用户名: 密码: 验证码:
Wnt通路抑制剂FrpHE和DKK-1在肿瘤细胞中的诱导表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 Wn信号传导途径与肿瘤有着密切的关系,其通路的异常活化参与人类多种癌症的发病过程,因此,抑制或阻断Wnt通路的异常活化有望成为抗肿瘤治疗的新靶点。尽管目前已发现由细胞内分泌的内源性Wnt通路抑制剂能够拮抗Wnt通路,如FrpHE(frizzled-related protein)、DKK-1(Dickkopf-1)等,但有关这些内源性Wnt通路抑制剂的调控机理尚不清楚。本课题的目的在于研究外源性因素对Wnt通路抑制剂FrpHE和DKK-1的诱导表达,我们选择抗癌药物p53及化疗药阿霉素、羟喜树碱、顺铂作为外源性诱导剂,以期弄清Wnt通路及其抑制剂FrpHE和DKK-1是否能够被p53和化疗药这两类药物所调节。
     方法 将外源性p53基因导入到p53缺失的人肝癌细胞株(Hep3B)中,通过流式细胞术和RT-PCR观察p53对Wnt通路及抑制剂FrpHE和DKK-1的作用。利用反义寡核苷酸(oligodeoxy nucleotide,ODN)将p53反义ODN导入到人肝癌HepG2(含野生型p53)和人大肠癌Lovo(含野生型p53)细胞株中,观察p53表达受阻后对Wnt通路及FrpHE、DKK-1表达的影响,以进一步明确p53的调节作用。并且在不同p53状态的人肝癌、大肠癌、神经胶质瘤细胞株中(U251,p53突变)加入化疗药物后,以RT-PCR技术检测Wnt通路抑制剂FrpHE mRNA和DKK-1 mRNA的表达水平,明确化疗药对Wnt通路抑制剂FrpHE和DKK-1的调节作用。
     结果 1.将转染剂量为5pfu/cell时应用流式细胞术观察Adp53的转基因情况,结果表明Adp53转染24h、48h后96%以上的
    
    第一军医大学博士研究生学位论灰
    细胞p53表达呈阳性,平均荧光量增加了约50倍,表明p53基因
    转染成功。
     2.盯一PeR检测结果(l)p53对F印HE、DKK一1的
     表达具有诱导作用:通过加入外源性p53检测结果显示:FrpHE
     和DKK一1在人肝癌阴性细胞株(HeP3B,p53缺失)中转染Adp53
     后16h、20h、24h、28h、32h、36h、4Oh时,InRNA表达水平20h
     起明显增加,32h最高,36h、40h时逐渐回落,但仍高于对照组
     水平。FrpHE和DKK一1在人肝癌阴性细胞株转染Adp53剂量为
     0 .ospfu/eell,0.spfu/eell,spfu/eell,50pfu/eell时,F印HE
     mRNA表达水平在转染剂量为SPfu/cen时最强,在SOPfu/cen
     时逐渐回落,但仍高于对照水平;DKK一lmRNA表达水平在转染剂
     量为0.05pfu/eell时明显增加,在50pfu/eell时最强。
     (2)阻断肿瘤细胞内正常p53的表达,可引起抑制剂FrPHE、
     DKK一l表达的下调:通过加入反以寡核昔酸检测结果显示:FrpHE
     mRNA表达水平在人肝癌p53阳性细胞株(HePG2)中24h时表达水
     平降低,48h和72h时呈现显著的抑制作用,在人大肠癌p53阳
     性细胞株(Lovo)中未有表达;DKK一lmRNA表达水平在人肝
     癌p53阳性细胞株(HePG2)和大肠癌p53阳性细胞株中24h时表
     达水平降低,48h和72h呈现显著的抑制作用;
     (3)化疗药对抑制剂FrpHE、DKK一1的表达具有上调作用,
     加入化疗药(经喜树碱、阿霉素、顺铂)结果显示:FrpHE mRNA
     表达水平在人肝癌细胞株(HePGZ,HeP3B)中与对照组相比表达
     水平增加,在人大肠癌和神经胶质瘤细胞中没有表达;DKK一
     lmRNA表达水平在人肝癌(HePGZ,HeP3B,)、大肠癌细胞、神
     经胶质瘤细胞株中与对照组相比表达水平增加;
    
    第一军医大学博士研究健李位伦失
     3.p53对Wnt通路关键因子p一catenin具有明显抑
    制作用,流式细胞术检测结果显示:转染Adp53后,在肝癌
     (Hep3B)细胞中Wnt通路关键靶基因p一catenin蛋白的表达水
    平下降;加入p53反义。DN抑制p53表达后,在肝癌(HePG2)
    和大肠癌(Lovo)细胞中p53基因的表达水平明显下降,p
    一catenin蛋白的表达升高;加入化疗药后,在不同的肿瘤细胞
    中,p一catenin蛋白的表达下降;
    结论抑癌基因p53和化疗药经喜树碱、顺铂、阿霉素能够诱导
    Wnt通路抑制剂FrPHE和DKK一的表达,进而产生抑制Wnt通路
    的作用。抑制剂FrpHE在人大肠癌株(Lovo)和神经胶质瘤细胞
    株(u251)种没有表达。证明FrpHE在某些肿瘤细胞中存在缺失现
    象。
Objective Wnt signaling pathway is closely related to tumor, its inappropriate activation involving in episode process of human multicancer, therefore, it may be a new target to restrain or block its inappropriate activation for anticancer therapies. Endogenous antagonist has been found at present to be able to antagonize Wnt signaling pathway, but endogenous regulated mechanism remains yet unclear. This study aims at the expression of Wnt signaling pathway inhibitor FrpHE and DKK-1 induced by ectogenous factor. In the study, we used p53, adriamycin, hydrocamptothecin, cisplatin as the ectogenous factors to detect their capability of regulating wnt signaling pathway as well as its inhabitors FrpHE, and DKK-1.
    Methods Human hepatocarcinom cells lines (HepSB) were transfected with an ectogenesis p53 (Adp53) to observe the action of p53 on wnt signaling pathway by fluorescence-activated cell sorting (FACS) and RT-PCR.HepG2 and Lovo cell lines (wild p53) were transfected with p53 antisense ODN to detect the expression of wnt signaling pathway and wnt inhibitor FrpHE and DKK-1 after p53 were blocked. In various p53 status cell lines Hep3B,Lovo,U251 cells were treated with chemoagents, FrpHE, DKK-1 gene mRNA expression levels were detected by RT-PCR.
    Results l.The study revealed that p53 protein expression emerged in more than 96% of Hep3B cells 24h and 48h after Adp53
    
    
    transfection, with its average fluorescent intensity increased by 50 times by FACS.
    2. The RT-PCR results: (1) FrpHE and DKK-1 were induced by p53. Our results demonstrated obvious increase of mRNA 20h after the Hep3B cells were transfected with ectogenetic Adp53, FrpHE and DKK-1 mRNA, the peak 32h after the transfection and then decline expression (which, however was higher than that in the controls) 36, 40h after the transfection. On the other hand, FrpHE mRNA had the highest expression when FrpHE and DKK-1 was transfected with Adp53 at the dose of 5pfu/cell and the expression began to decline at the dosage of 50pfu/cell even though it was higher than that in the control group, while DKK-1 mRNA had the apparently growing express at the dose of 0.05pfu/cell and then the highest expression at the dose of 50pfu/cell.
    (2) FrpHE and DKK-1 were down-regulated by blocked normal p53 in tumor cells. The results demonstrated that FrpHE mRNA expression in HepG2 cells was declined in 24h and remained markedly unchanged in 48h and 72h, and it was not expressed in Lovo cells, though. DKK-1 mRNA expressions in HepG2, Lovo cells were declined in 24h and remained markedly unchanged in 48h and 72h in 48h and 72h.
    (3) FrpHE and DKK-1 were up-regulated by chemoagents. Our study showed that FrpHE mRNA expressions in HepG2 and Hep3B cells were increased compared with the control groups, but nil in Lovo and U251 cells. DKK-1 mRNA expressions in HepG2, Hep3B, Lovo and U251 cells were increased compare with control groups.
    
    3. 3 -catenin, the key factor of Wnt signaling pathway was sharply inhibited by p53. The FACS results demonstrated that the expression of P -catenin was declined in Hep3B cells after transfection with Adp53. (3 -catenin expression hoisted but p53 gene expression was declined in HepG2 and Lovo cells after transfection with antisense p53 ODN. p53 expression hoisted in HepG2, Lovo and U251 cells by chemotherapy.
    Conclusion Wnt signaling pathway inhibitor FrpHE and DKK-1, induced by anticancer p53 and chemoagents like adriamycin, hydroxycamptothecin, cisplatin, antagonized Wnt signaling pathway. No inhibitor FrpHE was expressed in Lovo and U251, indicating it varied with some tumor cells inhibitor FrpHE.
引文
[1]. Uckun FM,Mao C. Tryosine kinases as new molecular targets in treatment of inflamtory disordes and leukemia. [J] .Curr pharm Des.2004; 10(10): 1083-1091
    [2]. Bogoyevitch MA,Boehm I,Oakley A ,et al. Targetibg the JNK MAPK cascade for inhibition: basic science and therapeutic potential.[J]. Biochim Biophys Acta. 2004; 1697(1-2):89-101
    [3]. Nnusse R, Brown A, Papkoff J, et al. A new nomenclature for int-1 and related genes:the wnt gene family.[J]. Cell. 1991 ;64:231-232
    [4]. Matthew J, Smalley, Trevor C,et al. Wnt signaling in mammalian development and cancer.[J].Cancer and Metastasis Reviews. 1999; 18 :215-230
    [5]. Morin PJ, Sparks AB, Korinek V,et al. Activation of β -catenin-Tcf signaling in colon cancer by mutation in β-catenin or Apc.[J].Science 1997;275:1787-1790
    [6]. Waltzer L,Bienz M. The control of β--catenin and TCF during embryonic development and cancer.[J].Cancer and Metastasis Reviews 1999; 18:231-246
    [7]. Tetsu O, Mccormick F, β-catenin regulates expression of cyclin D1 in colon carcinoma cells. [J] .Nature. 1999;398:422-426
    [8]. Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates. [J]. Curt opin Genet Dev.2002; 11(5):547-553
    [9]. Mao B, Wu W, Davidson G, et al. Kremen proteins are Dickkopf receptors that regulate wnt/β-catenin signaling.[J].Nature.2002;417(6889):664-667
    
    
    [10]. Kishida S,Yamamoto H,Ikeda S,et al. Axin, a negative regulator of the Wnt signaling pathway,directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin.[J].Biol Chem. 1998;273:1082-1086
    [11]. Vider BZ,Zimber A, Chastre E,et al. Evidence for the involvement of the wnt 2 gene in human colorectal cancer. [J].Oncogene. 1996; 12:153-158
    [12]. A. Kolligs FT, Bommer G, Goke B. Wnt/beta/tcf signaling: a critical pathway in gastrointestinal tumorigenesis.[J].Digestion.2002;66(3):131-144
    [13]. Morin PJ. Beta-catenin and cancer. [J].Bioessays. 1999;21(12):1021-1030
    [14]. Iozzo RV, Eichstetter I,Danielson KG. Aberrant expression of the growth factor wnt-5A in human malignancy.[J].Can Res.1995;5(16):3495-3499
    [15]. Andrei G, Wei W, Hajo D, et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. [J].Nature. 1998;391 (6665):357-362
    [16]. Vider BI, Zimber A. Evidence for the involvement of Wnt2 in human colorectal cancer.[J]. Oncogene. 1996; 12:153-158
    [17]. Dale TC, Weber-hall SJ, Smith K, et al. Compartment switching of wnt-2 expression in human breast tumors.[J].Can Res. 1996;56(19):4320-4323
    [18]. Polakis P. Wnt signaling and cancer.[J].Genes Dev.2000; 14:1837-1851
    
    
    [19]. Yu X, Riese J, Eresh s, et al. Transcriptional repression due to high levels of Wingless signaling.[J].EMBO J. 1998; 17:7021-7032
    [20]. Matthew J,Smalley,Trevor CD. Wnt signaling in mammalian development and cancer.[J].Cancer and Metastasis Reviews. 1999; 18:215-230
    [21]. Moon RT, Bowerman B ,Boutros M ,et al. The promise and perils of wnt signaling through β-catenin.[J].Science.2002;296(5573):1644-1646
    [22]. Sparks AB,Morin PJ,Vogelstein B, et al. Mutational analysis of the APC/β—catenin/Tcf pathway in colorectal cancer.[J].Cancer Res.1998;58(15):1130-1134
    [23]. Kimura Y, Shiozaki H, Doki Y, et al. Cytoplasmic beta-catenin in esophageal cancer.[J].Int J Cancer. 1999;84(2):174-178
    [24]. Samowitz WS,powers MD,Spirio LN,et al. Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. [J]. Cancer Res. 1999;59(7):1442-1444
    [25]. Utsunomiya T,Doki Y,Takemoto H,et al. Correlation of beta-catenin and cyclin D1 expression in colon cancers.[J].Oncology.2001;61(3):226-223
    [26]. B'ankfalvi A,Terpe HJ,Breukelmann D,et al.Immunophenotypic and prognostic analysis of E-cadherin and beta-catenin expression during breast carcinogenesis and tumor progression:a comparative study with CD44. [J].Histopathology, 1999; 34(1):25-37
    [27]. Polakis P.The oncogenic activation of β--catenin.[J]. Curr Opin Genet Dev, 1999;9:15-21
    
    
    [28]. Utsunomiya T, Doki Y, Takemoto H, et al. Correlation of beta-catenin and D1 expression in colon cancers.[J].Oncology.2001;61(3):223-226
    [29]. Korinek V,Barker N,Morin PJ,et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-colon carinoma.[J].Science. 1997 ;275(21):1784-1788
    [30]. Hinck L, W.James N, Nelson J,et al. Wnt-1 Modulates cell-cell Adhesion in mammalian cells by stabilizing β--catenin Binding to the cell adhesion protein cadherin. [J].The Journal of Cell Biology. 1994; 124(5):729-741
    [31]. Galbiati F, Volonte D, Brown AM, et al. Caveolin-1 expression inhibits wnt/β -catenin/lef-1 signaling recruiting β-catenin to caveolae membrane domains.[J].The Journal of Biological Chemistry.2000;275 (28):23366-23377
    [32]. Peifei M. Beta-catenin as oncogene:the smoking gun.[J].Science. 1997;275:1752-1753
    [33]. Wang J, Shou J, Chen X. Dickkopf-1,an inhibitor of the wnt signaling pathway, is induced by p53. [J].Oncogene.2000; 19(14): 1843-1848
    [34]. Kawano Y,Kypta R, Secreted antagonist of the Wnt signaling pathway.[J].Journal of Cell Science. 2003; 116(13):2627-2634
    [35]. Uren A, Reichsman F, Anest V, et al. Secreted Frizzled-related protein-1 binds directly to wingless and is a biphasic modulator of wnt signaling.[J].The Journal of Biological chemistry.2000;275(6):4374-4382
    [36]. Roth W,Wild-Bode C,Platten M,et al.Secreted frizzled-related
    
    proteins inhibit motility and promotegrowth of human malignant glioma cells. [J].Oncogene. 2001 ;9(37):4210-4220
    [37]. Valery E,Krupnik A,John D,et al. Functional and structural diversity of the human dickkopf gene family. [J]. Gene. 1999;238:301-313
    [38]. Fedi P, Bafico A, Soria AN,et al Isolation and biochemical characterization of the human DKK-1 homologue, a novel inhibitor of mammalian wnt signaling. [J].The Journal of biological chemistry. 1999; 274(2): 19465-194721
    [39]. Mao B, Wu W, Li Y, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. [J].Nature. 2001 ;411:321-325
    [40]. Wu W, Glinka A, Delius H ,et al. Mutual antagonism between dickkopfl and dickkopf2 regulates Wnt/beta-catenin signaling. [J].Curr.Biol.2000; 10:1611-1614
    [41]. Glinka A, Wu W, Delius H, et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction.[J]. Nature.1998;391(6665):357-362
    [42]. Sadot E, Geiger B, Oren M, et al. Down-regulation ofβ -catenin by activatedp53. [J]. Molecular AND Cellular iology.2001 ;21 (20):6768-6781
    [43]. Chen YW, Jeng YM, Yeh SH, et al. p53 gene and Wnt signaling in benign neoplasms:beta-catenin mutations in hepatic adenoma but not in focal nodular hyperplasia. [J].Hepatology.2002;36(1):927-935
    [44]. Horvath LG, Henshall SM, Kench JG, et al. Membranous expression of secreted frizzled-related protein 4 predicts for good prognosis in localized prostate cancer and inhibits PC3 cellular
    
    proliferation in vitro. [J].Clin Cancer Res.2004; 10(2):615-625
    [45]. Theresa B,Theodore A, Ann E, et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. [J].J Clin.Invest .2003; 112:785-794
    [46]. Abu G, Comella N, Tomita Y, et al. Differential expression of frpHE:a novel human stromal protein of the secreted frizzled gene family,during the endometrial cycle and malignancy.[J].Lab Invest. 1999;79(4):439-447
    [47]. Heller RS,Dichmann DS,Jensen J,et al. Expression patterns of wnts,frizzleds,sfrps, and misexpression in transgenic mice suggesting a role for wnts in pancreas and foregut pattern formation.[J].Dev Dyn. 2002;225(3):260-270
    [48]. Berndt T, Craig TA, Bowe AE, et al. Secreted frizzled-related protein 4 is a potent tumor-derived phospaturic agent.[J].J Clin Invest,2003; 112(5):785-794
    [49]. Hsieh M,Mulders SM,Friis RR, et al. Expression and localization of secreted frizzled-related protein-4 in the rodent ovary:evidence for selective up-regulation in luteinized granulose cells.[J].Endocrinology. 2003;144(10):4597-4606
    [50]. TulacS,Nayak NR, Kao LC,etal. Indentification,characterization,and regulation of the canonical Wnt signaling pathway in human endometrium. [J] .J Clin Endocrinol Metab,2003;88(8):3860-3866
    [51]. Lacher MD,Siegenthaler A,Jager R, et al Role of DDC-4/sFRP-4,a secreted frizzled protein, at the onset of apoptosis in mammary involution. [J]. Cell Death Differ,2003; 10(5):528-538
    
    
    [52]. Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway.[J].Journal of cell science .2003,116;2627-2634
    [53]. Michael S, Jacob Z, Moshe O, et al .PML is a target gene of β-catenin and Plakoglobin, and coactivates β-catenin-mediated transcription. [J].Cancer Research.2003 ;62(20):5947-5964
    [54]. Polakis P.The oncogenic activation of β--catenin.[J]. Curr Opin Genet Dev, 1999;9:15-21
    [55]. Barker N,Clevers H. Catenins, Wnt signaling and cancer. [J].Biocessays,2000;22(11):961-965
    [56]. Matsuhashi N,Matsuo A,kawaguchi Y,et al. Relation between p53 expression of human colon cancer cell lines and induction of apoptosis by anticancer drugs.[J].Gan To Kagaku Ryoho.2003;30(11): 1855-1858
    [57]. Piyajit W, Gautam N, Bijur, et al. Direct,activating interaction between glycogen synthase kinase-3 β and p53 after DNA damage. [J] .Biochemistry.2002;99(12):7951-7955
    [58]. Beck JF,Brugger D,Brischwein K, et al.Anticancer drug-mediated induction of multidrug resistance-associated genes and protein kinase C isozymes in the T-lymphoblastoid cell line ccrf-cem and in blasts from patients with acute lymphblastic leukemias.[J].Jpn J Cancer Res,2001 ;92(8):896-903
    [59]. Hofmann J. Protein kinase C isozymes as potential targets for anticancer therapy. [J]. Curr Cancer Drug Targets,2004;4(2): 125-146
    [60]. Hu Y,BallyM,Dragowska WH,et al.Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase enhances chemo-therapeutic effects on H460 human non-small cell lung cancer cells
    
    through activation of apoptosis.[J].Mol Cancer Ther.2003 ;2(7):641-649
    [61]. Honore S,Kamath K, Braguer D,et al. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. [J].Mol Cancer Ther,2003;2(12):1303-1311
    [62]. Gershlick A, De Scheerder I, Chevalier B, et al. Inhibition of restenosis with a paclitaxel-eluting,polymer-free coronary stent:the European evaluation of pachi Taxel Eluting Stent trial.[J].Circulation,2004; 109(4):487-493
    [63]. Honore S,Kamath K,Braguer D,et al. Supression of microtubule dtnamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation.[J].Mol Cancer Ther,2003;2(12):1303-1311
    [64]. Kumar R. New insights into phosphate homeostasis:fibroblast growth factor 23 and frizzled-related protein-4 are phosphaturic factors derived from tumors associated with osteomalacia [J] 2002; 11:547-553
    [65]. Sen M,Lauterbach K, EI-Gabalawy H,et al Expression and function of wingless and frizzled homologs in rheumatoid arthritis. [J].Proc Natl Acad Sci USA,2000;97:2791-2796

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700