped microstrip coupled-line bandpass filters for suppression of second harmonic [J], IEEE Trans. Microwave Theory and Techniques, 2005; 53(9):2943-2947
    [11] J.Helszajn and D.S.James. Planar triangular resonators with magnetic walls [J] IEEE Trans. Microwave Theory and Techniques, 1978; 26(2):95-100
    [12] A.K. Sharma and B. Bhat. Analysis of triangular resonators [J], IEEE Trans. Microwave Theory and Techniques, 1982; 30 (11): 2029-2031
    [13] J.-S. Hong and S. Li. Theory and experiment of dual-mode microstrip triangular patch resonators and filters [J], IEEE Trans. Microwave Theory and Techniques, 2004; 52 (4): 1237-1243
    [14] N.Ogasawara and T.Noguchi. Modal analysis of dielectric resonator of the normal triangular cross section, Present at the 1974 annual national convention of IEEE, Mar. 1974, Japan
    [15] Y. Akaiwa. Operation modes of a waveguide Y-circulator [J], IEEE Trans. Microwave Theory and Technology, 1974; 22(11): 954-959
    [16] J.-S. Hong and S. Li. Dual-mode microstrip triangular patch resonators and filters [C], IEEE MTT-S Digest 2003: 1901-1904.
    [17] J.S.Hong and M.Lancaster. Microstrip triangular patch resonator filters [C], IEEE MTT-S Int. Microwave Symp.Dig., 2000: 331-334
    [18] X. Wang, W. Ji, and Y. Li. Microstrip bandpass filter using one single patch resonator with two transmission zeros [J], Electronics Letters, 2003; 39(17): 1255-1256.
    [19] C. Lugo and J. Papapolymerou, Bandpass filter design using a microstrip triangular Loop resonator with dual-mode operation [J], IEEE Trans Microwave and Wireless Components Letters, 2005; 15(5), 475-477
    [20] I.Awai, General Theory of a circular dual-mode resonator and filter [J], IEICE Transactions on Electronics, 1998; E81-C (11): 1757-1762
    [21] I. Awai and T. Yamashita. Theory on a circular dual-mode resonator and filter with internal Coupling Scheme [C], IEEE. 1997 Asia Pacific Microwave Conference. Hong Kong: IEEE, 1997:817-820
    [22] U.Karacaoglu, I. D. Robert son and M.Guglielmi. An improved dual-Mode microstrip ring resonater filter with simple geometry [C], Proc.EuMC, 1994:472-477
    [23] Y.Ishikawa, S.Hidaka, T.Ise and N.Matsui. Low profile filter using open disk dual-mode dielectric resonaters [J], IEICE Transactions on Electronics, 1995; J78-C-I(12):687-694
    [24] K. Araki, D. I. Kim, and Y. Naito. A study on circular disk resonators on a ferrite substrate [J], IEEE Trans. Microwave Theory and Techniques, 1982; 30(2): 1982
    [25] J.A.Curtis and S.J.Fiedziuszko. Miniature dual-mode microstrip Filters [C], IEEE MTT-S Digest. Boston, MA, USA: IEEE 1991: 443-446
    [26] T. Itoh. Analysis of microstrip resonators [J], IEEE Trans. Microwave Theory and Techniques, 1974; 22 (11): 946-952
    [27] B.T. Tan, S.T.Chew, M.S. Leong, and B.L. Ooi. A modified microstrip circular patch resonator filter [J], IEEE Trans Microwave and Wireless Components Letters, 2002; 12(7): 252-254
    [28] J.L. Li, J.X. Chen, J.P. Wang, et al. Dual-mode microstrip bandpass filter using circular patch resonator with two transmission zeros [J], Microwave Optical Technology Letters, 2005; 46(1): 28-30
    [29] Sheng Zhang, Jian-kang Xiao, Ying Li. New Microstrip Fractal-shaped triangular patch resonator filters [J], Microwave and Optical Technology Letters, 2007; 49 (3):
    [30] Sheng Zhang, Jian-kang Xiao, Shi-wei Ma, Ying Li. Novel Dual-Mode Microstrip Bandpass Filters Using Fractal-Shaped Triangular Patch Resonators [C], The 7th International Symposium on Antenna, Propagation, and EM Theory, Guilin, 2006: 1217-1220
    [1] K. Wu, D. Deslandes, Y. Cassivi. The substrate integrated circuits- a new concept for high-frequency electronics and optoelectronics [C], 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS. OCT.1-3, 2003: P-Ⅲ- P-Ⅹ
    [2] Y. Cassivi and K. Wu. Low cost microwave oscillator using substrate integrated waveguide cavity [J], IEEE Trans on Microwave and Wireless components Letters, 2003; 13(2): 48-50
    [3] L. Yan, W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui. Simulation and experiment on SIW slot array antennas [J], IEEE Trans on Microwave and Wireless components Letters, 2004; 14(9):446-448
    [4] W. D'Orazio, K. Wu, J. Helszajn. A substrate Integrated Waveguide Degree-2 Circulator [J], 2004; 14(5):207-209
    [5] C. Chang, and W. Hsu. Photonic bandgap dielectric waveguide filter [J], IEEE Trans on Microwave and Wireless components Letters, 2002; 12(4): 137-139
    [6] N. Grigoropoulous, B. S.-Izquierdo, and P.R. Young. Substrate integrated folded waveguides (SIFW) and filters [J], IEEE Trans on Microwave and Wireless components Letters, 2005; 15(12): 829-831
    [7] Y.L. Zhang, W. Hong, K. Wu, J.X. Chen, H. J. Tang. Novel substrate integrated waveguide cavity filter with defected grounded structure [J], IEEE Trans on Microwave Theory and techniques, 2005; 53(4): 1280-1286
    [8] Z.-C. Hao, W. Hong, J.-X. Chen, X.-P. Chen, and K. Wu. Compact super-wide bandpass substrate integrated waveguide (SIW) filters [J], IEEE Trans on Microwave Theory and techniques, 2005; 53(9):2968-2977
    [9] H. Li, W. Hong, T.J. Cui, K. Wu, Y.L. Zhang, and Li Yan. Propagation characteristics of substrate integrated waveguide based on LTCC [C], IEEE MTT-S International Microwave Symposium Digest, 2003: 2045-2048
    [10] X. Xu, R.G. Bosisio, and Ke Wu. A new six-port junction based on substrate integrated waveguide technology [J], IEEE Trans on Microwave Theory and techniques, 2005; 53(7): 2267-2272
    [11] P. Arcioni, M. Bressan, G. Conciauro, and L. Perregrini. Generalized Y-matrix of arbitrary H-plane waveguide junctions by the BI-RME method [C], IEEE MTT-S International Microwave Symposium Digest, Denver, USA, 1997: 211-214.
    [12] M. Bozzi, M. Brssan, and L. Perregrini, Generalized Y-matrix of arbitrary 3D waveguide junctions by the BI-RME method [C], IEEE MTT-S International Microwave Symposium Digest, Anaheim, USA, 1999: 1269-1272
    [13] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro. Dispersion Characteristics of Substrate Integrated Rectangular Waveguide [J], IEEE Trans on Microwave and Wireless components Letters, 2002; 12(9): 333-335
    
    [14] P. Arcioni, M. Bressan, G. Conciauro, and L. Perregrini. Generalized Y-matrix of arbitrary H-plane waveguide junctions by the BI-RME method [C], IEEE MTT-S International Microwave Symposium Digest, Denver, USA, 1997: 211-214.
    [15] M. Bozzi, M. Brssan, and L. Perregrini, Generalized Y-matrix of arbitrary 3D waveguide junctions by the BI-RME method [C], IEEE MTT-S International Microwave Symposium Digest, Anaheim, USA, 1999: 1269-1272
    [16] Feng Xu, Ke Wu. Guided-Wave and Leakage Characteristics of Substrate Integrated Waveguide [J], IEEE Trans on Microwave Theory and techniques, 2005; 53 (10):66—72
    [17] Feng Xu, Yulin Zhang, Wei Hong, Ke Wu, T.J.Cui. Finite-Difference Frequency-Domain Algorithm for Modeling Guided-Wave Properties of Substrate Integrated Waveguide [J]. IEEE Trans on Microwave Theory and Techniques, 2003; 51(11): 2221-2226
    [18] Feng Xu, Ke Wu. Numerical Multimode Calibration Technique for Extraction of Complex Propagation Constants of Substrate Integrated Waveguide [C], IEEE MTT-S International Microwave Symposium Digest. IEEE. Fort Worth, USA: IEEE, 2004:1229-1232
    [19] W. Che, X. Ji, K. Wu. Characteristics comparison of substrate-integrated rectangular waveguide (SIRW) and its equivalent rectangular waveguide [J], Microwave and optical technology letters, 2005; 46(6): 588-592
    [20] Y.L. Zhang, W. Hong, F. xu, et al. Analysis of guided-wave problem in substrate integrated waveguides-numerical simulations and experimental results [C], IEEE MTT-S International Microwave Symposium Digest, 2003:2049-2052
    [21] 闫润卿,李英惠.微波技术基础(第二版)[M].北京:北京理工大学出版社 1997:93-95
    [22] M. Guglielmi, P. Jarry, E. Kerherve, et al. A New Family of All-Inductive Dual-Mode Filters [J], IEEE Trans on Microwave Theory and techniques, 2001; Vol.49 (10): 1764-1769
    [23] D.Deslandes and Ke Wu. Integrated Microstrip and Rectangular Waveguide in Planar Form [J]. IEEE Trans on Microwave and Wireless components Letters, 2001, 11 (2):68-70
    [24] 李皓,华光,陈继新等.基片集成波导和微带转换器的理论与实验研究[J],电子学报 2003;31(12):2002-2004
    [25] Sung Tae Choi, Ki Seok Yang, Kiyohito Tokuda, et al. A V-band Planar Narrow Bandpass Filter Using a New Type Integrated Waveguide Transition[J], IEEE Trans on Microwave and Wireless components Letters, 2004; 14(12): 545-547
    [26] D. Deslandes and K. Wu. Integrated transition of coplanar to planar waveguides [J], EEE MTT-S International Microwave Symposium Digest, 2001: 619-622
    [27] D. Deslandes and K. Wu. Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides [J], IEEE Trans on Microwave Theory and techniques, 2005; 53(8): 2487-2493
    [28] 张胜,王子华,肖建康,李英.基片集成波导(SIW)及其双模带通滤波器的研究,微波学报2007年第二期
    [29] 张胜,王子华,肖建康,李英.一种新型基片集成波导双模带通滤波器,压电与声光 2006年;28(6):674-676
    [1] V.G. Veselago. Electrodynamics of substances with simultaneously negative ε and μ [J], Sov. Phys. Usp., 1968; 10 (4): 509-514
    [2] J.B. Pendry, J.B. Pendry, W.J. Stewart, et al. Extremely low frequency plasmons in metallic mesostructures [J], Physical Review Letters, 1996; 76(25): 4773-4776
    [3] J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena [J], IEEE Trans. Microwave Theory and Techniques, 1999; 47(11): 2075-2084
    [4] 陈红胜,冉立新,皇甫江涛,章献民,陈抗生,孔金瓯.异向介质平板对高斯波传播的影 响[J],浙江大学学报(工学版),2004;38(10):1380-1382
    [5] 冉立新,章献民,陈抗生,T.M.Grzegorczyk,J.A.Kong.异向媒质及其实验验证[J],科学通报,2003;48(12):1271-1273
    [6] D.R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. Composite medium with simultaneously negative permeability and permittivity [J], Physical Review Letters, 2000; 84(18): 4184-4187
    [7] R.A. Shelby, D.R. Smith, S. Schultz. Experimental verification of a negative index of refraction [J], Science, 2001; 292 (6): 77-79
    [8] R. Marque's, J. Martel, F. Mesa, and F. Medina. Left-handed-media simulation and transmission of EM waves in subwavelength Split-ring-resonator-loaded metallic waveguides [J], Physical Review Letters, 2002; 89 (18): 183901-1-183901-4
    [9] H. Chen, L. Ran, J. Huangfu, X. Zhang, and K. Chen, T.M. Grzegorczyk and J.A.Kong. Left-handed materials composed of only S-shaped resonators [J], Physical Review E, 2004; 70(52): 057605-1-057605-1
    [10] E. Ozbay, K. Aydin, E.Cubukcu, and M. Bayindir. Transmission and reflection properties of composite double negative metamaterials in free space [J], IEEE Trans. Antennas and Propagation, 2003; 51(10): 2592-2595
    [11] J. García-García, F.Martín, F.Falcone, J.Bonache, J.D. Baena, I.Gil, E. Amat, T. Lopetegi, M.A.G. Laso, J.A.M. Iturmendi, M. Sorolla, and R. Marqués. Microwave filters with improved stopband based on sub-wavelength resonators [J], IEEE Trans. Microwave Theory and Techniques, 2005; 53 (6): 1997-2004
    [12] 皇甫江涛,冉立新,陈抗生.一种新型人工异向介质结构的设计与仿真[J],浙江大学学报(工学版),2005;39(4):584-587
    [13] F. Martín, J. Bonache, F. Falcone, M. Sorolla, R. Marque's. Split ring resonator-based Left-handed coplanar waveguide [J], Applied Physics Letters, 2003; 83 (22): 4562-4564
    [14] C.G. Hwang and N.H. Myung. An oscillator with low phase noise and superior harmonic suppression characteristics based on uniplanar compact split ring resonators [J], Microwave Optical Technology Letters, 2006; 48(5): 938-940
    [15] J.-G. Lee and J.-H. Lee. Suppression of spurious radiations of patch antennas using split-ring resonators (SRRs) [J], Microwave Optical Technology Letters, 2006; 48 (2): 283-287
    [16] J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, M. Sorolla, and R. Marques. Spurious passband suppression in microstrip coupled Line band pass Filters by means of split ring resonators [J], IEEE Microwave and Wireless Components Letters, 2004; 14(9): 416-418
    [17] J. Garcia-Garcia, J.Bonache, I. Gil, F.Martin, R. Marques, F. Falcone, T. Lopetegi, M.A.G. Laso, M. Sorolla. Comparison of electromagnetic band gap and Split-ring resonator microstrip lines as stop band structures [J], Microwave Optical Technology Letters, 2005; 44 (4): 376-379
    [18] J. Bonache, I. Gil, J. Garcia-Garcia, F. Falcone, T. Lopetegi, M.A.G. Laso, J. D. Baena, F. Martin, M. Sorolla, R. Marques. Split rings resonators: Key particles for microwave device design [C], IEEE. 2005 Spanish Conference on Electron Devices, Spanish: IEEE., 2005: 135-138
    [19] F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla. Effective negative-e stopband microstrip lines based on complementary split ring resonators [J], IEEE Microwave and Wireless Components Letters, 2004; 14 (6):280-282
    [20] F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marque's, F.Martin, and M. Sorolla. Babinet principle applied to the design of metasurfaces and metamaterials [J], Physical Review Letters, 2004; 93 (19): 197401-1-197401-4
    [21] R.Marque's, F. Medina, and R. Rafii-El-Idrissi. Role of bianisotropy in negative permeability and left-handed metamaterials [J], Physics Review B, 2002; 65(14): 144440-1-144440-6
    [22] S.N. Burokur, M. Latrach, and S. Toutain. A novel type of microstrip coupler utilizing a slot Split-ring resonators defected ground plane [J], Microwave Optical Technology Letters, 2006; 48(1): 138-141
    [23] J. Garcia-Garcia, J. Bonache, F. Falcone, J.D. Baena, F. Martin, I. Gil, T. Lopetegi, M.A.G. Laso, A. Marcotegui, R. Marque's and M. Sorolla. Stepped-impedance lowpass filters with spurious passband suppression [J], Electronics Letters, 2004; 40 (14): 881- 883
    [24] R. Marques, F. Mesa, J. Martel, and F. Medina. Comparative analysis of edge- and broadside-coupled Split ring resonators for metamaterial design—theory and experiment [J], IEEE Trans. Antennas and Propagation, 2003; 51 (10): 2572-2581
    [25] M.A. G. Laso, T. Lopetegi, M. J.J. Erro, D. Benito, M. J. Garde, and M.Mario Sorolla. Multiple-frequency-tuned photonic bandgap microstrip structures [J], IEEE Trans. Microwave Guided Wave Letters, 2000; 10(6): 220-222
    [26] F. Falcone, F. Martin, J. Bonache, R. Marques and M. Sorolla Coplanar waveguide structures loaded with split-ring resonators [J], Microwave Optical Technology Letters, 2004;40 (1): 3-6
    [27] F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla. Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators [J], IEEE Trans. Microwave and Wireless Components Letters, 2003; 13(12): 511-513
    [28] F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques and M. Sorolla. Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators [J], Microwave Optical Technology Letters, 2006; 42(5):386-388
    [29] S.N. Burokur, M. Latrach, and S.Toutain. Study of the effect of dielectric split-ring resonators on microstrip-line transmission [J], Microwave Optical Technology Letters, 2005;4(5):445-448.
    [30] J. D. Baena, J. Bonache, F. Martin, R. Marque's, F. Falcone, T. Lopetegi, M.A.G Laso, J. Garcia, I. Gil, and M. Sorolla. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines [J], IEEE Trans. Microwave Theory and Techniques, 2005; 53(4): 1451-1460
    [31] J. Martel, R. Marques, F. Falcone, J.D. Baena, F. Medina, F. Martin, and M. Sorolla. A new LC series element for compact bandpass filter design [J], IEEE Microwave and Wireless Components Letters, 2004; 14(5):210-212
    [32] M. Shamonin, E. Shamonina, V. Kalinin, L. Solymar. Resonant frequencies of a split-ring resonator analytical solutions and numerical simulations [J], Microwave Optical Technology Letters, 2005; 44 (2): 133-135
    
    [33] Sheng Zhang, Jian-kang Xiao, Ying Li. Novel microstrip band-stop filters based on complementary split ring resonators (CSRRs) [J], Microwave Journal, 2006; 49 (11): 100-112
    [34] Sheng Zhang, Min Wang, Jian-kang Xiao, Ying Li. The Stop-band Characteristics of Microstrip Lines Based on Complementary Split Ring Resonators [C], 2006 China — Japan Joint Conference on Microwave, Chengdu, 2006: 132-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700