电沉积多元复合镀层制备工艺与组织性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用电沉积方法制备Ni-W-P-SiC多元复合镀层。通过正交试验方法和单因素试验研究了不同工艺参数对复合镀层性能的影响,研究了沉积液组成和工艺条件对Ni-W-P-SiC复合镀层成分、组织结构、表面形貌、摩擦磨损以及耐腐蚀性能的影响。利用金相显微镜、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)对镀层的形貌、组织结构和成分进行分析,并通过显微硬度测试、摩擦磨损试验、电化学试验测试了镀层的力学性能、摩擦磨损性能和耐腐蚀性能。
     实验得到最佳复合镀液组成和工艺条件为:Na2WO4'2H2O:50g/l, NiSO46H2O:50g/l,C6H8O7H2O:50g/l,NaH2PO2'H2O:10g/l,SiC:40g/l,表面活性剂OP-10:0.6 g/l,pH:7,T:50℃,Dk:4A/d m2,搅拌速度:200 r/min.
     在优化条件下制备的Ni-W-P-SiC复合镀层,具有较好的性能和组织结构。采用XRD分析镀态镀层的物相主要是非晶态;在400℃热处理后镀层主要为晶态物相:Ni.Ni3P.SiC.Ni5P2;采用EDS分析优化条件下获得的复合镀层的重量百分比为:Ni:78.44wt%,W:7.11wt%,P:11.45wt%,C:1.31wt%,Si:1.69wt%。
     Ni-W-P-SiC复合镀层具备较高的显微硬度和耐磨性。当SiC微粒添加量为60 g/l时,硬度和耐磨性能达到最高;随着热处理温度的升高,复合镀层硬度增加,在400℃热处理3小时显微硬度达到峰值1050HV。
     Ni-W-P-SiC复合镀层的耐蚀性优于Ni-W-P镀层和钢基体,当SiC添加量为60g/1时,复合镀层的耐蚀性能最佳。热处理后复合镀层的耐蚀性比镀态镀层显著提高,热处理温度为400℃时,耐蚀性能最佳。
     Ni-SiC.Ni-W-P.Ni-W-P-SiC的表面形貌差别不大,都为典型的胞状组织;在Ni-SiC和Ni-W-P-SiC复合镀层中,SiC颗粒弥散镶嵌于基体中。Ni-SiC镀层只存在Ni和SiC两种物质,且不存在晶态的变化;而Ni-W-P和Ni-W-P-SiC镀层的晶态会随温度的变化而转变,并有新相的析出,能明显强化Ni-W-P-SiC复合镀层的显微硬度。Ni-W-P-SiC复合镀层的耐磨性能和耐蚀性能优于Ni-W-P合金镀层和Ni-SiC镀层。
Ni-W-P-SiC composite coatings were prepared by electrodeposition. The influence parameters on the composite coatings were researched by orthogonal test method and single factor analysis method. The faults such as bath composition and operating condition on the composition, microstructure, morphology, wear & friction and corrosion resistance of Ni-W-P-SiC coatings were investigated. The metallurgical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM) and X-ray diffraction(XRD) were used to analysed the morphology, microstructure and composition of Ni-W-P-SiC composite coatings. The microhardness, friction wear and electrochemistry experiment were performed to analyse the mechanical, friction,wear behavior and corrosion resistance properties.
     The optimal electrodeposition conditions were:Na2WO4·2H2O:50g/l, NiSO4·6H2O:50g/l, C6H8O7·H2O:50g/l, NaH2PO2·H2O:10g/l, SiC:40g/l, OP-10:0.6g/l, pH:7,T:50℃,Dk:4A/d m2,stirring speed:200 r/min.
     The XRD show that the as-deposited composite coating has an amorphous form and transforms to crystalline after heat treatment at 400℃with the phases of Ni、SiC、Ni3P and Ni5P2.The content of the component analyzed by EDS was:Ni:78.44wt%, W:7.11wt%,P:11.45wt%,C:1.31wt%,Si:1.69wt%.
     The hardness and wear resistance of the Ni-W-P-SiC composite coating depends on the SiC content,and reach the best status at the content of 60g/l.(?) The coating has the highest hardness of about 1054HV when heat treated at 400℃for 3 hours.
     The corrosion resistance of Ni-W-P-SiC composite coatings is better than Ni-W-P coatings and steel substrate, and reachs the best corrosion resistance when the SiC addition is 60g/l. The corrosion resistance increases after heat treatment and has optimal performance when heat treated at 400℃.
     Ni-SiC、Ni-W-P、Ni-W-P-SiC coatings have little difference surface in morphology, and all have a typical cellular'structure; In Ni-SiC and Ni-W-P-SiC composite coating, SiC particle dispersion embedded in matrix. Ni-SiC coating exists only Ni and SiC two substances without crystalline changes. While in Ni-W-P and Ni-W-P-SiC coatings,crystalline changes with temperature changes and has new precipitation which can obviously enhance hardness of Ni-W-P-SiC composite coating.The wear resistance and corrosion resistance of Ni-W-P-SiC composite coating is better than Ni-W-P and Ni-SiC coating.
引文
[1]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2004:102-111,229~241,345~346.
    [2]郭鹤同,张三元.复合镀层[M].天津:天津大学出版社,1991:4~7.
    [3]郭忠诚,郭淑仙,朱晓云.电沉积多元复合镀层的研究现状[J].电镀与环保,2001,21(2):4-12.
    [4]徐龙堂.电刷镀镍基含纳米粉复合镀层性能结构和共沉积机理[D].北京工业大学博士学位论文.2000.5.20:7~10.
    [5]李卫东,周晓荣,左正忠,周运鸿.电沉积复合镀层的研究现状[J].电镀与涂饰,2000,19(5):44~49.
    [6]李蓁,韩兆芳.复合镀的特点与应用[J].山东农机,2003,(10):18~20.
    [7]徐龙堂.电刷镀镍基含纳米粉复合镀层性能、结构和共沉积机理[D].北京:北京工业大学,2000:12~14.
    [8]Guglielmi N. Kinetics of the deposition of inert partical from electrolytic bath[J].Journal of the electrochemical society.1972,119:1009~1012.
    [9]Hellern.K.Electrodeposition of composite layers[J].Finishing.1997,21(1):28~30.
    [10]Cheng G Z.Microstructure of electrodeposited Ni-W-P-SiC composite coatings [J].Transactions of nonferrousmetals society of china.1997,7(1):22~24.
    [11]TM.Harris,U.J.Landau.Thin Niekel Films by Hydrazine Autoeatalytic Reduetion.Eleetroehem.Soc.1993,140(1):81~89.
    [12]R.Seholder,A.A.Allg.Mechanisms of EleetrodePosition Metal Plating[J]. Eleetroehem.Soc,2000,130(3):1112~1115.
    [13]钟诚.复合电镀的研究进展[J].四川化工,2004,7(1):16~19.
    [14]元新华,彭峰,王红娟.纳米复合电镀研究进展[J].电镀与涂饰,2005,24(11):51~55.
    [15]苏立民,虞润林,吴玉道,等.复合镀技术及其在转子发动机缸体中的应用[J].腐蚀与防护,2005,26(2):67~68.
    [16]Y.Zhou,H.Zhang,B.Qian. Friction and wear properties of the co-deposited Ni-SiC nanocomposite coating[J]. Applied Surface Science,2007,253: 8335~8339.
    [17]F.Hu, K.C.Chan. Deposition behaviour and morpHology of Ni-SiC electro-composites under triangular waveform[J]. Applied Surface Science:243, (2005):251~258.
    [18]K.H.Hou,M.D.Ger,L.M.Wang,et al.The wear behaviour of electro-codeposited Ni-SiC composites [J].Wear,2002,253:994~1003.
    [19]M.R.Vae, S.K. Sadrnezhaad, L.Nikzad. Electrodeposition of Ni-SiC nano-composit coatings and evaluation of wear and corrosion resistance and electroplating characteristics [J].Colloids and Surfaces,2008,315:176~182.
    [20]吕柏林.耐磨复合镀层的研究进展[J].电镀与精饰,2007,29(1):27~31.
    [21]丁雨田,许广济,戴雷,等.铝合金表面电沉积Ni-SiC复合镀层的研究[J].机械工程学报,2003,39(1):128~132.
    [22]程森,王昆林,赵高敏.镍基纳米SiC复合镀层的摩擦学性能[J].清华大学学报,2002,42(4):516~519.
    [23]熊忠华,魏锡文,黄锋等.化学复合镀Ni-P-TiO2光催化降解次甲基蓝[J].材料开发与应用,2002.17(1):11~13.
    [24]Cheng D H,Xu W Y,Hua L Q,et al. Electrochemieal preparation & mechanical properties of amorpHous Nickel-SiC composites[J].Plating & Surface Finishing,1998,2:61-64.
    [25]Wu Yu cheng, Li Guanghai. Constitution of wear-resistant electroless niekel phosphorus composite with silicon carbide[J].Z f Metallkunde,2000,91(9):788~793.
    [26]Guo zhong-cheng,Yang xian-wan,Liu Hong-kang.Microstructure of Electrodeposited Ni-W-P-SiC composite coatings[J].Trans Nonferrous Met Soc China,1997,7(1):22~26.
    [27]邓纶浩,何柳,郭忠诚等.Ni-W-B-SiC复合电镀中B的沉积机理及其对镀层硬度的影响[J].材料保护,1999,32(6):3-5.
    [28]李华为.电镀工艺实验方法和技术[M].北京.科学出版社,2006:253~259.
    [29]丁汉哲.试验技术[M].北京.机械工业出版社,1982:67~72.
    [30]韩廷水,于爱兵等.表面活性剂对Ni-Si3N4复合镀层的影响[J].中国表面工程,2004,69(6):32~33.
    [31]Gyftou P,Stroumbouli M,Pavlatou E A,et al. Electrodeposition of Ni-SiC composite by pulse electrolysis[J].Trans IMF,2002,80 (3):88~91.
    [32]Wang Liping, Gao Yan, Xu Tao,et al. Wear Behavior of Electrodeposited Ni-P Functionally Gradient Deposits [J].Materials Chemistry and Physics,2006,99:96~97.
    [33]Peng X,Zhang Y,Zhao J,Wang F.Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles[J].Electrochimica Acta,2006,51(23):4922~4927.
    [34]Peng X, Ping D, Li Tl. Oxidation behavior of a Ni-La2O3 codeposited film on nickel [J]. Journal of the Electrochemical Society,1998,145(2):389~398.
    [35]孙家枢.金属的磨损[M].北京.冶金工业出版社:1992:152~159.
    [36]王凤娥.电沉积镍基合金的研究进展[J].稀有金属,1998,22(5):377-375.
    [37]黄子勋,吴纯素.电镀理论[M].北京.中国农业机械出版社,1982:54~55.
    [38]查全性著.电极过程动力学导论(第二版)[M].北京.科学出版社,1987:23~29
    [39]谢华,陈文哲,钱匡武.Ni-P-金刚石化学复合镀层的组织结构及性能[J].表面技术,2003,32(4):25~28.
    [40]杨文治.电化学基础[M].北京.北京大学出版社,1982:221-253.
    [41]刘秀晨,安成强.金属腐蚀学[M].北京.国防工业出版社,2002:2-6,299~327.
    [42]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004:244~246.
    [43]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987:361~366.
    [44]司云森,杨显万.电化学极化过程实验数据处理分析的研究[J].昆明理工大学学报,2003,28(1),164~167.
    [45]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,1994:42~45.
    [46]Allen J.Bard and Larry R. Faulner. Electrochemical Method, fundamentals and Applications[M].New York, John Wiley & Sons,1980:103~107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700