基于壳聚糖的纳米载体系统的构建及其肿瘤靶向性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症在当今社会已经成为人类健康的头号杀手之一,其治疗的关键在于靶向性。利用纳米技术结合受体-配体介导的肿瘤主动靶向技术,以天然无毒可降解的生物材料为载体材料用于包载抗癌药物,是一种治疗癌症的有效途径。
     利用恶性肿瘤细胞较正常细胞过度表达葡萄糖转运蛋白1(GLUT1)的特点,将其配体葡萄糖以丁二酸为连接臂共价连接在水溶性壳聚糖(WSC)分子链上,得到新型壳聚糖衍生物,胺糖化壳聚糖(GSC)。红外、核磁检测证实了2-(3-羧基-1-丙酰氨基)-2-脱氧-D-葡萄糖(GS)侧链成功连接在壳聚糖上,元素分析结果表明GSC的侧链取代度为9.27%。热重分析结果表明侧链的引入,破坏了壳聚糖分子的刚性结构,削弱了分子内和分子间的作用力,使得GSC的热稳定性比WSC差。通过芘荧光探针法测定GSC的临界聚集浓度为0.021mg/ml,说明在高于此浓度下,GSC溶液中有稳定的疏水微区形成。以FITC为荧光标记,共价修饰在多糖主链上,不仅可以对该载体材料定位示踪,其疏水基团还有利于包载疏水性药物分子。根据FWSC和FGSC溶液的荧光强度计算得两种荧光材料的荧光标记效率分别为1.39%和1.23%。
     利用离子交联法制备了WSC纳米粒(WSC NPs),zeta电位和平均粒径分别为11.5mV和185.5nm;利用超声自组装法分别制备了GSC纳米粒(GSCNPs)、FWSC纳米粒(FWSC NPs)和FGSC纳米粒(FGSC NPs),zeta电位依次为23.9mV,25.8mV和19.5mV,平均粒径依次为89.3nm、92.9nm和100.8nm。透射电镜观察WSC NPs和GSC NPs均为完整的球形,其中自组装法制得的GSC NPs大小均一,分散均匀;相比较而言,离子交联法制得的WSC NPs大小差异较大,粒径分布较宽,粒子间有团聚现象。红细胞溶血实验表明,WSCNPs和GSC NPs的溶血率均小于5%,符合生物医用材料对溶血率的要求。蛋白吸附实验结果表明WSC NPs和GSC NPs对牛血清蛋白(BSA)均有较低水平的非特异性蛋白吸附,结合溶血实验共同证明了两种纳米粒均具有较好的血液相容性。MTT法检测了新型载体材料GSC NPs和FGSC NPs的细胞毒性,结果表明两种纳米粒对胎鼠成纤维细胞(MEF)、小鼠乳腺癌细胞(4T1)和人乳腺癌细胞(MCF-7)在检测范围内的细胞成活率均大于70%,均未表现出细胞毒性。
     选用脂溶性抗癌药物阿霉素(DOX)作为模型药物,通过超声结合透析法制备了DOX-FWSC纳米粒(DOX-FWSC NPs)和DOX-FGSC纳米粒(DOX-FGSCNPs),zeta电位分别为23mV和15.6mV;平均粒径分别为136.6nm和153.1nm;载药量分别为12.53%和20.1%;包封率分别为40.37%和64.8%。利用透析法研究了两种载药纳米粒的释药动力学:在pH7.4释药介质中,前7小时释放速率较快,有明显的突释现象;随后进入缓释阶段,47h内DOX-FWSC NPs和DOX-FGSC NPs的累积释药量分别为37%和32%;当改变释药介质的pH至4.9后,原本达到释药平衡的载药纳米粒又在7小时内出现明显的突释现象,在随后的64h继续缓释,118h内DOX-FWSC NPs和DOX-FGSC NPs的累积释药量分别为92%和85%,结果说明所制备的两种载药纳米粒均具有较好的缓控释性能。
     利用MEF,MCF-7和4T1三种细胞对FWSC NPs和FGSC NPs的摄取率做了定量测定,结果表明相同实验条件下,FGSC NPs的细胞吞噬率均高于FWSCNPs,可以推断FGSC NPs的细胞吞噬不仅依赖于粒子表面与细胞膜之间的静电作用,同样受益于靶向基团的修饰,使得三种模型细胞均对其有较高的细胞摄取率。以4T1为细胞模型,考察了DOX-FWSC NPs,DOX-FGSC NPs和临床用药—盐酸阿霉素(ADR)对细胞的生长抑制效果,结果显示三种测试样品对细胞的生长抑制均随药物浓度的增大而提高,当药物浓度为2μg/ml时,三种材料对细胞的生长抑制作用由强到弱依次是:DOX-FGSC NPs>ADR>DOX-FWSCNPs,说明DOX-FGSC NPs在低药物浓度时比ADR具有更好的肿瘤细胞生长抑制作用,该结论与荧光显微镜观察到的结果相一致。体外细胞实验结果初步判断由GSC制备的纳米载体利于细胞吞噬,具有肿瘤细胞靶向性。
     建立小鼠乳腺癌动物模型,分别检测ADR,DOX-FWSC NPs与DOX-FGSCNPs对荷瘤小鼠的体内抗肿瘤作用,通过测量小鼠的肿瘤体积、体重、各组织中的药物分布,结果发现DOX-FGSC NPs具有较好的抑瘤效果且对机体均无明显毒副作用,不仅得益于其亲水外壳和较小的粒径使之被动靶向蓄积于肿瘤组织,还得益于其靶向基团的修饰,使其能利用受体—配体介导的主动靶向作用,蓄积于肿瘤组织的同时减小药物在其他器官中的蓄积。双抗体一步夹心法测定了荷瘤小鼠各组织器官中的GLUT1表达水平,对照相应组织中的药物含量,进一步证实DOX-FGSC NPs对肿瘤组织的主动靶向性依赖于它对GLUT1的主动靶向性。
     本论文以水溶性壳聚糖为基础材料,研究了一种新型受体—配体(GLUT1—葡萄糖)介导的肿瘤细胞靶向技术,通过体外、体内实验评价了该载体材料的生物安全性和靶向性。实验结果显示该靶向修饰的载体材料有望成为集药物缓控释、靶向定位蓄积于肿瘤组织于一体的功能性纳米载体系统。
At present,cancer has become one of the factors that endanger human health. The keyto cancer therapy is targeting treatment. Receptor-Ligand mediated tumor activetargeting technology in combination with nanotechnology, and the use of naturalbiodegradable materials as anti-cancer carriers, will be an effective approach forcancer therapy.
     The overexpression of Glucose transporter protein1(GLUT1) in malignant cellsfacilitated the Receptor-Ligand (GLUT1-Glucose) mediated tumor targeting.Glucose-conjugated water soluble chitosan (GSC) nanoparticle was developed fortargeted breast cancer therapy. GSC polysaccharide was synthesized using succinicacid as linker between glucosamine and water soluble chitosan (WSC), confirmed byfourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonancespectroscopy (NMR), thermal gravimetric analysis (TG) and elemental analysis. Thecritical aggregation concentration (CAC) of GSC was0.021mg/ml, determined byfluorescence spectroscopy using pyrene as a fluorescence probe. FITC was covalentlylinked with GSC for futher fluorescence localization. The fluorescent labelingefficiency of FWSC and FGSC was1.39%and1.23%, respectively.
     WSC NPs was prepared by ionic crosslinking method. GSC, FWSC and FGSCcould form self-assembled nanoparticles under ultrasonication. The nanoparticleswere characterized by dynamic light scattering, the zeta potential of WSC NPs, GSCNPs, FWSC NPs and FGSC NPs was11.5mV,23.9mV,25.8mV and19.5mV, withtheir average size of185.5nm,89.3nm,92.9nm and100.8nm, respectively. WSCNPs and GSC NPs observed by transmission electron microscope exhibited sphericalmorphology. WSC NPs and GSC NPs showed low hemolysis rate (﹤5%) and BSAadsorption rate. MTT assay showed that GSC NPs and FGSC NPs were nontoxic andbiocompatible to MEFs, MCF-7and4T1cells.
     A model hydrophobic anticancer drug, doxorubicin (DOX) was efficiently entrapped in the nanoparticles, the loading capacity and encapsulation efficiency ofDOX-FWSC NPs was12.53%and40.37%, the loading capacity and encapsulationefficiency of DOX-FGSC NPs was20.1%and64.81%. Drug release of DOX-FWSCNPs and DOX-FGSC NPs was studied by the dynamic dialysis method, the result ofwhich indicated that the drug loaded nanoparticles exhibited pH controlled andsustained-release behavior in PBS buffer solution.
     In vitro cellular uptake study showed that the phagocytosis of FGSC NPsdepended on not only the electrostatic interaction between the nanoparticles surfaceswith the cell membrane, but also the targeting groups modified on the surface ofnanoparticles. Both the fluorescence microscopy and quantitative determinationshowed that the FGSC NPs was easier to be endocytosed by cells than FWSC NPs.Besides, the antitumor activity of DOX-FGSC NPs was more effective in4T1cellkilling than that of DOX-FWSC NPs. Under the drug concentration of2μg/ml, thecell growth inhibitory effect order was: DOX-FGSC NPs>ADR>DOX-FWSC NPs,the result of which indicated that DOX-FGSC NPs had better tumor cell growthinhibitory effect than ADR at low drug concentrations. The in vitro experimentalresults demonstrated that GSC NPs was favorable for tumor cell phagocytosis,initially showed targeting effect to tumor cells.
     The in vivo antitumor effect of ADR, DOX-FWSC NPs and DOX-FGSC NPswere studied in4T1bearing mice after i.v. injection. DOX-FGSC NPs couldobviously inhibit the growth of tumor and deduce the side effects of DOX to normaltissues. The hydrophilic shell and small particle size of DOX-FGSC NPs facilitatedthe passive targeting to tumor tissues. Meanwhile, the surface modifications oftargeting group enabled the nanocarriers to active targeting to tumor tissue, as well asreduce the accumulation in other organs. The concentration of GLUT1in varioustissues of tumor bearing mice was measured by ELISA. GLUT1was overexpressed intumor, which was consistent with the drug distribution, further confirmed thatDOX-FGSC NPs could active targeting to GLUT1.
     Our results showed that nanoparticles decorated with glucose have specific reorganization and interaction with GLUT1over-expressed by tumor cells, whichrenders GSC NPs a promising anticancer drug delivery carrier for targeted cancertherapy.
引文
Alvarez-Lorenzo C, Concheiro A, Dubovik AS, et al. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity andcontrolled release properties. J Control Release.2005,102(3):629-641
    Berrada M, Serrequ A, Dabbarh F, et al. A novel non-toxic camptothecin formulation for cancerchemotherapy. Biomaterials,2005,26(14):2115-2120
    Berthold A, Cremer K, Kreuter J. Preparation and characterization of chitosan nicrospheres asdrug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. JControl Release.1996,39(1):17-25
    Bhumkar DR, Joshi HM, Sastry M, et al. Chitosan reduced gold nanoparticles as novel carriers fortransmucosal delivery of insulin. Pharm Res.2007,24(8):1415-1426
    Birnbaum DT, Kosmala JD, Henthorn DB, et al. Controlled release of β-estradiol from PLAGAmicroparticles: The effect of organic phase solvent on encapsulation and release. J ControlRelease.2000,65(3):375-387
    Bodmeier R, Chen HG, Paeratakul O. A novel approach to the oral delivery of micro-ornanoparticles. Pharm Res.1989,6(5):413-417
    Borst P. Genetic mechanisms of drug resistance. A review. Acta Oncol.1991,30(1):87-105
    Burns NL, Holmberg K, Brink C. Influence of surface charge on protein adsorption at anamphoteric surface: Effects of varying acid to base ratio. J Colloid Interf Sci.1996,178(1):116-122
    Calvo P, Remunan-Lopez C, Vila-Jato JL, et al. Novel hydrophilic chitosan polyethylene oxidenanoparticles as protein carriers. J Appl Polym Sci.1997,63(1):125-132
    Campos AM, Diebold Y, Carvalho ELS, et al. Chitosan nanoparticles as new ocular drug deliverysystems: in vivo stability, in vivo fate, and cellular toxicity. Pharm Res.2004,21(5):803-810
    Campos AMD, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvementof the delivery of drugs to the ocular surface. Application to cyclosporine A. Int J Pharm.2001,224(1-2):159-168
    Cantuaria G, Magalhaes A, Penalver M, et al. Expression of GLUT-1glucose transporter inborderline and malignant epithelial tumors of the ovary. Gynecol Oncol.2000a,79(1):33-37
    Cantuaria G, Magalhaes A, Angioli R, et al. Antitumor activity of a novel glycol-nitric oxideconjugate in ovarian carcinoma. Cancer.2000b,88(2):381-388
    Chenong SJ, Lee CM, Kim SL, et al. Superparamagnetic iron oxide nanoparticles-loadedchitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system.Int J Pharm.2009,372(1-2):169-176
    Chung JK, Lee YJ, Kin SK, et al. Comparison of18F fluorodeoxy glucose uptake with glucosetransporter-1expression and proliferation rate in human glioma and non-small-cell lung cancer.Nucl Med Commun,2003,25(1):11-17
    Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial ear. Science.1992,257(5073):1050-1055
    Dalpiaz A, Leo E, Vitali F, et al. Development and characterization of biodegradable nanospheresas delivery systems of anti-ischemic adenosine derivatives. Biomaterials.2005,26(11):1299-1306
    Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: Passive and active tumortargeting of nanocarriers for anti-cancer drug delivery. J Control Release.2010,148(2):135-146
    Davis SS. Biomedical application of nanotechnology-implications for drug targeting and genetherapy. Trends Biotechnol.1997,15(6):217-224
    Di Martino A, Sittinger M, Risbud MV. Chitosan: A verstatile biopolymer for orthopaedictissue-engineering. Biomaterials.2005,26(30):5983-5990
    Domerd A. Advances in chitin science.1997,2-63
    Eniola AO, Hammer DA. Characterization of biodegradable drug delivery vehicles with theadhesive properties of leukocytes II: effect of degradation on targeting activity. Biomaterials.2005,26(6):661-670
    Enríquez de Salamanca A, Diebold AY, Calonge M, et al. Chitosan nanoparticles as a potentialdrug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance.Invest Ophth Vis Sci.2006,47(4):1416-1425
    Fang N, Chan V, Mao HQ, et al. Interactions of phospholipid bilayer with chitosan: effect ofmolecular weight and pH. Biomacromolecules.2001,2(4):1161-1168
    Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol.2008,26(1):57–64
    Hashimoto M, Morimoto M, Saimoto H, et al. Gene transfer by DNA/mannosylated chitosancomplex into mouse peritoneal macrophages. Biotechnol Lett.2006,28(11):815-821
    Hashimoto T, Suzuki Y, Suzuki K, et al. Review-Peripheral nerve regeneration using non-tubularalginate gel crosslinked with covalent bonds. J Mater Sci-Mater M.2005,16(6):503-509
    Heldin CH, Rubin K, Pietras K, et al. High interstitial fluid pressure—an obstacle in cancertherapy. Nat Rev Cancer.2004,4(10):806–813
    Hirano S, Noishiki Y, Kinugawa J. Chitin and chitosan for use as novel biomedical material.Polym Mater Sci Eng.1985,53:649-653
    Horch RE, Kopp J, Kneser U, et al. Tissue engineering of cultured skin substitutes. J Cell MolMed.2005,9(3):592-608
    Hu FQ, Zhao MD, Yuang H, et al. A novel chitosan oligosaccharidestearic acid micelles for genedelivery: Properties and in vitro transfection studies. Int J Pharm.2006,315(1-2):158-166
    Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles:Effects of molecular weight and degree of deacetylation. Pharm Res.2004,21(2):344-353
    Huang M, Ma Z, Khor E, et al. Uptake of FITC-chitosan nanoparticles by A549cells. Pharm Res.2002,19(10):1488-1494
    Huang Y, Onyeri S, Siewe M, et al. In vitro characterization of chitosan-gelatin scaffolds for tissueengineering. Biomaterials,2005,26(36):7616-7627
    Hubbell JA. Biomaterials in tissue engineering. Biotechnology.1995,13(6):565-575
    Illum L, Watts P, Fisher AN, et al. Intranasal delivery of morphine. J Pharmacol Exp Ther.2002,301(1):391-400
    Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/chitosan complexes.BBA-Biomembranes.2001,1514(1):51-64
    Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems formacromolecule. Adv Drug Deliver Rev.2001a,47(1):83-97
    Janes KA, Fresneau MP, Marazuela A, et al. Chitosan nanoparticles as delivery systems fordoxorubicin. J Control Release.2001b,73(2-3):255-267
    Jiang GB, Quan DP, Liao KR, Wang HH. Novel polymer micelles prepared from chitosan graftedhydrophobic palmitoyl groups for drug delivery. Mol Pharm.2006,3(2):152-160
    Kataoka K, Harada A, Nagasaki Y.. Block copolymer icelles for drug delivery: design,characterization and biological ignificance. Adv Drug Deliver Rev.2001,47(1):113–131
    Kataoka K. Intracellular gene delivery by polymer micelle vectors. Nihon Rinsho,1998,56(3):718-723
    Kato Y, Onishi H, Machida Y. Biological characteristics of lactosaminated N-succinyl-chitosan asa liver-specific drug carrier in mice. J Control Release.2001,70(3):295-307
    Kempen DHR, Lu LC, Kim C, et al. Controlled drug release from a novel injectablebiodegradable imcro sphere/scaffold composite based on poly (propylene fumarate). J BiomedMater Res A.2006,77(1):103-111
    Khin YW, Feng SS. Effects of particle size and surface coating on cellular uptake of polymericnanoparticles for oral delivery of anticancer drugs. Biomaterials.2005,26(15):2713-2722
    Kim JH, Kim YS, Kim S, et al. Hydrophobically modified glycol chitosan nanoparticles ascarriers for paclitaxel. J Control Release.2006,111(1-2):228-234
    Kim JH, Kim YS, Park K, et al. Antitumor efficacy of cisplatin-loaded glycol chitosannanoparticles in tumor-bearing mice. J Control Release.2008,127(1):41-49
    Kim TH, Park IK, Nah JW, et al. Galactosylated chitosan/DNA nanoparticles prepared usingwater-soluable chitosan as a gene carrier. Biomaterials.2004,25(17):3783-3792
    Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modifiedpolythelenimines. Adv Drug Deliv Rev.2001,53(3):341-358
    Kono K, Yoshino K, Takagishi T. Effect of poly(ethylene glycol) grafts ontemperature-sensitivity of thermosensitive polymer-modified liposomes. J ControlRelease.2002,80(1-3):321–332
    Kurita K. Controlled functionalization of the polysaccharide chitin. Prog Ploym Sci.2001,26(9):1921-1971
    Laginha KM. Determination of Doxorubicin levels in whole tumor and tumor nuclei in murinebreast cancer tumors. Clin Cancer Res.2005,11(19):6944-6949
    Lee CM,Jeong HJ, Kim SL, et al. SPION-loaded chitosan-linoleic acid nanoparticles to targethepatocytes. Int J Pharm.2009,371(1-2):163-169
    Li J, Ren J, Cao Y, et al. Preparation and characterization of thermosensitive and biodegradablePNDH-g-PLLA nanoparticles for drug delivery. React Funct Polym.2009,69(12):870-876
    Liu DZ, Sinchaikul S, Reddy PVG, et al. Synthesis of2’-paclitaxel methyl2-glucopyranosylsuccinate for specific targeted delivery to cancer cells. Bioorg Med Chem Lett.2007,17(3):617-620
    Loh JW, Yeoh G, Saunders M, et al. Uptake and cytotoxicity of chitosan nanoparticles in humanliver cells. Toxicol Appl Pharm.2010,249(2):148-157
    Lukyanov AN, Elbayoumi TA, Chakilam AR, et al. Tumor-targeted liposomes:doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J ControlRelease.2004,100(1):135–144
    Lyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and rentention effect fortumor targeting. Drug Discov Today.2006,11(17-18):812-818
    Mansouri S, Lavigne P, Corsi K, et al. Chitosan-DNA nanoparticles as non-viral vectors in genetherapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm.2004,57(1):1-8
    Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis,characterization and transfection efficiency. J Control Release.2001,70(3):399-421
    Mao HQ, Roy K, Walsh SM, et al. DNA-chitosan nanoparticles for gene delivery. Proc Int SympControl Rel Bioact Mater.1996,23:401-402
    Matsumura Y, Gotoh M, Muro K, et al. Phase I and pharmacokinetic study of MCC-465, adoxorubicin (DXR) encapsulated in PEG immunoliposome, in patients withmetastatic stomach cancer. Ann Oncol.2004,15(3):517–525
    Mayer A, Vadon M, Rinner B, et al. The role of nanoparticle size in hemocopatibility. Toxicology,2009,258(2-3):139-147
    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theoryto practice. Pharmacol Rev.2001,53(2):283-318
    Montel-hagen A, Kinet S, Manel N, et al. Erythrocyte Glut1Triggers Dehydroascorbic AcidUptake in Mammals Unable to Synthesize Vitamin C. Cell.2008,132(6):1039–1048
    Mueckler M, Caruso C, Baldwin SA, et al. Sequence and structure of a human glucose transporter.Science.1985,229(4717):941–945
    Mumper RJ, Hoffman AS, Puolakkainen PA, et al. Calcium-alginate beads for the oral delivery oftransforming growth factor-β1(TGF-β1): stabilization of TGF-β1by the addition ofpolyacrylic acid within acid-treated beads. J Control Release.1994,30(3):241-251
    Mumper RJ, Wang J, Claspell JM, et al. Novel polymeric condensing carrier for gene delivery.Proc Int Symp Control Rel Bioact Mater.1995,23(2):178-179
    Nidhin M, Indumathy R, Sreeram KJ, Nair BU. Synthesis of iron oxide nanoparticles of narrowsize distribution on polysaccharide templates. B Mater Sci.2008,31(1):93–96
    Nouvel C, Frochot C, Sadtler V, et al. Polyactide-grafted dextrans: synthesis and properties atinterfaces and in solution. Macromolecules.2004,37(13):4981–4988
    Ohya Y, Shiratani M, Kobayashi H, et al. Release behavior of5-fluorouracil from chitosan-gelnanoshperes immobilizing5-fluorouracil coated with polysaccharides and their cell specificcytotoxicity. Pure Appl Chem.1994,31(1):629-642
    Olson AL, Pessin JE. Structure, function, and regulation of the mammalian facilitative glucosetransporter gene family. Annu Rev Nutr.1996,16:235–256
    Park JH, Son YJ, Kim K, et al. Preparation and characterization of self-assembled nanoparticlesbased on glycol chitosan bearing adriamycin. Colloid Polym Sci.2006,284(7):763-770
    Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake?Trends Biotechnol.2008,26(10):552–558
    Prabaharan M, Grailer JJ, Pilla S, et al. Amphiphilic multi-arm-block copolymer conjugated withdoxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials.2009,30(29):5757-5766
    Raffaini G, Ganazzoli F. Understanding the performance of biomaterials through molecularmodeling: crossing the bridge between their intrinis properties and the surface adsorption ofproteins. Macromol Biosci.2007,7(5):552-566
    Rao SB, Sharma CP. Use of chiotsan as a biomaterial: studies on its safety and hemostaticpotential. J Biomed Mater Res.1997,34(1):21-28
    Ravazoula P, Batistatou A, Aletra C, et al. Immunohistochemical expression of glucose transporterGLUT-1and cycl D1in breast carcinomas with negatively mphnodes. Eur J Gynaecol Oncol.2003,24(6):544-546
    Reginster JY, Deroisy Rita. Long-term effects of glucosamine sulphate on the osteoarthritisprogression: a radomised, placebo-controlled clinical trial. Lancet.2001,357(1):251-256
    Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oralinsulin delivery and absorption. J Control Release.2009,135(2):144–151
    Ross BP, Braddy AC, McGeary RP, et al. Micellar aggregation and membrane partitioning of bilesalts, fatty acids, sodium dodecyl sulfate, and sugar-conjugated fatty acids: correlation withhemolytic potency and implications for drug delivery. Mol Pharm,2004,1(3):233-245
    Roy K, Mao HQ, Leong KW. DNA-chitosan nanospheres: transfection efficiency and cellularuptake. Proc Int Symp Control Rel Bioact Mater.1997,24:673-674
    Ruoslahti E. Drug targeting to specific vascular sites. Drug Discov Today.2002,7(22):1138-1143
    Sarmento B, Ferreira D, Veiga F, et al. Characterization of insulin-loaded alginate nanoparticlesproduced by ionotropic pre-gelation through DSC and FTIR studies. Carbohyd polym.2006,66(1):1-7
    Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targetingselectivity of therapeutic nanocarriers. J Control Release.2006,114(3):277-287
    Senel S, Mcclure SJ. Potential applications of chitosan in veterinary medicine. Adv Drug DeliverRev.2004,56(10):1467-1480
    Seymour LW, Ferry DR, Anderson D, et al. Hepatic drug targeting: phase I evaluation ofpolymer-bound doxorubicin. J Clin Oncol.2002,20(6):1668–1676
    Shen Z, Wei W, Tanaka H, et al. A galactosamine-mediated durg delivery carrier for targeted livercancer therapy. Pharmacol Res.2011,64(4):410–419
    Sinha VR, Singla AK, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs.Int J Pharm.2004,274(1-2):1-33
    Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles afterintravenous administration: Effect of particle size. Colloid Surface B.2008,66(2):274-280
    Stephen JH, Asacroft JR. The effect of N-acylglucosamine on the biosynthesis and secretion ofinsulin on the rat. J Biochem.1976,154(3):701-707
    Suzuki K, Mikami T, Okawa Y, et al. Antitumor effect of hexa-N-acetylchitohexaoseandchitohexaose. Carbohyd Res.1986,151:403-408
    Suzuki R, Takizawa T, Kuwata Y, et al. Effective anti-tumor activity of oxaliplatin encapsulatedin transferrin-PEG-liposome. Int J Pharm.2008,346(1-2):143–150
    Tahara K, Samura S, Tsuji K, et al. Oral nuclear factor-κB decoy oligonucleotides delivery systemwith chitosan modified poly(D,L-lactide-co-glycolide) nanospheres for inflammatory boweldisease. Biomaterials.2011,32(3):870-878
    Takakura Y, Kuentzel SL, Raub TJ, et al. Hexose uptake in primary cultures of bovine brainmicrovessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin.Biochim Biophys Acta.1991,1070(1):1-10
    Tanima B, Susmita M, Singh K, et al. Preparation, characterization and biodistribution of ultrafinechitosan nanoparticles. Int J Pharm.2002,243(1-2):93-102
    Tian Q, Wang X, Wang W, et al. Insight into glycyrrhetinic acid: the role of the hydroxyl group onliver targeting. Int J Pharm.2010,400(1-2):153-157
    Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through theself-assembly of block copolymers. Prog Polym Sci.2010,35(9):1128–1143
    Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38in normal andmalignant cell lines and tissues. Cancer Res.1992,52(12):3396–3401
    Winn SR, Hu Y, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration. AdvDrug Deliver Rev.2000,42(1):121-138
    Xing L, Mattice W. Strong solubilization of small molecules by triblock-copolymer micelles inselective solvents. Macromolecules.1997,30(6):1711–1717
    Xu Z, Gu W, Huang J, et al. In vitro and in vivo evaluation of actively targetable nanoparticles forpaclitaxel delivery. Int J Pharm.2005,288(2):361-368
    Yang DJ, Kin CG, Schechter NR, et al. Imaging with99mTc-ECDG targeted at the multifunctionalglucose transport system: feasibility study with rodents. Radiology.2003,226(2):465-473
    Zhang LK, Hou SX, Mao SJ, et al. Uptake of folate-conjugated albumin nanoparticles to theSKOV3cells. Int J Pharm.2004,287(1-2):155-162
    Zhao FQ, Keating AF. Function properties and genomics of glucose transporters. Curr Genomics.2007,8(2):113-128
    Zhu AP, Chen T, Yuan LH, et al. Synthesis and characterization of N-succinyl-chitosan and itsself-assembly of nanoparticles. Carbohyd Polym.2006,66(2):274-279
    Zhu H, Liu F, Guo J, et al. Folat-modified chitosan micelles with enhanced tumor targetingevaluated by near infrared imaging system. Carbohyd Polym.2011,86(3):1118-1129
    Zimmermann H, Zimmermann D, Reuss R, et al. Towards a medically approved technology foralginate-based microcapsules allowing long-term immunoisolated transplantation. J MaterSci-Mater M.2005,16(6):491-501
    陈忻.氨基葡萄糖盐酸盐的防腐抗菌作用研究.精细化工,2001,18(2):78-80
    冯春来,刘皓,王智刚,等.HIF-1α、GLUT-1和MMP-2在非小细胞肺癌中的表达.江苏医药,2007,33(12):1204-1206
    顾汉卿,徐国风.生物医学材料学.天津:天津科技翻译出版公司,1993
    郝英魁,杨学东.载药壳聚糖纳米粒的研究进展.中国药学杂志,2005,40(17):1292-1295
    何文,匡长春,张洪,等.壳聚糖分子参数对载药壳聚糖纳米粒体外性质的影响研究.中国药学杂志,2005,40(6):438-453
    姜树红,戈延茹,单秀红,等.葡萄糖受体靶向的钆喷酸葡胺长循环脂质体的肿瘤细胞靶向研究.中国医院药学杂志,2008,28(22):1916-1918
    蒋挺大,壳聚糖.北京:化学工业出版社,2001,8-14
    李训虎,龚海鹏,公衍道,等.不同脱乙酰度和分子量壳聚糖的生物相容性之比较.透析与人工器官,2003,14(2):19-22
    刘超.酰化壳聚糖的合成及其自组装药用囊泡的研究:[硕士学位论文].福建:华侨大学材料系,2004
    刘晓燕.载药聚乳酸靶向纳米粒的制备及眼疾与肿瘤治疗研究:[硕士学位论文].天津:天津大学材料学专业,2004
    刘新垣.癌症靶向治疗的最新进展.中华肿瘤防治杂志,2006,13(18):1361-1364
    罗宣干,卓仁禧,李满庆.5-氟脲嘧啶的D-氨基葡萄糖衍生物的合成及其抗肿瘤活性的研究.高等学校化学学报,1996,17(9):1416-1420
    吕增华,张树华,朱玉红.GLUT1和VEGF-c蛋白表达及其与胃粘液腺癌浸润转移关系的研究.实用癌症杂志,2008,23(1):25-27
    马兆生.HIF-1, Glut-1在乳腺癌中的表达及其与新辅助化疗的关系:[硕士学位论文].江苏:苏州大学普外科,2008
    孟晓云,陈跃.肿瘤葡萄糖转运蛋白与脱氧葡萄糖显像剂摄取研究.实用放射学杂志,2007,2(4):542-545
    聂琴,辛现良,耿美玉.葡萄糖载体-1研究进展.中国药理学通报,2010,26(10):1267-1270
    钱倩,王伯瑶.纳米药物载体在医药领域中的研究进展.济宁医学院学报,2006,29(2):82-84
    覃彩芹,杜予民,刘义,等.过氧化氢/醋酸体系降解壳聚糖及其产物的抗菌活性研究.孝感学院学报,2001,21(6):9-13
    万丽卿,胡富强,袁弘.A549细胞对壳寡糖及其纳米粒的摄取作用.药学学报,2004,39(3):227-231
    万荣欣,顾汉卿.水溶性壳聚糖的研究进展.透析与人工器官,2005,16(1):26-32
    王富花,刘中阳,张占军.壳聚糖的研究进展及其在食品医药工业中的应用.广州化工,2010,38(10):46-48
    王丽曌,王雨生.壳聚糖纳米给药系统及其在眼科学领域的应用.国际眼科杂志,2008,8(4):784-787
    王宇,陈大为,乔明曦,等.离子凝胶法制备水杨酸壳聚糖纳米粒.沈阳药科大学学报,2007,24(10):607-610
    王哲,乔岩,黄高昇,等.N-乙酰氨基葡萄糖诱导白血病细胞K562向巨噬细胞分化.第四军医大学学报,2003,24(1):46-48
    吴静,路红,周芸,等.2-(3-羧基-1-丙酰氨基)-2-脱氧-D-葡萄糖对人食管癌细胞的抗增殖研究.2006,28(14):1487-1489
    吴玉厚,张善锋,刘殿红,等.血液相容性材料研究进展.聊城大学学报(自然科学版),2003,16(2):46-49
    夏和生,王琪.纳米技术进展.高分子材料科学与工程,2001,17(4):1-5
    谢秋玲,戴云,孙奋勇,等.盐酸氨基葡萄糖胺诱导黑素瘤细胞分化的形态学观察.安徽中医学院学报,2002,21(3):42-44
    杨子彬.论植入体内医用材料的生物相容性.中国医疗器械信息,2006,12(7):36-39
    应晓英,胡富强,袁弘.胰岛素壳聚糖纳米粒的制备.中国药学杂志,2003,3(12):936-939
    张慧珠.疏水改性多糖及其叶酸偶合体作为纳米药物载体的研究:[博士学位论文].北京:中国协和医科大学生物医学工程专业,2009
    张静.油酰壳聚糖纳米粒作为抗肿瘤药物载体的研究:[博士学位论文].山东:中国海洋大学生物化学与分子生物学专业,2010
    张莉,刘万顺,韩宝芹.D-氨基葡萄糖及其衍生物抗肿瘤活性的初步研究.中国海洋药物杂志,2006,25(2):26-31
    张玮,张学农.壳聚糖纳米粒制备技术研究进展.抗感染药学,2008,5(2):65-69
    张文博,陈盛.甲壳素/壳聚糖的提取及其应用研究新进展.福建师范大学福清分校学报,2008,85(1):18-23
    张阳德,彭健.载阿霉素磁性白蛋白纳米粒——一种高效靶向抗肿瘤系统.中国现代医学杂志,2001,11(3):39-42
    赵硕,常津,卢剑,等.载药纳米微粒制备技术.化学通报,2002,65(12):1-7
    郑震寰.多聚阳离子修饰壳聚糖材料的细胞-材料相互作用研究:[博士论文].北京:清华大学生物学专业,2008
    周承倜.纳米技术的进展和医用纳米生物材料.大连大学学报,2001,22(6):1-6
    周海燕.N-糖链参与细胞凋亡的研究进展.国外医学:生理、病理科学与临床分册,2001,21(5):386-388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700