低温高湿环境下翅片局部结霜数值计算方法与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气源换热器作为一种能够一机多用,且相对安装便捷的冷热源设备在我国冬冷夏热地区广泛应用。然而在以这一区域,空气源热泵在冬季运行过程中受到当地低温高湿环境的影响,其室外换热器表面会严重结霜。尽管目前有大量的研究着眼于解决在该地区冬季工况下热泵结霜的问题,然而只有少数学者注意到在翅片的表面霜层的凝结和生长是不均匀的,这种不均匀是加剧空气阻塞的主要原因。除去部分研究阐明了霜层在平行板上的局部分布或者换热器翅片上的平均分布外,目前没有可靠的数据表明在真实换热器表面霜层的局部分布情况。因此本文着重于模拟在低温高湿空况下,管翅式换热器的局部结霜状况以及换热特性。
     由于在普通的管翅式换热器的翅片板厚度极薄(10-1mm)且翅片间距仅为2.5mm左右,在数值计算过程中用整场耦合的方法会过分依赖计算机的硬件配置和性能。为此本文采用了分模块迭代的方式进行耦合以及相应的离散方法。与前人的工作不同,本文中所用的模块均为三维模块,且模块各自独立,接触面上的网格也不重叠。为了验证本文所提供的计算方法的准确性本文模拟了前人试验中的案例并与实验数值对比,得到了较好的验证。
     随后本文利用FLUENT商用计算流体软件对换热器在不同空气入口流速的情况下对相似对照工况进行模拟。得到了在仅有显热交换下翅片表面温度分布以及对流换热系数与速度之间的关系。并且利用了本文的结果检验了通用开源软件EVSIM中对于多排管的管翅换热器不同管排对换热器总的平均换热系数的贡献权重的假设。本文发现,EVSIM中各管排等权重的假设是不妥的。以两排管的翅片换热器为例,按照EVSIM中给出的公式计算,头排的换热热流密度时第二排的1.5-2倍。而且在EVSIM中给出的管排局部对流换热系数,虽然方便与工程应用计算,但是忽略了在多排管换热气中头一排翅片管的换热温差明显大于第二排翅片管的。本文的计算同时说明了如果在严格定义翅片管的局部换热温差后,各排管的局部平局对流系数是非常接近的。
     在后面的工作中,本文利用FLUENT软件,采用上文中提到的耦合方式以及SIMPLE算法,将霜层的凝结生长过程简化为壁面化学反应的方式计算了霜层在翅片表面的局部分布和生长过程。计算说明,冬季工况下,事实上结霜现象最早出现在制冷剂管壁附近。翅片的温度是从制冷剂管的根部逐渐向外降低的,最终在霜层下达到平衡
In this paper, the local frost mass retardition on plat-fin-round-tube exchangers has been simulated numerically with commercial CFD code FLUENT. As it is known, a great difficulty on convergence will be encounerted if the integeral coupling is applied to solve the heat transfer between fins and air, because the fin (about 0.1m thick) is much thinner than the fin spaces. To solve this problem, first, a new kind of numerical method is developed. In this method, the whole model is separated into two 3D individuals:one is air modular where fin temperature is surpposed as known and updated by the data from the second modular---fin modular, where the heat transfer between the ambient and fins are surpposed as known and updated up the data from the first modular. Comparing other existing similar methods, in this model both modular is solved with 3D and have significantly different number of mesh sizes to each othe. And an algorithm is developed to adepte this kind of method.
     We also compared the numerical results from this method with those experimental data and with those credible numerical ones. We find our method is successful in the cases we tested. And based on this method, we obtained data about the fin local temperature distribution at dry condition and the local heat transfer rate as well as area-wighted average ones at steady condition.
     The total average heat transfer coefficient of a 2-row heat exchanger is adherened to the one calculated from Webb's j-factor equations. However, the numerical results show that in a 2-row heat exchanger, heat flux conducted through the first row is almost as twice as that through the second one. And by the same means recorded in the EVSIM, the numerical model has calculated the local average heat transfer rate of each row. And the assumption that each row's heat transfer rate in a multiple exchanger contributes equally to the total average heat transfer rate is questioned.
     In the next, a unsteady model of frost growth on fins is set up by abstracting the model into a serials of wall surface reactions. The numerical results shows that frost first forms in the front of tubes, and then extands from the root of the tube to the around. The mass retardation is obvious on the sides of the tube, but much less in the rear of the first row tube. It also finds that the frost grows most fast at the frontier. On the other, it grows a little slower where is covered by frost.
引文
[1]蒋能照.空调用热泵技术及应用北京:机械T业出版社,1997,7(第1版):135-137
    [2]Hayashi, Y.. Study of frost properties correlating with frost formation types. Journal of heat transfer,1977,99:239-245
    [3]O'Neal, D. The effect of frsot formation on the performance of a parallel plate heat exchanger. [Ph.D. Dissertation]. West Lafayette, IN:Purdue University,1982,140-200
    [4]Yang, Jianxin. A study of heat pump fin staged evaporators under frosting conditions. [Doctoral thesis]. College station, TX:Texas A&M University, 2003,159-166
    [5]Chen, H., Thomas, L., and Besant, R. W.. Modeling Frost Characteristics on Heat Exchanger Fins:Pt. II, Model Validation and Limitations. ASHRAE Transactions, 2000,106(b):1332-1367
    [6]Ellgas, Simon and Pfitzner, Michael(2008)'Modeling Frost Formation Within a Commercial 3-D CFD Code', Numerical Heat Transfer, Part A:Applications,53: 5,485-506
    [7]Na, Byeongchul. Analysis of frost formation in an evaporator. [Doctoral Thesis]. Central County, PS:Pennsylvania State University,2003,233-256
    [8]谷波,任能,刘小川.翅片管换热器结霜工况的三维数值模拟与分析.上海交通大学学报,2008,42(3):441-444
    [9]Hoffenbecher, N.. Investigation of alternative defrost strateries. [Ms Thesis]. Madison,WS:University of Wisconsin-Madison,2004,15-60
    [10]Aljuwayhel, Nawaf Faisal. Numerical and experimental study of the influence of frost formation and defrosting on the performance of industrial evaporator coils. [Doctoral thesis]. Madison, WS:University of Wisconsin-Madison,2006,99
    [11]杨涌泉,寿青云.空气源热泵机组运行故障分析.制冷与空调,2008,22(1):2-4
    [12]Julius H. Rainwater. Five Defrost Methods for Commercial Refrigeration. ASHRAE Journal, March 1959,110-120
    [13]张阿龙.电热除霜器.中国专利CN200620101347.2006.03-06
    [14]Krakow K., Lin S, Yan L. An idealized model of reversed----cycle hot gas defrosting---part 1:theory. ASHRAE Trans,1993,99(2):317-328.
    [15]Krakow K., Lin S., Yan L..An idealized model of reversed---cycle hot gas defrosting---part 2:experimental analysis and validation. ASHRAE Trans, 1993,99(2):317-328.
    [16]史斌华.空气.空气热泵结霜除霜动态过程研究:[硕士学位论文].北京:清华大学,1996,19-22
    [17]刘志强,汤广发,赵福云.风冷热泵除霜过程动态特性模拟和实验研究.制冷学报,2003,(3):1-5
    [18]石文星,李先庭,邵双全.房间空调热气旁通法除霜分析及实验研究.制冷学报2000.2:3-4
    [19]黄东,袁秀玲.风冷热泵冷热水机组热气旁通除霜与逆循环除霜性能对比.西安交通大学学报,2006,40(5):539-543
    [20]郑捷庆,庄友明,张军等.高电压技术在制冷设备除霜中的应用.高压电技术,2007,33(12):45-47
    [21]韩志涛,姚杨,马最良,姜益强.空气源热泵蓄能热气除霜新系统与实验研究.哈尔宾工业大学学报,2007,39,(26):901-903
    [22]梁彩华,张小松,巢龙兆,刘一民.显热除霜方式与逆向除霜方式的对比试验研究.流体机械,2005,26(4):20-24
    [23]V. J. Schaefer, Project Cirrus, Part I. In:Final Report, RL No.785, General Electric Res. Lab., Schenectady,NY,1953,54-56.
    [24]Maybank. J. and N. N. Barthakur. Growth and Destruction of Ice Filaments in an Electric Field. Nature,1967,2(16):50-52
    [25]Chuang, T. H., and H. R. V.. Frost Formation in a Non-uniform Electric Field. Chemical Engineering Progress Symposium Series,1971,67(113):10-18
    [26]Munakata, T., A. Yabe, and I. Tanasawa. Effect of Electric Fields on Frosting Phenomenon. In The 6th International Symposium on Transport Phenomena in Thermal Engineering, Seoul, Korea:1993,381-386
    [27]Castellanos A. Electrohydrodynamics. New York:Springer-Verlag Wien,1998,104-226
    [28]John T. Bartlett, Anthony P. Van Den Heuval, and Basil J. Mason. The growth of ice crystals in an electric field. Zeitschrift Fur Angewander Mathematik und Physik,1963,14:599-610
    [29]张新华,刘中良,王皆腾等.电场作用下竖直板表面特性对霜层生长的影响.制冷学报,2006,67(3),54-58
    [30]刘清江,申江,邹同华等.高压电场下自然对流蒸发器结霜的试验研究.制冷与空调,2007,7(2):51-60
    [31]Tudor V, Ohadi M. The effect of stationary and sweeping frequency AC electric fields on frost crystal removal on a cold plate. International Journal of Refrigeration,2006,29(2):669-677.
    [32]Tudor V, Ohadi M, Salehi M A, et al. Advances in control of frost on evaporator coils wit h an applied electric field. Int. J Heat Mass Transfer,2005,48(21/22): 4428-4434
    [33]郑晓峰,臧润清,姚秀.液体冷媒除霜在恒温恒湿系统的应用分析.制冷空调与电力机,2008,29,(2):6-8,13
    [34]Sanders, C. T. the influence of frost formation and defrosting on the performance o air coolers. [Ph.D Thesis]. Delft:Delft technical university,1974,66-97
    [35]Gray, D.L. and Webb, R.L., Heat Transfer and Friction Correlation for Plate Finned-Tube Heat Exchangers Having Plain Fins, In Proc. Of Eighth Int. Heat Transfer Conference, San Francisco,1986
    [36]黄虎,李志浩,虞维平.风冷热泵热水机组除霜过程仿真.东南大学学报(自然科学版),2001,31(1):52-56
    [37]Jung-Soo Kim. Frost behavior on a fin considering the heat conduction of heat exchanger fins. International Journal of Heat and Mass Transfer,2009,52:2581-2588
    [38]B. Na and R.L. Webb, A fundamental understanding of factors affecting frost nucleation. Int. J. Heat Mass Transfer,2003,46:3797-3808
    [39]O'Neal D L, Tree D R.A review of frost formation in simple geometries. ASHRAE Transaction,1985,491(2):267-281
    [40]Herchang Ay, JiinYuh Jang, Jer-Nan Yeh. Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography. International Journal of Heat and Mass Transfer,2002,45:4069-4078
    [41]Tao, W. Q. and Lue, S. S., Numerical method for calculation of slotted-fin efficiency in dry conditions. Numerical Heat Transfer,1994,26(Part A):351-361
    [42]Fiebig, M., Grosse-Gorgemann, A., Chen. Y. et al. Conjugate heat transfer of a finned thube Part A:Heat transfer behavior and occurrence of heat transfer reversal. Numerical Heat Transfer,1995,28(Part A):133-147
    [43]Sparrow, E. M. and Chyu, M. K., Conjugate forced convection-conduction analysis of heat transfer in a plate fin. Journal of Heat Transfer,1982,104:204
    [44]Grag, V. K. and Velusamy, K., Heat transfer characteristics for a plate fin. Journal of Heat Transfer,1986,108:224
    [45]Rosman, E. C., Carajiescov, P. and Saboya, F.E.M., Performance of one-and two-roow tube and plate fin heat exchanger. Journal of Heat Transfer, 1984,106:627-637
    [46]Biswas, G., Mitra, M. K. and Fiebig, M,. Heat transfer enhancement in fin-tube heat exchangers by Einglet-type vortex gernerators. International Journal of Heat and Mass Transfer,1994,37(2):283
    [47]Tsai, S. F and TONY W. H. Sheu, Some physical insights into a two-row finned-tube heat transfer. Computer & Fluids.1998.27(1):29-46
    [48]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001:16-19
    [49]Ye Yong Kim, Kui Soon Kim, Gi Ho Jeong, Sooin Jeong. An experimental study on the quantitative interpretation of local convective heat transfer for a plate fin and tube heat exchanger using the lumped capacitance method. International Journal of Heat and Mass Transfer,2006,49:230-239
    [50]Wang, Chi-Chuan; Chang, Yu-Juei; Hsieh, Yi-Chung; Lin, Yur-Tsai. Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins. International Journal of Refrigeration,1996,19(4):223-230.
    [51]Brian, P. L. T., Reid, R. C., and Shah Y. T., Frost deposition on cold surfaces. Industrial & Engineering Chemistry Fundamentals,1968,9(3):375-380
    [52]Hososda, T. and Uzuhashi, H. Effects of frost on the heat transfer coefficient. Hitachi Review,1967,16(6):254-259
    [53]Hayashi, Y. Aoki, A., and Yuhana. H.. Study of frost formation based on a theoretical Modle of the frost layer. Heat Transfer. Janpanese Research,1977,6: 79-94
    [54]Trammel, G. J., Little, D. C., and Lillgore, E. M. Astudy of frost formed on a flat plate held at a sub-freezing Temperature. ASHRAE Journal,1968,7(10):42-47
    [55]DIguria, G. and Wenzel, L. A. Measurement and correlation of water frost thermal conductivity and density. Industrial & Engineering Chemistry Fundamentals. 1968,9(1):129-138
    [56]Mao, Y., Besant, R. W., Chen, H.. Frost characteristics and heat transfe on a flat plate under freezer operating conditions. ASHRAE Transaction:Research, 1999,95(42):231-251
    [57]Kondepudi, S. N., and O'Neal D. L.. The effects of different fin configuration on the performance of finned-tube heat exchangers under frosting conditions. ASHRAE Transactions,1987,96(2):439-444
    [58]吕东彦.空气源热泵结霜工况性能分析与试验研究.[湖南大学硕士论文].湖南长沙:湖南大学,2008,40-44
    [59]N. Laaroussi, G. Lauriat. Conjugate thermosolutal convection and condensation of humid air in cavities. International Journal of Thermal Sciences 2008 (47):1571-1586
    [60]Goldburnner, M., Lolale Phanomen bei der Kondensation von Dampf in Anwsenheit eines nichtkondensierbaren Gases. [Doctral Dissertation]. VDI Verlag:Universitat Muchen,2003,67-68
    [61]FLUENT Inc.. FLUENT UDF Manual.http://my.fit.edu/itresources/manuals 2006.09.03
    [62]FLUENT Inc.. FLUENT User's Guide.http://my.fit.edu/itresources/manuals, 2006.09.03
    [63]Buck, A. L.. New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorol,1981,20:1527-1532
    [64]Domanski, P. A., EVSIM-an evaporator simulation model accounting for refrigerant and one dimension air distribution. National Institute of Standards and Technology. Gaithersburg, MD:1989,NISTIR 89-4133,10-22
    [65]Sherif, S. A. and Hertz, M. G.. A semi-empirical model for electronic defrosting of a cylindrical coil cooler. International journal of energy research,1998, Vol.22: 85-92
    [66]Mao, Y., Besant., R.W. and K.S. Rezkallah. Measurement and correlations of frost properties with airflow over a flat plate, ASHRAE Trans,1992,98(Part 2):65-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700