基于模糊控制的汽车ABS在环仿真实验平台研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ABS的控制方法和其算法是汽车安全领域的ABS研究的核心,由于起步时间、知识产权保护、市场竞争及其它方面的原因,我国的汽车工业仅采用国外的ABS的公司提供的集成产品。因此研究ABS控制方法的理论,并开发出基于实用控制算法的ABS的控制系统,是填补国内汽车安全领域的ABS研究短板的关键步骤。它同时亦是高校诸如车辆工程专业研究的主要领域之一。因此,开发一套用于实验和教学的ABS控制系统十分有工程意义,通过它能了解和验证ABS控制方法的可行性和可靠性。
     本文深入研究了汽车ABS控制原理和理论,建立了单轮车辆动力学模型;加入了路面识别系统确定实时路面,它能够更准确地调整制动力矩;用模糊控制方法实现了汽车ABS控制;搭建了在环仿真平台,在上位机采用VB. NET开发环境建立应用于单轮车辆动力学模型及其制动器模型,在下位机采用DSP模拟汽车ECU单元以建立ABS模糊控制的算法,并结合二者做闭环半实物仿真及分析;验证了模糊控制器应用于ABS的有效性;初步扩展了控制算法应用的种类。
     结果表明,基于路面识别系统的模糊控制系统能够根据不同的路面设定最佳滑移率,从而使ABS控制的制动力矩的输出更加精确,有效地提高了制动性能,提升了车辆的安全性;验证了所设计的在环仿真实验平台能够比较真实、精确地模拟实车的ABS制动过程,对于实验和教学有着实际的意义。
ABS's control method and algorithm is the core of the area of Automobile Safety. Due to starting time, Intellectual Property Protection, market competition and other reasons, automobile industry in our country can only use integrated product provided by foreign ABS companies. Therefore, researching the theories of ABS control method and developing ABS control system based on practical and effective control algorithm are key steps to remove shortcomings of the research on ABS in our country. At the same time, it is also the main research area of universities'relative departments, such as Vehicle Engineering Department. Therefore, developing the ABS control system for experimental and teaching use owns huge practical engineering meaning. The feasibility and the reliablity of the control methods can also testified through it.
     This thesis deeply researches on ABS control principle and theory. The quarter vehicle model is established, the pavement identification system which can precisely adjust braking torque to identify real-time pavement is added and the fuzzy control method to realize vehicle ABS control is employed. Then the close-loop Hardware-in-the-loop Simulation experimental platform based on the host computer using VB.NET and the slave ECU(DSP) using fuzzy control algorithm is built and analyzed. The good effectivity of using fuzzy controller to ABS is also testified. The variety of ABS control algorithms'applications is initially extended.
     The Results indicate that the fuzzy control system can set the best slip ratio according to different pavement based on the pavement identification system. It makes the output of braking torque more accurate, effectively promotes braking character and advances the security of vehicles. The Hardware-in-the-loop Simulation experimental platform designed is also verified. It can actually and accurately simulate the ABS braking process of real vehicles. It prossesses practical significance for a lab and teaching.
引文
【1】 曾志斌,童莉.全面解读ABS装置(Ⅰ)[J].汽车电器,2005,8:53-56.
    [2]侯谭刚.论ABS在汽车上的应用与发展[J].科技资讯,2007,16:13.
    【3】 杨晓建,何玉军.制动防抱死系统应用研究[J].汽车工程,1999,2:107-111.
    [4]陈汉讯,徐火燃,赵奇平.模糊控制在汽车防抱制动系统中的应用[J].交通科技与经济,2003,18(2):31-33.
    【5】 吕立亚,朱伟兴.模糊智能控制在ABS中的应用[J].计算机测量与控制,2003,11(8):593~596.
    [6]朱余清.四轮驱动ABS控制方法的分析[J].汽车科技,2004,7:18-22.
    【7】 郭孔辉,丁海涛,刘漂.汽车ABS混合仿真试验台的开发与研究[J].中国机械工程,2000,12:1418-1421.
    [8]Chankyu Lee, Karl Hedrick, and Kyongsu Yi. Real-time slip-based estimation of maximum tire-road friction coefficient [J]. Proc. IEEE/ASME Transactions On Mechatronics,2004,9(2), pp 454~458.
    [9][日]ABS株式会社.汽车制动防抱死装置(ABS)构造与原理[M].北京:机械工业出版社,1995.
    [10]Will, A. B., Hui, S. And Zak, S. H. Sliding Mode Wheel Slip Controller for Antilock Braking System. Int. J. Of Vehicle Design, Vol.19, No.4,1998.
    [11]Unsal C., Pushkin K. Sliding Mode Measurement Feedback Control for Antilock Braking System. IEEE Transaction On Control System Technology, Vol.7,No.2,1999.
    【12】雷雨成,赵清亮等.汽车全工况操纵和制动动力学17自由度的建模与仿真[J].汽车工程,1996,6:325~330.
    [13]竹迪华,范成建.用于不平路面车辆动力学仿真的轮胎模型综述[J].汽车工程,2004,2:162-167.
    [14]Lang W.,Alleyne A. Multivariable Bilinear Vehicle Control Using teering and Individual Wheel Torques. ASME Journal of Dynamic Systems, Measurement, and Control, Vol.121,No.12,1999.
    【15】韩文涛,贾安民,袁志业.汽车ABS的逻辑门限值控制研究[J].北京汽车,2003,6:28-30.
    [16]修绍成,王涛,王艳平,唐涧涛.模糊控制系统的设计及稳定性分析[M].北京:科学出版社.2004,4:1-64.
    [17]李少远,李柠.复杂系统的模糊预测控制及其应用[M].北京:科学出版社.2003,8:1-56.
    [18]张化光,何希勤等.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社.2002,7:1~311.
    [19]Teixeira M.C.M., Marcelo C. M., Zak S.H., Stanislaw H. Z. Stabilizing Controller Design for Uncertain Nonlinear Systems Using Fuzzy Models. IEEE Transactions on Fuzzy Systems,Vol.7, No.2,1999.
    [20]李国勇.神经模糊控制理论及应用[M].北京:电子工业出版社,2009.
    【21】王保华,陶健民.ABS模糊控制的研究[J].汽车科技,2000,2:38~42.
    [22]Will A. B.,Stanislaw H. Z. Antilock Brake System Modeling and Fuzzy Control. Int. J. Vehicle Design, Vol.24, No.1,2000.
    [23]Ming-Chin W, Lian-Chian L,Ming-Chang S. Neuro-Fuzzy Controller Design of the Anti-lock Braking System. JSME International Journal Series C,Vol.41,No.4,1998.
    [24]李君,喻凡,张建武.基于道路自动识别ABS模糊控制系统的研究[J].农业机械学报,2001,9:26-29.
    [25]李锐,郑太雄,冯辉宗,李银国,陈伟民.基于模糊自适应的汽车ABS路面辨识技术[J].重庆邮电大学学报(自然科学版),2007.04,19(2).
    [26]王铁,张国忠,周淑文.带神经网络的防抱死制动系统(ABS)路面辨识[J].中国工程机械学报,2004.01,2(1).
    [27]Koji Matsuno, Tokyo(JP). Road friction coefficient estimating apparatus and vehicle equipped with road friction coefficient estimating apparatus. United states patent,US 6.556.911 B2.
    [28]Masaru Kogure, Tokyo(JP). Road friction coefficients estimating apparatus for vehicle. United states patent, US 6,597,980 B2.
    [29]Yi K., Jeong T. Observer Based Estimation of Tire-Road Friction for Collision Warning Algorithm Adaptation. JSME International Journal Series C, Vol.41,No.1,1998.
    [30]刘国福,张玘,王跃科,郑伟峰.防抱制动系统基于模型的最佳滑移率计算方法[J].汽车工程,2004,26(3):302-305.
    [31]飞思科学和技术研究和发展中心MATLAB 7基础与提高[M].北京:电子工业出版社,2005.04.
    [32]MATLAB 7.0 Help.
    [33]苟凯英,程军.基于MATLAB仿真环境实现防抱制动控制逻辑[J],测控技术,2002,1:25~27.
    [34]马明星,仇屹珏.基于MATLAB的车辆制动过程仿真研究[J].成组技术与生产现代化,2004,21(3):12-14.
    [35]羊拯民,张代胜等.轻型客车防抱制动系统计算机仿真[J].合肥工业大学学报,1999,5:10-17.
    【36】闻新,周露,王丹力,熊晓英MATLAB神经网络应用设计[M].北京:科学出版社,2000.
    [37]马瑾,王纪森,何长安.一种新型ABS控制策略的仿真研究[J].系统仿真学报,2004,7:612-614.
    [38]Suh M. W., Chung J. H., Seok C. S, Kim Y. J. Hardware-in-The-Loop Simulation for ABS Based on PC.
    [39]Svaricek F. Automatic Valuation and Verification of ABS Controlle By Using a Hardware-in-Loop Simulation. SAE paper, No.980241,1998.
    【40】项承寨,夏群生,何乐.ABS控制量的计算研究[J].汽车技术,2001,1:10-13.
    [41]马明星,毛务本,朱伟兴.车辆防抱死制动系统(ABS)控制算法的研究[J].城市车辆,2002.02:21-23.
    [42]马明星,毛务本,朱伟兴.车辆ABS控制算法的理论分析与试验研究[J].农业机械学报,2002.07,33(4):29~31,37.
    [43]陕西省迪科科技有限责任公司.TMS320LF2407A评估板技术参考.2003.03.
    [44]赵世廉TMS320X240x DSP原理及应用开发指南[M].北京:北京航空航天大学出版社,2007.07.
    [45]TDS510USB Code Composer Studio Setup Configuration Create Board for CCS 3.1.
    【46】刘训忠,王一玲,夏群生.汽车防抱死制动系统(ABS)轮速算法研究[J].汽车电器,2000,1:7-10.
    [47]齐志权,刘昭度等.基于汽车ABS/ASR/ACC集成化系统的ABS参考车速确定方法的研究[J].汽车工程,2003,6:617-620.
    [48]吴浩汁,许季,刘绍辉.汽车防抱制动系统制动时的车速计算[J].华南理工大学学报,2002,2:76-78.
    【49】周小清,邬云雯,戴薇,黄国盛.数值求导算法研究[J].吉首大学学报,2001,22(1):64~68.
    [50]“质心”词条.百度百科http://baike.baidu.com/view/139124.htm.
    [51]MSDN Express Library 2005.
    [52]陈立元,范逸之,廖锦棋.Visual Basic 2005与自动化系统监控[M].北京:清华大学出版社,2008.
    [53]李潮泳,林国斌,尚敬.基于TMS320F240的串行通讯设计.西南交通大学磁悬浮列车及磁力技术应用研究所.
    [54]程军.防抱制动系统的性能评价[J].汽车研究与开发,1999,4:23-26.
    [55]QC/T564-2008,乘用车制动器及台架试验方法[S].北京:全国汽车标准化技术委员会,2008:
    [56]王兆.国内外ABS标准法规简介[J].商用汽车,2002,6:57-59.
    [57]何宇平,伦景光.国内外轿车制动法规的评述[J].汽车工程,1994,3:182-192.
    [58]宗长富,郭孔辉.汽车操纵稳定性的主观评价[J].汽车工程,2000,5:90-294.
    【59】杨启梁,严运兵.具有ABS的汽车制动性能实验模拟系统[J].汽车科技,2003,5:40~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700