ZnO和ZnO基稀磁半导体薄膜的PLD法制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用脉冲激光沉积法(PLD)制备了晶态ZnO薄膜,研究了不同生长工艺条件和ZnO薄膜结构特性之间的关系,优化了工艺参数。在此基础上,制备了Al、Ni、Mn掺杂的ZnO基薄膜,研究了掺杂浓度对薄膜结构特性的影响。此外,采用波长为1064 nm的激光作为基频光,观测了所沉积薄膜中的二次谐波产生。
     采用PLD技术在c-Al2O3单晶衬底上制备出了具有高度c轴取向的ZnO薄膜,研究了衬底温度和氧气压强对薄膜结构特性的影响,给出了薄膜生长模式随生长条件变化的原因。观察到不同氧压下沉积ZnO薄膜由强的紫外发光和宽深能级发光组成的室温发光(PL)谱,揭示了薄膜的紫外发光与样品的结晶质量密切相关,而深能级发射源于电子从导带底到氧错位能级的跃迁。
     制备了高性能Al掺杂ZnO透明导电薄膜,研究了掺杂浓度对薄膜结构和光电特性的影响,发现适量浓度的Al掺杂有助于薄膜电阻率的降低,而薄膜的能带宽化依赖于材料中的载流子浓度。
     制备出过渡族金属(Ni、Mn)掺杂的ZnO基稀磁半导体(DMS)材料,观察到部分样品具有明显的室温铁磁性。给出了Zn1-xNixO薄膜磁性随掺杂浓度的变化规律,得到了Zn1-xMnxO薄膜的铁磁性与薄膜中的缺陷密切相关,合适的掺杂浓度有助于室温铁磁性的获得。
     以Nd:YAG激光器输出的1064 nm激光为基频光,研究了不同类型ZnO薄膜中的二次谐波产生(SHG),得到了薄膜晶粒及其边界对SHG的影响,揭示了较大掺杂浓度下Zn1-xMnxO薄膜SHG输出功率的增加来自于薄膜中存在的Mn团簇,进一步证实了过大的掺杂浓度不利于室温铁磁性的获得。
The crystalline ZnO films have been deposited by the pulsed laser deposition (PLD). The relation between different deposition parameters and the structure properties of ZnO films is analyzed and the optimized condition is obtained. Based on those results, the films with Al, Ni, Mn doping in ZnO films have also been prepared and the influence of doping contents on properties of the films is studied. Furthermore, using a Nd:YAG laser as fundamental beam, the second-harmonic efficiency of the films is measured. The main results are as follows:
     ZnO thin films with highly c-axis orientation have been fabricated by PLD method. The influence of substrate temperature and oxygen pressure on the properties of the films is studied. The reason why the growth model of ZnO films changed with the deposition condition is explained. The room-temperature PL spectra of the ZnO films grown at different oxygen pressures have been investigated. All films show a typical luminescence behavior with a narrow ultraviolet (UV) and a broad green-yellow band. It is proposed that the intensity of UV emission depends on crystal structure and the deep level emission correlates to the electron transitions from the bottom of the conduction band to the antisite oxygen OZn.
     High quality Al doping ZnO transparent conductive films have been fabricated by mixing Al into ZnO target. The effect of doping concentration on their structure, electrical and optical properties is studied. The results show that the low electrical resistivity can be obtained under appropriate doping content and the optical direct band gap of films is dependent on the carrier concentration.
     High-quality Ni-, Mn-doped ZnO thin films have been deposited and obviously room-temperature ferromagnetic behavior is obtained. The effect of doping concentration on the ferromagnetism mechanism of Zn1-xNixO films is analyzed. The ferromagnetism of Zn1-xMnxO films is strongly related to the defects in ZnO films, but the correct doping concentration is crucial for obtaining room-temperature ferromagnetism.
     Using a Nd:YAG laser of 1064 nm as a fundamental beam, the second-harmonic efficiency of ZnO films have been discussed, showing that the second harmonic signal is generated not only inside crystallites, but also at grain boundaries. The increased of SHG intensity of Zn1-xMnxO films with highly doping concentration are explained by the existing of Mn cluster in the films. The declining ferromagnetism of Zn1-xMnxO films is identified.
引文
1. K. Sakurai, M. Kanehiro, K. Nakahara, et al. Effects of Oxygen Plasma Condition on MBE Growth of ZnO. J. Cryst. Growth, 2000, 209: 522
    2. 刘翊纶.《基础元素化学》,高等教育出版社,1992
    3. 杨作新,张霖霖,《无机化学》,广东高等教育出版社,2000
    4. S. J. Pearton, D. P. Norton, K. Ip, et al. Recent progress in processing and properties of ZnO. Superlattices and Microstructures, 2003, 34: 3-32
    5. D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett., 1998, 73(8): 1038-1040
    6. A. V. Singh, R. M. Mehra, N. Buthrath, et al. Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. J. Appl. Phys., 2001, 90(11): 5661-5665
    7. K. Matsubara, P. Fons, K. Iwata, et al. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films, 2003, 431-432: 369-372
    8. C. R. Gorla, N. W. Emanetoglu, S. Liang, et al. Structural, Optical, and surface acoustic wave properties of epitaxial ZnO films growth on (0112) sapphire by metal-organic chemical vapor deposition. J. Appl. Phys., 1999, 85(5): 2595-2602
    9. J. Xu, Q. Pan, Y. Shun, et al. Grain size control and gas sensing properties of. ZnO gas sensor. Sensor Actuat., 2000, B66: 277-279
    10. S. Y. Chu, T. M. Yan, S. L. Analysis of ZnO varistors prepared by the Sol-Gel method. Chen. Ceram. Int., 2000, 26: 733-737
    11. D. Basak, G. Amin, B. Mallik, et al. Photoconductive UV. detectors on sol-gel-synthesized ZnO films. J. Crystal Growth, 2003, 256: 73-77
    12. K. Ogata, K. Koike, T. Tanite, et al. ZnO and ZnMgO growth on α- plane sapphire by molecular beamepitaxy. J. Crystal Growth, 2003, 251: 623-627
    13. G. Santana, A. Morales-Acevedo, O. Vigil, et al. Structural and optical properties of (ZnO)x(CdO)1?x thin films obtained by spray pyrolysis. Thin Solid Films, 2000, 373: 235-238
    14. R. F. Service. Will UV Lasers Beat the Blues?. Science, 1997, 276: 895
    15. S. Liang, H. Sheng, Y. Liu, et al. ZnO schottky ultraviolet photodetectors. J. Crystal Growth, 2001, 225: 110-113
    16. Kenji Nomura, Hiromichi Ohta, Kazushige Ueda, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300: 1269
    17. Q. Wan, Q. H. Li, Y. J. Chen, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett., 2004, 84(18): 3654-3656
    18. K. Minegishi, Y. Koiwai, Y. Kikuchi, et al. Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys., 1997, 36: L1453-L1455
    19. D. C. Look, D. C. Reynolds, C. W. Litton, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett., 2002, 81(10): 1830-1832
    20. T. Yamamoto and H. K. Yoshida. Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO. Jpn. J. Appl. Phys., 1999, 38: L166-L169
    21. M. Joseph, H. Tabata, H. Saeki, et al. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B, 2001, 302-303: 140-148
    22. K. K. Kim, H. S. Kim, D. K. HWang, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett., 2003, 83 (1): 63-65
    23. X. L. Guo, H. Tabata, T. Kawai. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source. J. Crystal Growth, 2001, 223 (1-2): 135-139
    24. X. L. Guo, H. Tabata, T. Kawai. Epitaxial growth and optoelectronic properties of nitrogen-doped ZnO films on (11-20) Al2O3 substrate. J. Crystal Growth, 2002, 237-239: 544-547
    25. T. Yamamoto. Codoping for the Fabrication of p-type ZnO. Thin Solid Films, 2002, 420-421: 100-106
    26. Kyu-Hyun Bang, Deuk-Kyu Hwang, Min-Chul Park, et al. Formation of p-type ZnO film on InP substrate by phosphor doping. Appl. Surface Science, 2003, 210(3-4): 177-182
    27. Z. Z.Ye, Z.G. Fei, J.G. Lu, et al. Preparation of p-type ZnO films by Al+N-codoping method. J. Cryst. Growth, 2004, 265(1-2): 127-132
    28. J. G. Lu, L. P. Zhu, Z. Z. Ye, et al. Dependence of properties of N–Al codoped p-type ZnO thin films on growth temperature. Appl. Surface Science, 2005, 245(1-4): 109-113
    29. Y. R. Ryu, S. Zhu, D. C. Look, et al. Synthesis of p-type ZnO films. J. Crystal Growth, 2000, 216 (1-4): 330-334
    30. Y. R. Ryu, W. J. Kim, H. W. White. Fabrication of homostructural ZnO p–n junctions. J. Crystal Growth, 2000, 219(4): 419-422
    31. X. L. Guo, J. H. Choi, H.Tabata, et al. Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. Jpn.J.Appl.Phys., 2001, 40: L177-L180
    32. J. Nause, M. Pan, V. Rengarajan, et al. ZnO semiconductors for lighting. Proc. SPIE., 2005, 5941: 59410D
    33. D. M. Bagnall, Y. F. Chen, Z. Zhu. Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett., 1997, 70: 2230
    34. P. Yu, Z. K.Tang, Z. K. Tang, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid. State. Com., 1997, 103: 459-463
    35. K. Vanheusden, C. H. Seager, W. L. Warren, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett., 1996, 68(3): 403-405
    36. K. Vanheusden, C. H. Seager, W. L. Warren, et al. Mechanisms behind green phospholuminescence in ZnO phosphor powders. J. Appl. Phys., 1996, 79(3): 7983-7990
    37. B. J. Jin, S. Im, S. Y. Lee. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Film, 2000, 366: 107-110
    38. D. H. Zhang, Z. Y. Xue, Q. P. Wang, et al. Violet and blue photoluminescence emitted from ZnO films deposited by rf magnetron sputtering. Proc. SPIE, 2002, 4918: 425-428
    39. S. H. Bae, S. Y. Lee, H.Y. Kim, et al. Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition. Applied Surface Science, 2000, 168: 332-334
    40. A. Miyake, H. Kominami, H. Tatsuoka, et al. Luminescent properties of ZnO thin films grownepitaxially on Si substrate. J. Cryst.Growth, 2000, 214-215: 294-298
    41. S. A. Studenikin, Nickolay Golego, Michael Cocivera. Fabrication of green. and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys., 1998, 84(4): 2287-2294
    42. Minamit, Nantoh, Takatas. UV emission from sputtered zinc oxide thin films. Thin Solid Film, 1983, 109(4): 379-384
    43. M. Liu, A. H. Kitai and P. Mascher. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J. Luminescence, 1992, 54: 35-42
    44. K.Vanheusden, C. H. Seager, W. L. Warren, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett., 1996, 68 (3): 403-405
    45. T. Makino and Y. Segawa. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films. Appl. Phys. Lett., 2001, 78 (9): 1237-1239
    46. A. Ohtomo, M. Kawasaki. MgxZn1-xO as a Ⅱ -Ⅵ widegap semiconductor alloy. Appl. Phys. Lett., 1998, 72 (19): 2466-2468
    47. V. V. Yang, R. D. Vispute, S. Choopun. Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films. Appl. Phys. Lett., 2001, 78 (18): 2787-2789
    48. Soumya Krishnamoorthy, Agis A. Iliadis, Aravind Inumpudi, et al. Observation of resonant tunneling action in ZnO/Zn0.5Mg0.2O devices. Solid-State Electronics, 2002, 46: 1633-1637
    49. D. W. Ma, Z. Z. Ye, L. L. Chen, Phys. Dependence of structural and optical properties of Zn1-xCdxO films on the Cd composition. Status Solidi (a). 2004, 201: 2929-2933
    50. K. Sato and H. Katayama-Yoshida. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn.J.Appl.Phys., 2000, 39, L555-L558
    51. T. Dietl, H. Ohno, F. Matsukura, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019-1022
    52. T. Fukumura, Zhengwu Jin, M. Kawasaki. Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett., 2001, 78 (7): 958-961
    53. P. Sharma, A. Gupta, K.V. Rao, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater., 2003, 2: 672-677
    54. H. J. Blythe, R. M. Jbrahim, G. A. Gehring, et al. Mechanical alloying: a route to room-temperature Ferromagnetism in bulk Zn1-xMnxO. J. Magn. Magn. Mater., 2004, 283: 117-127
    55. K. Ueda, H. Tabata, T. Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett., 2001, 79 (7): 988-990
    56. J.H. Park, M. G. Kim, H. M. Jang, et al. Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett., 2001, 84 (8): 1338-1341
    57. W. Prellier, A. Fouchet, B. Mercey, et al. Laser ablation of Co:ZnO films deposited from Zn and Co metal targets on (0001) Al2O3 substrates. Appl. Phys. Lett., 2003, 82 (20): 3490-3492
    58. J. H. Kim, D. Kim, D. Kim. Magnetic properties of epitaxially grown semiconducting Zn1–xCoxO thin films by pulsed laser deposition. J. Appl. Phys., 2002, 92 (10): 6066-6071
    59. H. Saeki, H. Tabata, T. Kawai. Magnetic and electric properties of vanadium doped ZnO films. Solid State Communication, 2001, 120: 439-443
    60. Y. Matsumoto, M. Murakami, T. Shono, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science, 2001, 291 (2): 854-856
    61. C. Zener. Interaction between the d Shells in the transition metals. Phys. Rev, 1951, 81: 440-446
    62. S.J. Pearton, C.R. Abernathy, D. P. Norton, et al. Advances in wide bandgap materials for semiconductor spintronics. Materials Science and Engineering R, 2003, 40: 137-168
    63. S. Sho, S. Keisuke, T.Tomoaki. Metalorganic molecular beam epitaxy of ZnO using DEZn and H2O precursors. J. Cryst. Growth, 2002, 237-239: 528-532
    64. K. S. Kim, H.W. Kim, C. M. Lee. Effect of growth temperature on ZnO thin film deposited on SiO2 substrate. Mater. Sci. Eng. B, 2003, 98: 135-139
    65. 王中林,康振川著. 功能与智能材料结构演化与结构分析. 北京: 科学出版社, 2002 年
    66. J. F. Ready. Development of plume of material evaporized by giant-pulse laser. Appl. Phys. Lett., 1963, 39 (1): 11-13
    67. D. Dijkkamp, T. Venkatesan, X.D. Wu, et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett., 1987, 51 (8): 619-621
    68. R. Diamant, E. Jimenez, E. Haro-Poniatowski, et al. Dynamics inferred from optical emissionspectra,during diamond-like thin film pulsed laser deposition. Diamond & Related Materials, 1999, 8 (7): 1277-1284
    69. M. Yoshimoto, K.Yoshida, H. Maruta, et al. Epitaxial diamond growth on sapphire in an oxidizing envirment. Nature, 1999, 399: 340-342
    70. C. B. Collins, F. Davanloo, E. M. Juengerman, et al. Laser plasma source of amorphic diamond. Appl. Phys. Lett., 1989, 54 (3), 216-218
    71. Z. Paszti, G. Peto, Z. E. Horvath, et al. Laser ablation induced formation of nanoparticles and nanocrystal networks. Appl. Surf. Sci., 2000, 168: 114-117
    72. Ye Sun, Gareth M. Fuge, Michael N.R. Ashfold. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chem. Phys. Lett., 2004, 396: 21-26
    73. M. Von 奥尔曼,激光束与材料相互作用的物理原理及应用,科学出版社 1994
    74. R. K. Singh, J. Narayan. Pulsed-laser evaporation technique for deposition of thin. films: Physics and theoretical model. Phys. Rev. B, 1990, 41(13): 8843-8859
    75. J. W. Hastie, D. W. Bonnel, A. J. Paul, et al. Gas dynamics and chemistry in the pulsed laser deposition of oxide dielectric thin films. Mater. Res. Soc. Symp. Proc., 1994, 334: 305
    76. X.Y. Chen, Z. G. Liu. Interaction between laser beam and target in pulsed lser deposition: laser fluence and ambient gas effects. Appl. Phys. A, 1999, S69: S523-S525
    77. K. L. Chopra, S. Major and D. K. Pandaya. Transparent conductors—A status review. Thin Solid Films, 1983, 102: 1-46
    78. S. Maniv, W. D. Westwood, E. Colombini. Pressure and angle of incident effects in reactive planar magnetron sputtered ZnO layers. J Vac. Sci. Technol., 1982, 20: 162-170
    79. V. Gupta, A. Mansingh. Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J.Appl. Phys., 2001, 80: 1063-1073
    80. 王恩哥. 薄膜生长中的表面动力学 (1). 物理学进展, 2003, 23: 1-61
    81. B. J. Jin, S. Im, and S. Y. Lee. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366: 107-110
    82. S. Im, B. J. Jin, S. Yi. Ultraviolet emission and microstructural evolution in pulsed-laser-depositedZnO films. J. Appl. Phys., 2000, 87: 4558-4561
    83. Z. Y. Wang, L. Z. Hu, J. Zhao, et al. Effect of the variation of temperature on the structural and optical properties of ZnO thin films prepared on Si (111) substrates using PLD. Vacuum, 2005, 78: 53-57
    84. Bixia Lin, Zhuxi Fu, Yunbo Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett., 2001, 79: 943- 945
    85. Y. M. Sun. 2000 Ph.D.Thesis (Hefei:University of Scienceand Technology of China) (in Chinese)<孙玉明 2000 博士学位论文(合肥:中国科学技术大学)>
    86. W. G. Han, S. G. Kang, T. W. Kim et al. Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates. Applied Surface Science, 2005, 245: 384-390
    87. K. H. Kim, K. C. Park, D. Y. Ma. Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J. Appl. Phys., 1997, 81(12): 7764- 7772
    88. J. Mass, P Bhattacharya, R.S. Katiyar. Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition. Mater. Sci. Eng. B, 2003, 103: 9-15
    89. Atif Mossad Ali, Takao Inokuma, Yoshihiro Kurat, Seiichi Hasegawa. Structural and optical properties of nanocrystalline silicon films deposited by plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys., 2002, 41: 169-175
    90. R. Cebulla, R. Wendt, and K. Ellmer. Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys., 1998, 83: 1087
    91. J. H. Lee, B. O. Park. Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films, 2003, 426: 94
    92. 葛春桥,夏志林,郭爱云. 掺杂浓度对 AZO 薄膜结构和性能的影响. 电子元件与材料,2004, 23: 31
    93. T. Li, J Kanicki, W. Kong, et al. Interference fringe-free transmission spectroscopy of amorphous thin films. J. Appl. Phys., 2000, 88: 5764-5771
    94. S. H. Jeong, S. Kho, D.Jung. et al. Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics. Surface and Coatings Technology, 2003, 174-175: 187-192
    95. Hyeon-Jun Lee and Se-Young Jeong. Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett., 2002, 81: 4020-4022
    96. D. P. Norton, M. E. Overberg, S. J. Pearton, et al. Ferromagnetism in cobalt-implanted ZnO. Appl. Phys. Lett., 2003, 83: 5488-5490
    97. S. W. Jung, S. J. An, Gyu-Chul Yi. Ferromagnetic properties of Zn1–xMnxO epitaxial thin films. Appl. Phys. Lett., 2002, 80: 4561-4563
    98. Young Mok Cho and Woong Kil Choo. Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1–x (Co0.5Fe0.5) xO thin films. Appl. Phys. Lett., 2002, 80: 3358-3360
    99. D. P. Norton, S. J. Pearton. Ferromagnetism in Mn-implanted ZnO:Sn single crystals. Appl. Phys. Lett., 2003, 82: 239-241
    100. S. J. Han, J. W. Song, C. H. Yang, et al. A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu. Appl. Phys. Lett., 2002, 81: 4212-4214
    101. Jung H. Park, Min G. Kim, Hyun M. Jang, et al. Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett., 2004, 84: 1338-1341
    102. Y. M. Kim, M. Yoon, L. W. Park, et al. Synthesis and magnetic properties of Zn1?xMnxO films prepared by the sol–gel method. Solid State Communications, 2004, 129: 175-178
    103. S. Kolesnik and B. Dabrowski. Absence of room temperature ferromagnetism in bulk Mn-doped ZnO. J. Appl. Phys., 2004, 96: 5379-5381
    104. S. Kolesnik, B. Dabrowski, and J. Mais. Structural and magnetic properties of transition metal substituted ZnO. J. Appl. Phys., 2004, 95: 2582-2586
    105. Zhengwu Jin, T. Fukumura, M. Kawasaki, et al. High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett., 2001, 78: 3824-3826
    106. H. Ohno. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281: 951-956
    107. P. V. Radovanovic and D. R. Gamelin, High-temperature ferromagnetism in Ni2+-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots. Phys. Rev. Lett. 2003, 91: 157202
    108. M. Venkatesan, C. B. Fitzgerald, J. G。Lunney, Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett., 2004, 93: 177206.
    109. M. Diaconu, H. Schmidt, H. Hochmuth, et al. UV optical properties of ferromagnetic Mn-doped ZnO thin films grown by PLD. Thin Solid Films, 2005, 486: 117-121
    110. J. Zhang, R. Skomski, D. J. Sellmyer. Sample preparation and annealing effects on the ferromagnetism in. Mn-doped ZnO. J. Appl. Phys., 2005, 97: 10D303
    111. M. H. Kane, K. Shalini, C. J. Summers, et al. Magnetic properties of bulk Zn1–xMnxO and Zn1–xCoxO single crystals. J. Appl. Phys., 2005, 97: 0239069
    112. J. Alaria, M. Bouloudenine, G. Schmerber, et al. Pure paramagnetic behavior in Mn-doped ZnO semiconductors. J. Appl. Phys., 2006, 99: 8M118
    113. C. Bundesmann, N. Ashkenov, M. Schubert, et al. Towards dynamical force microscopy using optical probing of thermomechanical noise. Appl. Phys. Lett., 2001, 83: 3824-3826
    114. P. Sharmai, A. Guptai, K. V. Rao, et al. Ferromagnestism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater., 2003, 2: 673
    115. H. K Yoshida, K. Sato. Spin and charge control method of ternary II–VI and III–V magnetic semiconductors for spintronics: theory vs. experiment. J. Phys.Chem.Solids, 2003, 64: 1447-1452
    116. T. Doumuki, H. Tamada, M. Saitoh. Phase-matched second-harmonic generation in a Ta2O5/KTiOPO4 waveguide. Appl. Phys. Lett., 1994, 65: 2519
    117. J. D. Bierlen, D. B. Laubacher, J. B. Brown, et al. Balanced phase matching in segmented KTiOPO4 waveguides. Appl. Phys. Lett., 1987, 56: 1725-1727
    118. E. J. Lim, M. M. Fejer, R. L. Byer, et al. Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide. Electron. Lett. 1989, 25, 731
    119. Y. R. Shen, The principles of nonlinear optics, Wiley, New York, 1984
    120. Uwe Neumann, Ruediger Grunwald, Uwe griebner, et al. Second-harmonic efficiency of ZnOnanolayers. Appl. Phys. Lett., 2004, 84: 170
    121. T. David, S. Goldsmith and R. L. Boxman. Electro-optical and structural properties of thin ZnO films, prepared by filtered vacuum arc deposition. Thin Solid Films, 2004, 447-448: 61
    122. C. Y. Liu, B. P. Zhang, N. T. Binh, et al. Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition. Opt. Commun., 2004, 237: 65-70
    123. H. Cao, J. Y. Wu, H. C. Ong, et al. Second harmonic generation in laser ablated zinc oxide thin films. Appl. Phys. Lett., 1998, 73: 572
    124. P. D. Maker, R. W. Terhune, M. Nisenhoff, et al. Effect of dispersion and focusing on the production. of optical harmonics. Phys. Rev. Le tt., 1962, 8: 121
    125. X. Q. Zhang, Z. K. Tang, M. Kawasaki, et al. Second harmonic generation in self-assembled ZnO microcrystallite thin films. Thin Solid Films, 2004, 450: 320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700