化学镀Ni-P-B4C复合镀层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni-P-B_4C复合镀层秉承化学镀Ni-P合金镀层良好的耐蚀性、高硬度和高耐磨性,又由于B_4C颗粒的弥散强化作用,将在机械零件耐磨表面有很好的应用前景。本文通过大量试验,确定了化学镀Ni-P-B_4C复合镀层的最佳镀液配方和工艺参数。用金相显微镜和X-射线衍射分析(XRD)研究了Ni-P-B_4C复合镀层的微观形貌和组织结构。采用动电位极化曲线的方法,研究了Ni-P-B_4C复合镀层的耐蚀性。采用氧化增重的方法研究了Ni-P-B_4C复合镀层的高温抗氧化性能。并研究测试了Ni-P-B_4C复合镀层的硬度和干摩擦磨损性能。在上述实验的基础上,研发出Ni-P-B_4C梯度镀层,并对Ni-P-B_4C梯度镀层的性能进行了初步探讨。得出如下结论:
     (1)化学镀Ni-P-B_4C复合镀层的最佳镀液配方和工艺参数如下:硫酸镍25~30 g/L、次亚磷酸钠25~30 g/L、柠檬酸钠10~20 g/L、无水乙酸钠10~20 g/L、添加剂A适量、添加剂B适量、B_4C 5~25 g/L、pH 3.1~5.6、施镀温度85~87℃、搅拌速度150~300 rpm、施镀时间2~4 h。实验表明,以上述镀液配方和工艺参数获得的Ni-P-B_4C复合镀层与基体结合力良好,B_4C颗粒弥散均匀地分布在Ni-P合金基质中;镀速每小时可达到37μm。
     (2) Ni-P-B_4C复合镀层在酸、碱、盐三种腐蚀介质中的耐蚀性从强到弱排序为:10%NaOH>3.5%NaCl>10%HCl。进一步研究表明,Ni-P-B_4C复合镀层的耐蚀性与镍磷比基本无关,而随B_4C颗粒含量、热处理温度及添加剂浓度的变化而变化。
     (3) Ni-P-B_4C复合镀层在抗高温氧化测试开始阶段,增重较多,但是随着时间的延长,Ni-P-B_4C复合镀层单位面积的增重不明显;且随着氧化温度的升高,Ni-P-B_4C复合镀层氧化增重呈直线增加;而随着B_4C颗粒含量的升高,Ni-P-B_4C复合镀层氧化增重呈直线减小。
     (4) Ni-P-B_4C复合镀层的硬度随着B_4C颗粒含量和热处理温度的升高而升高。复合了硬质相的Ni-P基化学镀Ni-P-B_4C复合镀层,随着B_4C颗粒含量的增加,摩擦系数减小,而磨损却增加。经热处理后,Ni-P-B_4C复合镀层的摩擦系数和磨损协同减小。
     (5)与Ni-P-B_4C均匀复合镀层相比,Ni-P-B_4C梯度镀层具有更优良的耐蚀性和干摩擦磨损性能。
Electroless Ni-P alloy coatings, well known of their excellent wear and corrosionresistance and high hardness, have many applications in industries. Codeposition anothermetallic or non-metallic elements or abrasive/lubricative particles or combination of them inbinary Ni-P matrix can greatly enhance their properties. In this paper, electroless Ni-P-B_4Ccomposite coatings were prepared on low carbon steel (Q235) sheets by adopting optimumplating process. Metallurgical microscope and X-ray diffraction (XRD) were used todetermine surface morphology and microstructure of the coatings. Corrosion resistancecharacterization of the coatings was enabled by means of potentiodynamic polarization curves.The oxidation resistance of the coatings was showed by their weight gains in a muffle furnace.Hardness and dry friction and wear properties of the coatings were also tested. On the groundof former experiments, electroless Ni-P-B_4C gradient coatings were studied elementarily. Themain results gained are as follows:
     (1) The perferable solution compositions and plating conditions for electroless Ni-P-B_4Ccomposite coatings are as follows: nickel sulfate 25~30 g/L, sodium hypophosphite 25~30g/L, sodium citrate 10~20 g/L, sodium acetate anhydrous 10~20 g/L, suitable amount ofadditive agent A, suitable amount of additive agent B, B_4C 5~25 g/L, pH 4.1~4.6,Temperature 85~87℃, Stirring rate, 150~300 rpm, Plating time 2~4 h. The results show thatthe adhesion between Ni-P-B_4C composite coating and substrate is qualified and a relativelyuniform concentration of particles can be seen along the cross section of electroless Ni-P-B_4Ccomposite coatings. The deposition rate is up to 37μm per-hour.
     (2) The order of corrosion resistance of Ni-P-B_4C composite coatings during theirexposure to acid, alkali and salt aqueous solution from strong to weak is as follows:10%NaOH> 3.5%NaCl> 10%HCl. Further studies show that, corrosion resistance of Ni-P-B_4C composite coatings is independent of nickel-phosphorus molar ratio, while varieswith the contents of B_4C particles, heat treatment and additive concentrations.
     (3) The weight gains of Ni-P-B_4C composite coatings are high during the initial stage ofthe high temperature oxidation test, but decrease with time going on. And the weight gains ofNi-P-B_4C composite coatings increase linearly with the oxidation temperature, while theweight gains of Ni-P-B_4C composite coatings decrease linearly with the increasing of contentsof B_4C particles.
     (4) The hardness of Ni-P-B_4C composite coatings increases with both the increasing ofcontents of B_4C particles and heat treatment temperature. With the increasing of contents ofB_4C particles, the friction coefficient of Ni-P-B_4C composite coatings decreases while thewear rate increases. After heat treatment, both the friction coefficient and wear rate ofNi-P-B_4C composite coatings reduce.
     (5) Compared with Ni-P-B_4C uniform composite coatings, Ni-P-B_4C gradient coatingshave higher corrosion resistance and dry friction and wear properties.
引文
[1]胡文彬等编.难镀基材的化学镀镍技术[M].北京:化学工业出版社, 2004
    [2]姜晓霞,沈伟.化学镀理论与实践[M].北京:国防工业出版社, 2000
    [3]周荣廷编著.化学镀镍的原理与工艺[M].北京:国防工业出版社, 1975
    [4]张新美.高磷酸性化学镀Ni-P合金的工艺研究[D].山东大学硕士学位论文, 2006.04
    [5]缪文桦.光亮剂对化学镀镍镀层的性能影响[D].江苏科技大学硕士学位论文,2005.01
    [6]刘志坚. Ni-P合金化学镀溶液的稳定性研究[D].昆明理工大学硕士学位论文,2002.03
    [7]胡信国. 21世纪化学镀镍技术[J].第五届全国化学镀会议论文集, 2000, 9: 2
    [8]胡信国.化学镀镍新技术及其在工业中的应用[J].电镀与精饰, 1998, 20(2):30-31
    [9]王柳斌.稀土对化学复合镀Ni-P-PTFE工艺以及镀层性能的影响[D].江南大学硕士学位论文, 2008.07
    [10]Ebdon P R. The Performance of Electroless Nickel/PTFE Composite[J]. Plating andSurface Finishing, 1988, 75(9): 65-68
    [11]王利.化学沉积纳米二硫化钼复合镀层的制备及性能研究[D].合肥工业大学硕士学位论文, 2007.04
    [12]万玖聪.纳米MoS2化学复合镀层的制备及耐蚀性能研究[D].合肥工业大学硕士学位论文, 2007.05
    [13]Nabeen K. Shrestha, Dambar B. Hamal, Tetsuo Saji. Composite plating of Ni-P-Al2O3 intwo steps and its anti-wear performance[J]. Surface and Coatings Technology, 2004, 183:247-253
    [14]ZHOU Guang-hong, DING Hong-yan, ZHOU Fei, ZHANG Yue. Structure andMechanical Properties of Ni-P-Nano Al2O3 Composite Coatings Synthesized byElectroless Plating[J]. JOURNAL OF IRON AND STEEL RESEARCH,INTERNATIONAL. 2008, 15(1): 65-69
    [15]S. Alirezaei, S.M. Monirvaghefi, M. Salehi, A. Saatchi. Wear behavior of Ni-P andNi-P-Al2O3 electroless coatings[J]. Wear, 2007, 262: 978-985
    [16]Z. Abdel Hamid, M.T. Abou Elkhair. Development of electroless nickel-phosphorouscomposite deposits for wear resistance of 6061 aluminum alloy[J]. Materials Letters, 2002,57: 720-726
    [17]Abdel Salam Hamdy, M.A. Shoeib, H. Hady, O.F. Abdel Salam. Corrosion behavior ofelectroless Ni-P alloy coatings containing tungsten or nano-scattered alumina composite in3.5% NaCl solution[J]. Surface & Coatings Technology, 2007, 202: 162-171
    [18]Yoram de Hazan, Dennis Werner, Markus Z’graggen, Michael Groteklaes, Thomas Graule.Homogeneous Ni-P/Al2O3 nanocomposite coatings from stable dispersions in electrolessnickel baths[J]. Journal of Colloid and Interface Science, 2008, 328: 103-109
    [19]Faryad Bigdeli, Saeed Reza Allahkaram. An investigation on corrosion resistance ofas-applied and heat treated Ni-P/nanoSiC coatings[J]. Materials and Design, 2009, 30:4450-4453
    [20]C.J. Lin, K.C. Chen, J.L. He. The cavitation erosion behavior of electroless Ni-P-SiCcomposite coating[J]. Wear, 2006, 261: 1390-1396
    [21]Shusheng Zhang, Kejiang Han, Lin Cheng. The effect of SiC particles added inelectroless Ni-P plating solution on the properties of composite coatings[J]. Surface &Coatings Technology, 2008, 202: 2807-2812
    [22]Wei-Long Liu, Shu-Hue Hsieh, Shen-Jenn Hwang, Ting-Kan Tsai, and Wen-Jauh Chen.Tribological properties of electroless Ni-P-SiC composite coatings in rolling/slidingcontact under boundary lubrication[J]. Journal of University of Science and TechnologyBeijing, 2007, 14(2): 167-172
    [23]Y.W. Song, D.Y. Shan, E.H. Han. High corrosion resistance of electroless compositeplating coatings on AZ91D magnesium alloys[J]. Electrochimica Acta, 2008, 53:2135-2143
    [24]P.-A. Gay, J.M. Limat, P.-A. Steinmann, J. Pagetti. Characterisation and mechanicalproperties of electroless NiP-ZrO2 coatings[J]. Surface & Coatings Technology, 2007, 202:1167-1171
    [25]J.N. Balaraju, T.S.N. Sankara Narayanan, S.K. Seshadri. Structure and phasetransformation behaviour of electroless Ni-P composite coatings[J]. Materials ResearchBulletin, 2006, 41: 847-860.
    [26] J.N. Balaraju, K.S. Rajam. Preparation and characterization of autocatalytic lowphosphorus nickel coatings containing submicron silicon nitride particles[J]. Journal ofAlloys and Compounds, 2008, 459: 311-319.
    [27] Q. Zhao, Y. Liu, E.W. Abel. Surface free energies of electroless Ni-P based compositecoatings[J]. Applied Surface Science, 2005, 240: 441-451.
    [28] Q. Zhao, Y. Liu, H. Müller-Steinhagen, G. Liu. Graded Ni-P-PTFE coatings and theirpotential applications[J]. Surface and Coatings Technology, 2002, 155: 279-284.
    [29] Q. Zhao. Effect of surface free energy of graded NI-P-PTFE coatings on bacterialadhesion[J]. Surface & Coatings Technology, 2004, 185: 199-204.
    [30] Ming-Der Ger, Bing Joe Hwang. Effect of surfactants on codeposition of PTFE particleswith electroless Ni-P coating[J]. Materials Chemistry and Physics, 2002, 76: 38-45.
    [31] J.T. Winowlin Jappes, B. Ramamoorthy, P. Kesavan Nair. Novel approaches on the studyof wear performance of electroless Ni-P/diamond composite deposites[J]. Journal ofmaterials processing technology, 2009, 209: 1004-1010.
    [32] Z. Abdel Hamid, S.A. El Badry, A. Abdel Aal. Electroless deposition and characterizationof Ni-P-WC composite alloys[J]. Surface & Coatings Technology, 2007, 201: 5948-5953.
    [33] Y.Y. Liu, J. Yu, H. Huang, B.H. Xu, X.L. Liu, Y. Gao, X.L. Dong. Synthesis andtribological behavior of electroless Ni-P-WC nanocomposite coatings[J]. Surface &Coatings Technology, 2007, 201: 7246-7251.
    [34] D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, P.Y. Zhang. Preparation and properties ofelectroless Ni-P-SiO2 composite coatings[J]. Applied Surface Science, 2009, 255:7051-7055
    [35] W.X. Chen, J.P. Tu, H.Y. Gan, Z.D. Xu, Q.G. Wang, J.Y. Lee, Z.L. Liu, X.B. Zhang.Electroless preparation and tribological properties of Ni-P-Carbon nanotube compositecoatings under lubricated condition[J]. Surface and Coatings Technology, 2002, 160:68-73.
    [36] L.Y. Wang, J.P. Tu, W.X. Chen, Y.C. Wang, X.K. Liu, Charls Olk, D.H. Cheng, X.B.Zhang. Friction and wear behavior of electroless Ni-based CNT composite coatings[J].Wear, 2003, 254: 1289-1293.
    [37] Zhi Yang, Hui Xu, Meng-Ke Li, Yan-Li Shi, Yi Huang, Hu-Lin Li. Preparation andproperties of Ni/P/single-walled carbon nanotubes composite coatings by means ofelectroless plating[J]. Thin Solid Films, 2004, 466: 86-91.
    [38] O.A. León, M.H. Staia, H.E. Hintermann. High temperature wear of an electrolessNi-P-BN (h) composite coating[J]. Surface and Coatings Technology, 2003, 163-164:578-584.
    [39] O.A. León, M.H. Staia, H.E. Hintermann. Wear mechanism of Ni-P-BN(h) compositeautocatalytic coatings[J]. Surface & Coatings Technology, 2005, 200: 1825-1829.
    [40] JIN Huiming, JIANG Shihang, ZHANG Linnan. Structural characterization andcorrosive property of Ni-P/CeO2 composite coating[J]. JOURNAL OF RARE EARTHS,2009, 27(1): 109-113.
    [41] S.M.A. Shibli, V.S. Dilimon. Effect of phosphorous content and TiO2-reinforcement onNi-P electroless plates for hydrogen evolution reaction[J]. International Journal ofHydrogen Energy, 2007, 32: 1694-1700.
    [42] A. Abdel Aal, Hanaa B. Hassan, M.A. Abdel Rahim. Nanostructured Ni-P-TiO2composite coatings for electrocatalytic oxidation of small organic molecules[J]. Journal ofElectroanalytical Chemistry, 2008, 619-620: 17-25.
    [43]F. C. Anson,黄慰曾编译.电化学和电分析化学[M].北京:北京大学出版社, 1983
    [44]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社, 2003
    [45]牛振江,杨防祖,姚士冰,周绍民.电沉积非晶态Fe-Mo合金的腐蚀电化学研究[J].材料保护, 1999, 32(10): 7-10
    [46]王风平,朱再明,李杰兰.材料保护实验[M].北京:化学工业出版社, 2005
    [47]曹楚南.腐蚀电化学原理(第二版)[M].北京:化学工业出版社, 2004
    [48]卢亚辉,黄燕滨,时小军.化学镀非晶态Ni-P镀层孔隙率及其结构研究[J].中国表面工程, 2002, 3: 40-45
    [49]张道礼,龚树萍,周东祥.不同络合剂对化学镀镍过程的影响[J].材料开发与应用,2008, 15(1): 5-8
    [50]蔡晓兰,张永奇,贺子凯.化学镀镍磷络合剂对磷含量的影响[J].表面技术, 2003,32(2): 28-30
    [51]姬玉林.酸性体系高磷镀层化学镀液镀速与寿命的研[D].山东大学硕士学位论文,2007.05
    [52]H.G. Ying, M. Yan, T.Y. Ma, J.M. Wu, L.Q. Yu. Effects of NH4F on the deposition rateand buffering capability of electroless Ni-P plating solution[J]. Surface & CoatingsTechnology, 2007, 202: 217-221
    [53]韩克平,方景礼.硫脲稳定化学镀镍的机理[J].电镀与精饰, 1996, 18(3): 11-14
    [54]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社, 2002
    [55]李洁明,祁新娥.统计学原理[M].上海:复旦大学出版社, 1999
    [56]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社, 2003
    [57]林中进.镍硼/微米/纳米复合化学镀工艺及其镀层性能的研究[D].广东工业大学硕士学位论文, 2006.06
    [58]郑瑞伦,李声泽,张家树. A-A1203纳米微粒化学复合镀层分形特性探讨[J].化学物理学报, 1997, 10(6): 529-534
    [59]刘美华,李秀珍等.传统抗磨添加剂与纳米粒子的抗磨减摩机理分析比较[J].合成润滑材料, 2002, 28(2): 19-22
    [60]冶银平,陈建敏等.含纳米金刚石的复合镍刷镀层的摩擦学特性[J].表面技术, 1996,25(2): 27-29
    [61]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社,2002
    [62]郑晓华,宋仁国,姚建华.镍-磷-纳米氧化铝化学镀层的激光热处理及其摩擦磨损性能[J].中国激光, 2008, 35(4): 610-614
    [63]I. Apachitei, J. Duszczyk. Autocatalytic nickel coatings on aluminum with improvedabrasive wear resistance[J]. Surf ace and Coatings Technology, 2000, 132(1): 89-98
    [64]B. Bozzini, M. Boniardi, A. Fanigliulo et al.. Tribological properties of electrolessNi-P/diamond composite films[J]. Materials Research Bulletin, 2001, 36(11): 1889-1902
    [65]张旭明. Ni-P梯度镀层及Ni-P/SiC梯度镀层研究[D].兰州理工大学硕士学位论文,2008.05
    [66]S. Suresh, A. Mortensen著;李守新等译.功能梯度材料基础:制备及热机械行为[M].北京:国防工业出版社, 2000
    [67]朱立群编著.功能膜层的电沉积理论与技术[M].北京:北京航空航天大学出版社,2005
    [68]T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni and S. Parthiban. Deposition ofelectroless Ni-P graded coatings and evaluation of their corrosion resistance[J]. Surfaceand Coatings Technology, 2006, 200(11): 3438-3445
    [69]王宏智,姚素薇,邢冬梅,张卫国. Ni-W纳米结构梯度镀层的制备、表征及热应变特性[J].物理化学学报, 2002, 18(11): 1029-1032
    [70]王立平,高燕,薛群基,徐洮.新型Ni-P功能梯度镀层的磨损特性研究[J]. 2005,25(4): 294-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700