基于模拟实验的轮轨弯道噪声及磨损机理与润滑控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速铁路和城市轨道交通的发展,我国迎来了铁路行业发展的新纪元。但与此同时,出现了运行质量下降、线路恶化、噪声增加等问题。特别是铁路弯道的尖啸噪声问题对乘客和周围居民造成严重的影响,与此同时铁路弯道磨损问题也变得越来越严重,直接影响到铁路运输成本甚至危及到列车行车安全。因此对铁路弯道尖啸噪声及磨损控制的研究具有重要的经济意义和指导作用。
     在弯道钢轨上涂抹润滑剂是近几十年来比较流行的减磨降噪措施,但现行使用的普通轮轨润滑剂的降噪效果并不明显。这类润滑剂虽然对钢轨的减磨起到了一定的作用,但涂油后轮轨间的摩擦系数下降,从而导致了列车牵引力的不足,给行车安全带来了威胁。本文基于高中庸教授提出的“摩擦伴生阻尼”和“微凸体油膜弹性支承效应”理论进行润滑剂的配制,摆脱了传统“负阻尼”理论的束缚,拓展了轮轨润滑剂配制的新思路。
     本文通过摩擦摆试验、模拟轮轨降噪试验及磨损试验,结合频谱及模态分析评价了自行配制的轮轨润滑剂在控制轮轨尖啸噪声及磨损的能力并分析了其减磨降噪机理;测定了轮轨润滑剂动静摩擦系数及其差值、粘度及表面张力,分析了这些物理特性对轮轨润滑剂减磨降噪能力的影响。得出以下主要结论:
     1.配制轮轨润滑剂时强调轮轨间较小的静—动摩擦系数差值和适宜的轮轨摩擦系数,而不必考虑的摩擦系数—相对滑动速度上升特性。试验中得出的润滑剂表现出较好地控制摩擦自激振动的能力进而有效地控制轮轨尖啸噪声。
     2.轮轨间的粘度及表面张力,影响着润滑剂的浸润性和吸附性,浸润性及吸附性越好“微凸体油膜弹性支承效应”就越明显,润滑剂降噪减磨的能力就越强。
     3.自行配制的润滑剂具有较好的“微凸体油膜弹性支承效应”,有助于提高轮轨抗磨能力,减少弯道轮轨的磨损。
With the development of High-speed railway and urban rail transit , our country will come to a new times in railway field. But at the same time we have to face some problems such as operation quality degradation,track quality deterioration and noise increase and so on. Especially the squeal in railway curve has the bad effect on passengers and residents , at the same time the railway wear become so serious that directly effect on the cost of rail transport and endanger the perform-safe of the train. So the research of curve scream noise and lubrication control has important economic viability and guiding function in this society.
     Lubricanting on the curve of rail is a popular measure to cut rail wear and reduce noise during the recent several ten years, but the result which is made by the ordinary rail lubricant is not obviously. Although it is useful for the noise-reducing of rail, friction coefficient between railwheels is decrease after lubricanting which lead the traction is not enough and threat the safety of train traffic. In this paper we prepare lubricant based the theories of ' friction damping associated' and 'elastic supporting effect of oil film micro-bulge' which is raised by Gao Zhongyong Professor, and it is get rid of the traditional Negative Damp theroy , which expand the preparation of the wheel -rail lubricant.
     Through the friction pendulum test, simulation wheel-rail noise reduction test and wear test in addition to spectrum and modal analysis ,this paper evaluate the ability which control the wheel-rail squeal and wear by self-preparation of wheel-rail lubricants and analysis the mechanism of the lubricant ability noise reducing and antiwear ; Through testing the coefficient of dynamic friction and static friction of wheel-rail lubricants and their’s differentials in addition to viscosity and surface tension, we analysis this physical property to influence wheel-rail lubricants' noise reducing and antiwear ability. We have reached the following conclusions:
     When configuration wheel-rail lubricants, we should emphasis on the little differentials between coefficient of dynamic friction and static friction which never consider the lubricants rising characteristic of relation between friction force and relative sliding speed . It can behave good ability of control friction self-excited vibration, moreover it can control the wheel-rail squeal effectively.
     Viscosity and surface tension between wheel-rails effects the lubricants’infiltrating and adsorptivity, the better infiltrating and adsorptivity lubricants has ,the more obviously elastic supporting effect of oil film on micro-bulge is , and the lubrican ability of noise reducing and antiwear is more better.
     The self-prepare lubricants have good elastic supporting effect of oil film on micro-bulge, it is useful for improving wheel-rail’s wear hardness and reducing the curve wheel-rail’s wear.
引文
[1]孙大新,高亮.高速铁路轮轨噪声及其控制技术[J].中国安全科学学报,2005,15 (11) :87-90.
    [2]陈向东.车辆制动摩擦磨损特性研究.硕士学位论文,大连:大连交通大学,2004.
    [3]唐青山,陈卫华.噪声对人体的影响[J].中国环境卫生,2001,4(2):33-35.
    [4]刘惠玲.环境噪声控制[M].黑龙江:哈尔滨工业大学出版社,2002,10.
    [5]刘启跃,王文健,周仲荣.高速与重载铁路钢轨损伤及预防技术差异研究[J],润滑与密封,2007,32 (11):11-14.
    [6]赵雪芹,钟雯,王文健等.高速重载线路钢轨损伤特性分析[J].润滑与密封,2007,32(10):100-102.
    [7]管天保.推广轮轨润滑技术,加强行车安全[J].上海铁道科技,2000(3):1-3.
    [8]徐志胜,翟婉明.轨道交通轮轨噪声机理分析[J].噪声与振动控制,2006(1):52~54.
    [9]刘扬,陈哲良,章新权.轮轨噪声的产生机理及其治理措施[J].石家庄铁道学院学报,2006 (3): 80~85.
    [10]雷晓燕,刘林芽,练松良.轨道交通噪声计算方法研究[J].噪声与振动控制,2006,1(2):49-59.
    [11]朱彬,唐进锋,潘自立.城市轨道交通噪声控制的探讨[J].山西建筑,2004,30(7):132-134.
    [12]刘建,李明章.车轮降噪阻尼器在北京地铁车辆上的应用[J].电力机车与城轨车辆,2003 (4): 27~29.
    [13] J.F.Brunel , P.Dufrenoy, M.Nait, J.L.Munoz, F.Demilly. Transient models for curve squeal noise [J]. Journal of sound and vibration ,2006(293):758~765.
    [14] D.T.Eadie, M.Sadie,M.Santoro,J.Kalousek. Railway noise and the effect of rail liquid friction modifiers: changes in sound and vibration spectral distributions in curves [J]. Wear,2005 (258): 1148~1155.
    [15] D.T.Eadie, M.Samtoro. Top-of-rail friction control for curve noise mitigation and corrugation rate reduction [J]. Journal of sound and vibration,2006(293) :747-757.
    [16] D.T.Eadie,M.Santoro,W.Powell. Local control of noise and vibration with KELTRACK friction modifer and Protector trackside application :an integrated solution [J]. Journal of sound and vibration ,2003(267):761~772
    [17] Masao, Tomeoka,Naoji, Kabe,Masuhisa,Tamimoto etc. Friction control between wheel and rail by means of on board lubrication [J].Wear ,2002(253): 124~129.
    [18]陈光雄,石心余.摩擦力一相对滑动速度关系的实验研究[J].润滑与密封,2002(3):44-45.
    [19]高中庸.钢轨矫直时的噪声防治[J].钢铁,1988(9):59~62.
    [20]庞新维,高中庸,农素玉.摩擦副相互作用阻尼动力学特性初探[J].机械设计与制造, 2007,11(11):22-24.
    [21]高中庸,庞新维,黄秋凤等.一种验证摩擦伴生阻尼的试验装置[J].装备制造技术,2006,4:4-5.
    [22]楼少俊,贡照华,夏越.关于曲线超高的设置问题[J].铁路建筑,2001(6):7~9.
    [23]张立民,张卫华.轮轨波磨形成机理与再现试验[J].西南交通大学学报, 2005(8):435~439.
    [24]张波,刘启跃.轮轨磨损的试验研究[J].机械,2001(4):20~24.
    [25]张军,仲政.机车车辆轮轨接触问题的数值模拟[J].同济大学学报,2006(9):1231 ~1236.
    [26]封全保,孙守光,王开云.减轻列车轮轨横向动力作用的技术措施[J].铁道学报,2007 (6): 40~44.
    [27] D. J. THOMPSON , C. J. C. JONES. A REVIEW OF THE MODELLING OF WHEEL/RAIL NOISE GENERATION [J] .Journal of Sound and vibration ,2000 (3):519~536.
    [28] MARIA A. HECKL ,X. Y. HUANG..CURVE SQUEAL OF TRAIN WHEELS, PART 3:ACTIVE CONTROL[J] .Journal of Sound and Vibration ,2000 (3): 709~735.
    [29] N.Vineent,J.R.Koch,H. Cholle,J.Y.Guerder.Curve squeal of urban rolling stock一Part l : State of the art and field measurements [J]. Journal of Sound and Vibration,2006,293:691一700.
    [30]陈光雄.金属往复滑动摩擦噪声的研究.博士学位论文,成都:西南交通大学,2002年.
    [31]张伟,郭俊,刘启跃.钢轨滚动接触疲劳研究[J].润滑与密封,2005(11):195~199.
    [32]张学华,宗清泉,郭满鸿等.轮轨异常磨耗成因分析[J].现代城市轨道交通,2006,4:56-58.
    [33]王惠银,步启军.轮轨关系与磨耗[J].铁道建筑,2007,1:82-83.
    [34]王家玉,王顺福.机车磨耗型踏面与踏面剥离[J].铁道运营技术,2004,4(10):26-28.
    [35]圣小珍,雷晓燕.欧洲铁路轮轨噪声研究方法和进展[J].华东交通大学学报,2001(9):6~10.
    [36]顾建飞,林峰,钱国桢.道轨的消声结构与试验[J].噪声与振动控制,2006,(2):55~56.
    [37]陈刚,焦可成.用阻尼材料降低提速列车轮轨噪声的探讨[J] .铁道劳动安全卫生与环保,2001,4:24~244 .
    [38] N.VINCENT,P.BOUVET. THEORETICAL OPTIMIZATION OF TRACK COMPONENTS TO REDUCE ROLLING NOISE [J]. Journal of Sound and. Vibration,1996 (3) : 161~171.
    [39] G.A. Efthimeros, D.I. Photeinos, Z.G. Diamantis. Vibration / noise optimization of a FEM railway wheel model [J]. Engineering Computations,2002(8): 92~931.
    [40] B. Schulte-Werning,M. Beier, K.G. Degen, D. Stiebel. Research on noise and vibration reduction at DB to improve the environmental friendliness of railway traffic .Journal of Sound and Vibration ,2006(293), 1058~1069.
    [41] I.Y.Shevtso.铁道车辆车轮外形的优化设计[J].国外铁道车辆,2007,44(7):24-29.
    [42]秦国栋,刘志明.轮轨润滑技术的发展[J].电力机车与城轨车辆,2003(6):7~9.
    [43]萧育光.轮轨磨损与固体润滑[J].机车电传动,1996(7):44~46.
    [44] B.C .qEPHB(俄).轮轨润滑技术新进展[J].国外铁道车辆,2000,37(5).
    [45]郑箭锋,田明,金郁静.HB型轮轨润滑装置的改进[J].机车车辆工艺,2002(6):36~42
    [46] S.Beret,G.R.Trabert.铁路轮轨润滑效果评价[J].铁路建筑,1993(12):8~11.
    [47]管天保.推广轮轨润滑技术,加强行车安全[J].上海铁道科技,2000(3):1~3.
    [48]王卫东,曾宇清,于卫东.轮轨润滑对脱轨安全性及车桥耦合振动的影响[J].中国铁道学, 2001, 1:40~46.
    [49]陈光雄,周仲荣.金属往复滑动摩擦振动形成机理的实验研究和分析[J].摩擦学学报,2001,6(11):425-428.
    [50]高中庸.涂油降噪理论与实践[M].北京:科学出版社,2009,6.
    [51] Ibrahim R A. .Friction induced vibration.chatter,squea1.And chaos :Part 1: Mechanics of contact and friction [J]. Applied Mechanics Review,1994,47(7): 209~226.
    [52] J.T.NELSON .RECENT DEVELOPMENTS IN GROUND-BORNE NOISE AND VIBRATION CONTROL[J]. Journal of Sound and Vibration 1996,193(1):367-376.
    [53] B Hemsworth. Recent developments in wheel/rail noise research[J].Journal of Sound andVibration ,1979,66(1):297~310.
    [54]高中庸.机床导轨爬行问题研究.硕士论文.昆明工学院,1981.
    [55]金永昕,施高义.摩擦磨损原理[M].浙江:浙江大学出版社,1986.
    [56]李冰.微凸体油膜弹性支承效应的试验研究,硕士论文.华中科技大学,2006.
    [57] Hemida E B,Cieri L J,Extended capabilities of an inverted to torsion pendulum[J] , Polymer Testing,2006,25:276-279.
    [58] Ovseyevich A I. The stability of an inverted pendulum when there are rapid random oscillations of the suspension point[J] . Journal of Applied Mathematics and Mechanics,2006,70:762-768.
    [59] J.Y.Guerder.Curve squeal of urban rolling stork Part2 : Parametric study on a l/4 scale test rig.Journal of Sound and Vibration[J] ,2006,293:701一709.
    [60] MARIA A. HECKL , X. Y. HUANG. CURVE SQUEAL OF TRAIN WHEELS, PART 1: MATHEMATICAL MODEL FOR ITS GENERATION[J] .Journal of Sound and Vibration 2000,229 (3): 669~693.
    [61]刘迎曦,张军.轮轨两点接触的有限元分析[J].机械工程学报,2005(11):121 ~126.
    [62]徐庚保.相似论浅说[J].计算机仿真,2000,17(5):1-4
    [63]黄炎编著.局部应力及其应用[M].机械工业出版社.1986.10:134~172.
    [64] Rhee S K,Tsang P H S,Wang Y S.Friction-inducednoise and vibration of disc brakes [J]. Wear, 1989 ,l33:39-45.
    [65] (日)大野·薰.轮轨间滚动摩擦及其控制[J].国外铁道车辆,2001(1):36~40.
    [66] (日)伴巧等.对轮轨润滑剂粘着特性的评价[J].国外内燃机车,2002,366(6):7-10.
    [67]中国机械工程学会摩擦学学会《润滑工程》编写组.润滑工程.北京:机械工业出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700