机械搅拌法制备SiCp/AZ91D复合材料技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金较低的强度和耐磨性限制了其在某些工程中的应用,利用碳化硅颗粒增强镁合金可以明显提高镁合金的拉伸性能和摩擦磨损行为。由于碳化硅与镁在结构和性能上存在较大的差异以及机械搅拌装置的不完善,难以实现增强体与基体在液态或半固态下的充分融合,致使碳化硅颗粒增强镁基复合材料的组织不够均匀致密,性能与工程需要还存在一定差距。
     本文自行设计制造了机械搅拌复合炉,该实验设备主要包括加热系统、搅拌系统和真空系统,其主要性能参数为:有效工作区尺寸f80mm×120mm,搅拌容器的尺寸f70mm×80mm,功率1kW,最高温度900℃,搅拌速率0~2500r/min,极限真空度0.1Pa。
     以AZ91D镁合金为基体,平均颗粒尺寸10μm的SiC颗粒为增强相,采用机械搅拌复合炉制备了SiC_p/AZ91D复合材料,研究了搅拌温度、搅拌时间、搅拌速度等工艺参数对复合材料显微组织的影响,并在室温下对复合材料试样进行了拉伸试验和摩擦磨损实验,利用金相显微镜(OM)和扫描电镜(SEM)分别分析了复合材料的显微组织、断口形貌和磨痕形貌。
     结果表明:在本实验条件下,580℃,1500r/min,搅拌30min时,SiC颗粒在基体中分布相对均匀,并且与AZ91D基体结合较好;在580℃、搅拌时间30min的条件下,随着搅拌速度的增加,SiC颗粒的分布呈现出团聚-部分团聚-相对均匀变化规律,当搅拌速度为1500r/min时,SiC颗粒分布相对均匀;当搅拌速度超过1500r/min后,随着搅拌速度的增加,SiC颗粒分布呈现不均匀化,并出现了气孔。当温度为580℃,搅拌速度1500r/min时,随着搅拌时间的增加,SiC颗粒的分布逐渐趋于相对均匀化,但当搅拌40min时,SiC颗粒分布呈现不均匀化,基体中气孔明显增加。
     在10vol%,15vol%,20vol%的复合材料中,随着SiC含量的增加,SiC呈现出相对均匀分布-微小聚集团分布-链状分布的规律;复合材料的断裂强度和相对延伸率呈现出下降的趋势。10vol%复合材料的断裂强度为156.2MPa,相对伸长率为4.4%,拉伸曲线没有明显的屈服点,断口为韧-脆混合断口。
     对于10vol%,15vol%,20vol%复合材料,其平均摩擦系数随着体积分数的增加呈单调增大趋势,磨损量也呈现出单调增大的趋势。与AZ91D相比,10vol%、15vol%、20vol%复合材料的平均摩擦系数分别提高了10.3%、15.7%和31.7%;10vol%、15vol%复合材料的耐磨性分别提高了19.6%,5.5%,但20vol%复合材料的耐磨性略低于AZ91D。10vol%复合材料存在黏着磨损和磨粒磨损两种磨损机制,而15vol%、20vol%的复合材料的磨损过程则以磨粒磨损为主。
The application of magnesium alloy was limited, because of lower strength and wear resistance. The tensile properties and the friction and wear behavior of magnesium alloy was improved by introducing SiC particle into magnesium alloys. But there is difference in the performance and structure of the SiC and magnesium alloy, and mechanical agitation device was imperfect, it was difficult to achieve the full mixture of reinforcement and matrix in liquid or semi-solid, and the microstructure of SiC reinforced magnesium composites was not uniform and compact, it will lead to the gap between performance and project needs.
     In this paper, mechanical stirring compound furnace was designed and manufactured, there were mainly heating system, stirring system and vacuum system in the experimental equipment, and the main performance parameters were the effective heating zone size (f80mm×120mm), the size of stirring vessel(f70mm×80mm), the maximum temperature (900℃), power(1kW), stirring speed(0 ~ 2500r/min) and limited vacuum(0.1Pa)
     SiC_p/AZ91D composite materials was prepared by mechanical stirring method. The stirring temperature, stirring time and stirring speed were discussed, the tensile and wear properties of composite materials were tested at room temperature. The microstructure of composite materials, the fracture morphology and the morphology of wear defect were analyzed by optical microscopy (OM) and scanning electron microscopy (SEM).
     The results indicated that: in this experimental conditions, at 580℃, stirring 30min speed 1500r/min, SiC particles relatively dispersed uniformly, and were better to link up with the AZ91D matrix; at580℃, stirring30min, with the stirring speed increased, the distribution of SiC particles showed the variation of reunion - part of the reunion - a relatively uniform, when the stirring speed was up to 1500r/min, SiC particles relatively distributed uniformly, the speed exceed 1500 r/min, with the stirring speed increased, the distribution of SiC particles showed non-uniform, and the pore appeared; at 580℃, stirring speed 1500r/min, with the increase of stirring time, the distribution of SiC showed more and more relative uniformity, but more than 40min, SiC particle distributed unevenly, and there were a large number of pores.
     In 10vol%, 15vol%, 20vol% composite materials, with the content of SiC increased, the distribution of SiC showed the changes of relatively uniform - small group distribution - the chain distribution, and the trend of the fracture strength and relative elongation decreased. The fracture strength of 10vol% composite material was 156.2MPa, and the relative extension rate was 4.4%. The tensile curve of composites had no obvious yield point, the tensile fracture was mixture of cleavage and touph dimple.
     In 10vol%, 15vol%, 20vol% composites, with increasing volume fraction monotonously increased, the average coefficient of friction and the wear volume appeared monotonous increasing trend. Compared with AZ91D, the average friction coefficient of 10vol%, 15vol%, 20vol% composite materials respectively increased 10.3%, 15.7% and 31.7%, the abrasion resistance of 10vol%, 15vol% composite increased 19.6% and 5.5%, and the abrasion resistance of 20vol% was slightly less than AZ91D. The wear mechanism of 10vol% composites included two kinds of adhesive and abrasive wear, and the abrasive wear accounted for the main part in 15vol%, 20vol% composites.
引文
[1] Kudela S. Magnesium-lithium matrix composites: an overview [J]. International Journal of Material sand Product Technology, 2003, 18(1-3): 91-115.
    [2] T.W克莱因.金属基复合材料导论[M].余永宁,房志刚译.北京:冶金工业出版社. 1996.
    [3] Kevorkijan V. AZ80 and ZC71/SiCp closed die forgings for automotive applications: technical and economic assessment of possible mass production[J]. Materials Science and Technology, 2003, 19(10):1386-1390.
    [4]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002,195-210.
    [5] Mikucki B A,Mecrer W E, Green W G. Magnesium matrix composites at dow: status update [J]. Light Metal Age,1986,10:16-20
    [6]洪成淼.颗粒增强镁基复合材料的制备及其性能[D].硕士学位论文.沈阳:沈阳工业大学. 2005.
    [7] Gen Sasaki. Material mechanical properties and microstructure of magnesium alloy matrix composites fabricated by casting process[J]. Materials Science Forum ,2003 , (426-432) :2015-2020.
    [8] Jiang Q C, Li X L, Wang H Y. Fabrication of TiC Particulate reinforced magnesium matrix composites [J] . Scripta Materialia. 2003, (48):713-717.
    [9]王武孝,袁森,熊爱华等.镁合金半固态成形技术的研究现状及发展[J].铸造技术, 2004, 25 (6):469-470.
    [10]李新林,王慧远,姜启川.颗粒增强镁基复合材料的研究现状及发展趋势[J].材料科学与工艺,2001, 9 (2) :219-224.
    [11]D.M.Lee, B.K.Suh, B.G.Kim, J.S.Lee, C.H.Lee. Fabrication,microstructures,and tensile properties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy[J]. Mater.Sci.Technol.,1997;13:590-595.
    [12]Chua B W, Lu L, Lai M. Influence of SiC Particles on Mechanical Properties of Magnesium Based Composite [J].Compos Struct.1999;47:595-601.
    [13]L.Li,M.O.Lai, M.Gupta, B.W.Chua, A.Osman. Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying.[J].Mater. Sci., 2000, 35: 5553-5561.
    [14]H.Ferkel, B.L.Mordike. Magnesium strengthened by SiC nanoparticles.[J]. Mater. Sci. Eng., 2001, A298:193-199.
    [15]H. Y. Wang, Q. C .Jiang, Y. Wang, B. X. Ma and F. Zhao, Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy[J]. Mater. Lett. 2004, 58: 3509-3513.
    [16]C. Badini, F. Marino, M. Montorsi, X. B. Guo. Precipitation phenomena in B4C reinforced magnesium-based composite[J]..Mater.Sci.Eng.,1992;A15:53-61.
    [17]R. T. Whalen, G. G. Doncel, S. L. Robinson. Mechanical properties of particulate composites based on a body-centered-cubic Mg-Li alloy containing boron [J].Scripta Mater. 1989, 23(1):137-140.
    [18] Q C Jiang , H Y Wang ,B X Ma ,et al. Fabrication of B4C particulate reinforced magnesium composite by powder metallurgy[J] . Journal of Alloy and Compounds. 2005, (386):177-181.
    [19]陈建刚,张文兴,柴东朗.碳化硅颗粒增强镁基复合材料损伤性能的研究[J].金属功能材料. 2002, 9(2) :33-35.
    [20]张修庆,滕新营,王浩伟.镁基复合材料的制备工艺[J ].热加工工艺,2004, (3) :59-61.
    [21]马宝霞. TiB2-TiC颗粒增强镁基复合材料的制备[D] .硕士学位论文.吉林:吉林大学,2005.
    [22]陈礼清,董群,赵明久等.原位反应渗透法TiCp/Mg复合材料的制备和性能[J].材料研究学报, 2004, 18(2):193-198.
    [23] Matin M A , L u L , Gupta M. Investigation of the reaction between boron and titanium compounds with magnesium[J]. Scripta Materialia. 200 , (45) :479.
    [24]陈晓,傅高升,钱匡武等. TiCp / ZM5镁基复合材料的组织和性能[J].福建工程学院学报. 2004, 2 (4):398-401.
    [25] J ayalakshmi S, Kailas. S. V. Tensile behavior of squeeze cast AM100 magnesium alloy and it s Al2O3 fiber reinforced composites[J]. Composites Materials Letters. 2002 , (A33) :1135-1140.
    [26]吴桢干,顾明元,陈煜等. SiCp/Mg复合材料的界面结构[J].稀有金属材料与工程. 1998, (1):37-41.
    [27] Lloyd D J. Particle reinforced Aluminum and Magnesium Matrix Composites[J]. Intel Mater Reviews, 1994 , (39) :19-22.
    [28] Noguchi A , Ezawa I , Kaneko J et al. SiCp/ Mg2Ce and Mg2Ca alloy composites obtained by spray forming[J] .Journal of Japan Institute of Light Metala. 1995,45 (2) :64.
    [29] S F Ha ssan , K F Ho , M Gup ta . Increasing elastic modulus ,strength and CTE of AZ91 by reinforcing pure magnesium with elemental copper[J]. Materials Letter. 2004, (58):2143-2146.
    [30] S K Kim, Yong-Jig Kim. Microstructual Evolution and Thixoformability of Semisolid SiCp/AZ91D Mg [J]Composites.Materials Transaction.2001,42(7):1277-1283.
    [31]T W Hong, S K Kim,H S Ha,et al. Microstructural evolution and semisolid forming of SiC particulate reinforced AZ91HP magnesium composites[A]. Metal Matrix Composites VII[C].London,1999
    [32]曹利强,柴东朗.低温反应自熔法制备镁基复合材料的新工艺[J].材料热处理学报. 2004, 25 (1):20-22.
    [33]A. Luo, Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites[J]. Metal.Mater.Trans., 1995,26A:2445-2455.
    [34]R.A. Saravanan, M.K. Surappa, Fabrication and characterization of pure magnesium-30vol.%SiCp particle composite[J].Mater.Sci.Eng.,2000,A276:108~116.
    [35] A. Martin, J .Llorca, Mechanical behaviour and failure mechanisms of a binary Mg-6%Zn alloy reinforced with SiC particulates[J].Mater.Sci.Eng.,1995,201A:77-87.
    [36] M.R. Krishnadev, R.Angers, C.G. Krishnadas Nair and G. Huard. The Structure and Properties of Magnesium-Matrix Composites[J]. JOM,August. 1993:52-54
    [37]J.Hashim, L. Looney and M.S.J. Hashmi. Metal Matrix Composites Production by the Stir Casting Method[J]. Mater. Proc. Techol. 1999,92-93: 1-7
    [38]J.Hashim,L.Looneyand M.S.J.Hashmi. Particle Distribution in Cast Metal Matrix Composites-PartⅡ[J] Mater. Proc. Techol. 2002,123:258-263
    [39]吴人杰,谢国宏.颗粒MMC中颗粒推移效应的研究现状及发展.材料导报. 1993,4:69-71
    [40] W. Zhou, Z.M. Xu. Casting of SiC Reinforced Metal Matrix Composites. J. Mater. Proc. Techol. 1997,63: 358-363
    [41]锦吴波,杨全.铸造复合材料研究进展.铸造. 1991,6:1-5
    [42]刘立新.金属-陶瓷粒子型铸造复合材料.宇航材料工艺. 1988,1:11-18
    [43]A. Luo, Development of matrix grain structures during the solidification of a Mg(AZ91)/SiCp composite[J]. Scripta Metall.Mater. 1994, 31(3):1253-1258.
    [44]蔡叶,苏华钦,镁基复合材料研究的回顾与展望[J].特种铸造及有色合金, 1996,3:17-19.
    [45]B. Inem, G. Pollard, Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles[J].Mater.Sci.,1993,28:4427-4434.
    [46]B. Inem, Crystallography of the second phase/SiC particles interface, nucleation of the second phase atβ-SiC and its effect on interfacial bonding, elastic properties and ductility of magnesium matrix composites[J].Mater.Sci.,1995,30:5763-5769.
    [47]V. Laurent, P. Jarry, G. Regazzoni,D. Apelian., Processing-microsructure relationships in compocast magnesium/SiC [J].Mater.Sci.,1992,27:4447-4459.
    [48]A. Luo, Heterogeneous nucleation and grain refinement in cast Mg(AZ91)/SiCp metal matrix composites[J].Can Metall Q.,1996,35:375-383.
    [49]蔡叶,苏华钦.SiCp/AZ80镁基复合材料的界面与断口特征.复合材料学报[J].1997, 14(2):76-79.
    [50]Cai Y, Tan M J, Shen G J et al. Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite[J].Mater.Sci.Eng., 2000,A282:232–239.
    [51]E.M. Klier, A. Mortensen, J.A. Cornie, and M.C. Flemings. Fabrication of Cast Particle-Reinforced Metals via Pressure Infiltration. J. Mater. Sci. 1999, 26:2519-2526
    [52]M.C. Gui, J.M. Han and P.Y Li. Fabrication and Characterization of Cast Magnesium Matrix Composites by Vacuum Stir Casting Process.[J]. Mater. Eng. Perform. 2004,12(2):128-13
    [53]D.L.Albright. Review of Magnesium Matrix Composites. Proceedings of 46th Annual World Magnesium Conference. Mclean. VA. 1989:33-44
    [54]Manoj BV,Kumar,Bikramjit Basu.The role of triboehemistry on fretting wear of Mg~SiC partieulate composites[J].composites,2005,A36:13-23.
    [55]Lim C. Y. H, Lim S. C, Gup taM. Wear behaviour of SiCp - reinforced magnesium matrix composites [ J ]. Wear, 2003, 255 (1-6) : 629 - 637.
    [56]Abachi P,Masoudi A,Purazrang K.Dry sliding wear behavior of SiCp/QE22 magnesium alloy matrix composites[J],Materials Science and Engineering,2006,435-426 (5): 653-657
    [57]徐成海,巴德纯,于博等.真空工程技术[M].化学工业出版社,2006
    [58]王秉全工业炉设计手册[M].机械工业出版社,1996
    [59]Flemings M C. Behavior of metal alloys in the semi-solid state.[J] Matall.Trans. 1991, 22B: 269-293
    [60]谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999
    [61]张永祥,陈洪汉.多孔介质溶质运移动力学[M].北京:地震出版社,2000
    [62]Suresh S, Mortensen A, Needleman A. Fundamentals of metal-marix composites[M]. UK: Butterworth-Heinemann, 1993
    [63]Brechet Y, Embury J D, Tao S, et al. Damage initiation in MMCs[J]. Acta Metall Mater, 1991, 39(8): 1781-1786
    [64]Lloyd D, Aspects of particle fracture in particulate reinforced MMCs[J]. Acta Metall Mater, 1991, 39(1): 59-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700