臭氧浓度测控系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧作为一种高效且无二次污染的强氧化剂,它在医疗卫生、污水治理、家居消毒等方面被广泛应用。但是在农业生产领域中,臭氧技术应用在大棚温室病虫害防治上属于刚刚起步阶段。臭氧不仅可以杀灭各种病虫害,而且还可清洁表层土壤和植物表面的毒素,消除药物残留,为温室作物创造良好的生态环境。但目前的臭氧设备自动化水平低、功能单一,不能实时准确检测控制臭氧浓度,同时,臭氧浓度过高会对大棚农作物、操作人员造成损害。针对这些问题,本文研究和设计一种能实时在线检测臭氧浓度的测控系统,同时能够检测气体流量和温度,实现整个臭氧生产过程的闭环控制。
     本文首先介绍了介质阻挡放电产生臭氧的方法,给出了介质阻挡放电电路的放电功率,为构成闭环控制系统提供了理论依据,又着重介绍了紫外辐射吸收法的工作原理,并采用该方法进行臭氧浓度的检测;其次重点介绍了臭氧发生器的供电电源,选用串联谐振式IGBT逆变电源作为供电电源,设计了一种基于CD4046的频率跟踪移相PWM控制电路,通过改变电源电压的大小,调节臭氧放电功率,实现臭氧浓度的调节;为实时检测臭氧浓度,设计了基于ADμC812单片机为核心的微机控制系统,完成了对光强、温度、流量和峰值电压信号的采集及存储,并与PC机进行通讯;下位机软件采用C语言编写,上位机软件采用VC++编写,实现人机对话控制功能;最后在改进后的50g/h的臭氧发生装置上进行系统试验测试。
     在稳定状态下,进行系统试验测试得出:当气体流量为100ml/min,电压峰值为5000V,系统温度稳定在26.5℃左右时,臭氧浓度趋于稳定在40.35mg/L,完成了臭氧浓度测控系统的在线检测功能;再将测试结果与传统的碘化钾滴定法测试结果进行比较,系统测试值的相对误差不超出3%,系统检测精度为0.01mg/L,满足大棚温室使用要求,具有一定的实用性;在温度、流量、峰值电压这三个系统参数值分别发生变化时,进行系统试验测试,测试结果验证了这三个系统参数对臭氧浓度影响的理论正确性,实现了对温度、流量及峰值电压的在线控制。
Ozone as a strong oxidizer which is efficient and have no secondary pollution, it is widely used in the fields of health care, water treatment and household disinfectant. But in the field of agricultural production, the ozone technology is just beginning, such as disease and pest control in greenhouse. Ozone could not only kill a variety of plant diseases and insect pests, but also clean the toxins of the topsoil and plant surface, eliminate drug residues, which creates a good ecological environment for greenhouse crops. At present, Ozone equipments are at the low automation, single function, which could not accurately detect real-time control of ozone concentration, meanwhile, high ozone concentrations will cause damage to the greenhouse crops and operators. In order to solve these problems, an ozone concentration measurement and control system is researched and designed which could detect the ozone concentration in real-time online. It is also able to detect the gas flow, temperature and achieve closed-loop control of the ozone production process.
     First, this paper introduces the method of dielectric barrier discharge produce ozone, gives the discharge power of dielectric barrier discharge circuit, which provided a theoretical basis for the closed loop control system; Second, it emphatically introduces the power supply of ozone generator, which used serial-resonant IGBT inverter as a power supply, designed a type of frequency tracking phase shift PWM control circuit based on CD4046, by changing the size of the supply voltage to regulate the ozone discharge power, to achieve the regulation of ozone; In order to Real-time detection of ozone concentration, it designed the microcomputer control system based on AduC812 MCU, completed the light intensity, temperature, flow rate and peak voltage signal acquisition and storage, and communicated with the PC machine; The lower computer software uses C language, PC software was written by VC++, which realized man-machine dialogue control; Finally, it had system test under improved 50g/h of ozone testing device.
     In the steady state, system testing obtained: When gas flow is 100ml/min, peak voltage is 5000V, system temperature is stabilized at about 26.50C, the ozone concentration tends to stabilize at 40.35mg/L, Ozone concentration control system completes the online detection; Then compared the test results to the traditional potassium iodide titration method, the relative error of test value does not exceed 3%,the detection accuracy is 0.01mg/L, which is meet the application requirements of greenhouses. It has some practicability; When the temperature, flow rate and peak voltage value of the three system parameters changes, the test results show the theoretical correctness of three system parameters impact on the ozone concentration. It achieves the online control of the temperature, flow and peak voltage.
引文
[1]储金宇,吴春笃,陈万金等.臭氧技术及应用[M].北京:化学工业出版社,2002.
    [2]张新智.臭氧处理技术的应用与发展[J].检验检疫科学,2006,16(1):78-79.
    [3]荆世杰,陈年来,徐常青等.臭氧对温室土壤化学性质和甜瓜产量的影响[J].甘肃农业大学学报,2008,43(3):93-97.
    [4]王芳芳.臭氧技术在温室无公害蔬菜生产中的应用[J].现代农业,2006,4:9-11.
    [5] Ozonek J.A New Approach to Energy Distribution in Industrial Ozonizer[J].Pollo I,1994.
    [6]邓秋农,沈光辉,袁仁涛等.臭氧技术的现状及发展趋势[J].净水技术,2001,20(3):7-10
    [7]王跃球,唐杰.臭氧发生技术的现状和发展趋势[J].邵阳学院学报,2006,3(1):48-51.
    [8]靳皓.臭氧技术在工农业的应用[J].能源与环境,2008,3:19-20.
    [9]戴建国.综述:无声放电臭氧发生器的研究进展[J].电子器件.1997,20(3):40-46.
    [10]陈艳梅,凌一鸣.介质阻挡放电制备臭氧的实验研究[J].电子器件,2004,27(4):653-657.
    [11]胡剑飞,凌一鸣.平板型臭氧发生器主要特性的实验研究[J].电子器件,2006,29(1):102-104.
    [12]李铁锚,朱天宇.无声放电臭氧发生器的特点分析[J].河海大学学报,2003,17(4): 76-79.
    [13] Rachel Feng,G.S.P.Castle,Shesha Jayaram.Automated system for power measurement in the silent discharge[C].IEEE Transactions on Industry Applications,1998,34(3):563-570.
    [14] J.Kitayama,M.Kuzumoto.Analysis of ozone generation from air in silent discharge[J].Phys.D: Appl.Phys,1999,32:3032-3040.
    [15] Yukiaru,Nomoto,Toshileazu,etal.Improvement of ozone yield by a silent-surface hybrid discharge ozonier[C].IEEE,1995,11(12):1995-1999.
    [16]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996,314-323.
    [17] T.C.Manley.The electric characteristics of the ozonator discharge[C].The Eighty-forth general meeting hold at New York,October,1943,14(1):83-96.
    [18] A A Garamoon,F F Elakshar,A M Nossair,etal.Experimental study of ozone synthesis[J]. Plasma Sources Sci Technol,2002,4(11):254-259.
    [19] J.Kitayama,M.Kuzumoto.Theoretical and experimental study on ozone generation characteristics of an oxygen-fed ozone generator in silent discharge[J]. Phys.D:Appl.Phys.1997,30:2453-2461.
    [20] JA Robinson.A new type of ozone generator using taylor cones on water surfaces [C].IEEE Trans on Industry Applications,1998,34(6):1218-1224.
    [21]谢建荣.常见臭氧测定方法概述[J].福建分析测试,1999,8(2):1049-1052.
    [22]石中玉.紫外线光源及其应用[M].北京:轻工业出版社,1984.
    [23]陈国珍,黄贤智,刘文远.紫外-可见光分光光度法[M].北京:原子能出版社,1983.
    [24] Sun Rong-xia, Guo Liang, Ji Na, Liu Wei. Design of the Ozone Concentration Online Detection System[C].CiSE’2009.2009,1:119-112.
    [25]李彦锋,陶海敏,黄玉水等.介质阻挡放电负载电路中的频率跟踪技术[J].高电压技术,2002,28(7):13-14.
    [26]崔健.用于大棚蔬菜病虫害防治的臭氧发生器[D].河北大学电子信息工程学院:1999.
    [27]林渭勋.现代电力电子技术[M].北京:机械工业出版社,2005.
    [28]黄玉水,胡长生,张仲超.基于闭环控制策略的负载谐振型臭氧发生器电源[J].电工技术学报,2004,19(1):91-94.
    [29]饶益花,赵立宏.感应加热电源逆变器锁相环控制电路的研究[J].工业加热,2004,33(6):42-45.
    [30]宋吉江,牛轶霞.锁相环技术及CD4046的结构和应用[J].半导体技术,2000,25(3):60-63.
    [31]王福晶.集成锁相环CD4046性能分析[J].无线电工程,1992,22(8):1-10.
    [32]陈燕东,孟志强,周华安.臭氧电源驱动保护电路的设计与实现[J].电源技术应用,2005,8(10):32-36.
    [33]罗冯涛,王渝. ADμC812单片机控制系统的开发[J].现代电子技术,2002(2):10-12.
    [34]李刚.ADuC8XX系列单片机原理与应用技术[M].北京:北京航空航天大学出版社,2002.1.
    [35] Sun Rong-xia, Guo Liang, Ji Na, Liu Wei, Zhou Yin-chang. The Simulation Design of the Ozonizer Base on Proteus[C].ICISE’2009.2009,2:12-16.
    [36]浦昭邦.光电测试技术[M].北京:机械工业出版社,2004.
    [37]李晓强,高丽红.兼容SPI接口的低功耗数字温度传感器ADT7301及其接口技术[J].国外电子器件,2004(5):30-33.
    [38]林慧琼,刘坤涛.气体流量传感器的结构、原理及其在呼吸机中的应用[J].电子器件,2005,18(3):24-25.
    [39]刘伟.常规水质参数检测仪研究[D].河北大学电子信息工程学院:2009.
    [40]沙占友.新型单片机开关电源设计与应用技术[M].北京:电子工业出版社. 2003:125-126.
    [41]求是科技编著.单片机典型模块设计实例导航(第二版)[M].北京:人民邮电出版社,2008.
    [42]郭天祥.新概念51单片机C语言教程—入门、提高、开发、拓展全攻略[M].北京:电子工业出版社,2009.
    [43]郎锐.Visual C++数据库开发基础及实例解析[M].机械工业出版社. 2005(9).
    [44]郭志雪,张良祖.ADμC812内部资源的使用及C语言编程方法[J].仪器仪表用户,2003,10(6):55-57.
    [45]张丽,樊文生.单片机应用系统的软件抗干扰策略[J].通信技术. 2008(1):124-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700