核桃果实韧皮部卸载的细胞学路径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以普通核桃(Juglans regia L.)为试材,利用组织切片技术观察了核桃果实的组织学构造。由结果可知,核桃果实结构上可分外、中、内果皮三层,中内果皮为果肉的大部分,其中散生有多束维管束。内果皮的细胞在前期小而透明,后期迅速木质化而形成硬壳,其外的维管束组织高度发达呈网络状。发现内果皮(果壳)在发育过程中自始至终不存在维管束发生和分布,成为果实组织学上的天然隔离层。
     利用透射电镜技术对发育过程中核桃肉质果皮及种皮细胞的超微结构研究表明,核桃肉质果皮韧皮部及其周围薄壁细胞的SE-CC复合体中,筛分子体积大于伴胞,二者之间存在胞间连丝并呈分枝状,筛分子一侧为单通道,伴胞一侧为分枝通道。伴胞细胞质稠密,富含各种细胞器,SE-CC复合体与周围韧皮薄壁细胞间未发现胞间连丝,形成了共质体隔离。在种皮韧皮部的超微结构中发现,种皮SE-CC复合体的伴胞体积大于筛分子,二者间存在分枝型的胞间连丝,SE-CC复合体与周围韧皮薄壁细胞之间存在有大量的胞间连丝,种皮薄壁细胞含有浓厚的细胞质和大量细胞器。因此认为核桃肉质果皮中SE-CC复合体的同化物卸载可能通过质外体途径进行,种皮内SE-CC复合体中的同化物卸载则采取共质体途径进行。活细胞荧光示踪试验结果表明,果皮中CF荧光染料被限制在韧皮部内而无卸出,种皮中的荧光染料则卸出至周围薄壁细胞中,说明在核桃肉质果皮韧皮部组织中存在着共质体隔离,同化物卸载采取质外体途径而种皮内采取共质体途径。
     利用western blotting技术、胶体金免疫定位技术结合透射电镜观察,对核桃果肉韧皮部及其周围薄壁细胞组织中酸性转化酶进行了定位研究。结果表明:以果肉提取的总蛋白进行了酸性转化酶的western blotting试验,检测到一条60kD的酸性转化酶,果实发育前期(花后30天),酶表达量迅速增加,后期(花后80天)表达量较前期大为降低。在核桃肉质果皮韧皮部SE-CC复合体及其周围薄壁细胞的细胞壁上都特异性地定位到了酸性转化酶(金颗粒)。在发育早期(花后10天)金颗粒密度较高,随着核桃果实的迅速膨大,金颗粒密度迅速增加,随后在果实发育后期(花后80天),金颗粒密度大幅度降低。可以认为,核桃肉质果皮韧皮部SE-CC复合体上的同化物卸载主要采取质外体途径,定位于细胞壁上的酸性转化酶随发育阶段不同,酶活性表达量不同,但整个生长期内的定位区域没有变化。
     研究了核桃肉质果皮发育过程中糖含量及其相关酶活性的变化,发现各种可溶性糖因种类不同而含量各异,酸性转化酶在果实发育前期活性很强,后期降低。
The pathway of phloem unloading was studied in developing walnut (Juglans regia L.) fruit using a combination of tissue slice, carboxyfluorescein transport, immunogold electron microscopy, and immunoblotting assay. The results showed that the tissue structure of the fruit pericarp may be divided into three parts: exocarp, mesocarp and endocarp. The developmental stage can be divided into the early stage and late stage. The mesocarp was the main part of pericarp, and the cell of endocarp was small and transparent in early stage, and it became into hard shell that was made of lignification stone cells. The tissue of vascular bundles was well developed and became ereticulate vein. There were no found vascular bundles in the endocarp, so it was a natural layer of isolation in walnut fruit.
    The ultrastructure of phloem and its surrounding parenchyma cells in developing walnut fruit was for the first systematically investigated via transmission electron microscope during whole developmental process of the fruit. The results showed that plasmodesmata exist at the thickened part of cell wall between sieve elements (SEs) and companion cells (CCs) both in pericarp of fruit and pericarp of seed, with the plasmodesmata furcating at the CC side and keeping a single oriface at the SE side .In pericarp of fruit the SEs are larger than the CCs, while in pericarp of seed the SEs are smaller than the CCs. The CCs contain an electron-dense protoplasm and nucleus, and are enriched with mitochondrion, endoplasmic reticulum and Golgi apparatus or dictyosomes in their cytoplasm. There was almost no plasmodesmata between the SE-CC complex and its surrounding phloem parenchyma cells in the pericarp of fruit, but it was opposite in the pericarp of seed, resulting in the symplasmic isolation between them in pericarp
     of fruit, which may be associated to apoplasmic transportation, of course there were symplasmic links between them in pericarp of seed. Plasmodesmata were found numerous both between phloem parenchyma cells and between flesh parenchyma cells (non-phloem parenchyma cells), as wells as between phloem parenchyma cell and flesh parenchyma cell. The relationships between the ultrastructure of the fruit phloem and its surrounding parenchyma cells and the photoassimilate unloading pathway in developing walnut fruit were discussed. It was considered that the apoplasmic unloading may be the main pathway of the photoassimilates unloaded from SE-CC complex of pericarp of fruit, and that the apoplasmic and symplasmic pathways may coexist during postphloem transport of photoassimilates in developing walnut fruit.
    The phloem-translocated carboxyfluorescein remained confined to the phloem in the pericarp of fruit and oppositional, it diffused into the surrounding parenchyma tissues in the pericarp of seed after application on the treated petiole during the fruit developing. This provided a supporting proof for assays of ultrastructure. The immunoblotting of acid invertase detected a 60-kD polypeptide for acid
    
    
    invertase, and moreover, the apparent amount of acid invertase also increased at the early developmental stage (30DAFB) and decreased at the late developmental stage (80DAFB). The immunogold electron-microscopy technique was also used to determine the subcellular localization of cell wall invertase in developing walnut fruit. The antibody against apple fruit acid invertase was used. The results showed that the cell wall invertase mainly in the cell wall and the two antibodies can recognize each other. The gold particles representing acid invertase were found to reside predominantly in the cell walls of sieve element / companion cell (SE-CC) complex, phloem parenchyma cells and other parenchyma cells. There were almost no gold particles at other subcellular compartments (such as protoplasm and vacuole). The density of immunogold particles was low at the early developmental stage (10DAFB), but obviously high at the after developmental stage (30DAFB) and lately, was low at the late developmental stage (80DAFB).
     The distribution
引文
北京林学院主编.树木学.北京:中国林业出版社,1989,p218~219.
    曹慧娟.植物学.北京:中国林业出版社,1992,p251.
    陈竺,李伟,俞曼,熊惠,陈赛娟.人类基因组计划的机遇与挑战:从结构基因组学到功能基因组学.生命的化学,1998,18(5):5~13.
    陈立松,刘星辉.水分胁迫对荔枝叶片超微结构的影响.福建农业大学学报,2001,30(2):171~174.
    陈竹君,陈迪锋.榨菜花芽分化早期形态发育及细胞超微结构初探.浙江大学学报,农业与生命科学版,2000,26(1):79~84.
    高文远,李志亮.浙贝母鳞片细胞在寒冷条件下超微结构的变化.广西植物,1998,18(2):177~179.
    高文远,李志亮,杨世杰.浙贝母鳞片衰退过程的超微结构研究.植物学报,1995,37(11):885~888.
    国凤利,胡适宜.杜鹃雌雄配子体的超微结构及受精过程中精细胞质的传递.植物学通报,1994,(1)增刊45.
    韩贻仁主编.分子细胞生物学(第二版),北京:科学出版社,2001,1~12.
    河北农业大学主编.果树栽培学总论.北京:农业出版社,1990,323.
    侯燕平,牛吉山.珍珠梅顶芽抗寒机理的超微结构研究.山西农业大学学报,1998,18(1):63~64.
    胡永红,张启祥,王奎铃.低温对切花菊叶片细胞器超微结构的影响.莱阳农学院学报,2000,17(1):8~43.
    华东师范大学主编.植物学(下册).北京:高等教育出版社,1991:202.
    华粉妹,席与芳,边其均.辐照大蒜生长点细胞超微结构及抑制发芽效果的研究.辐射研究与辐射工艺学报,1994,12(1):44~46.
    黄金生,樊汝汶.杨树叶细胞壁旁体超微结构.细胞生物学杂志,1985,7:66~67
    解凯彬,施国新,杜开和,丁小余,常福辰,陈国祥.汞对芡实根部细胞超微结构的毒害.南京师范大学学报(自然科学版),2000,23(4):101~104.
    李靖,利容千,曾子申.黄瓜对霜霉病抗性的显微和超微结构研究.武汉植物学研究,1991,9(3):209~214.
    李扬汉主编.植物学.上海,上海科技出版社,1979,205~211
    梁小娥,王三宝,赵迎丽.枣采后果肉软化的生理生化和细胞超微结构变化.园艺学报 1998,25(4):333~337.
    刘林,许秋生,张再君.西瓜小孢子发育过程中几种细胞器的变化.武汉植物学研究,2000,18(4):266~270.
    刘穆.种子植物形态解剖学导论.北京:科学出版社,2001,316.
    刘云霞,张青文,周明.电镜免疫胶体金定位水稻内生细菌的研究.农业生物技术学报,1996,4(4):354~358.
    娄成后.大蒜植株中细胞内含物由衰退叶片向顶端生长部位的循序转移.北京农业大学学报,1981,7:1~16.
    卢春杉.PG在番茄果实成熟中的作用及二价金属离子与乙烯对PG活性的影响.植物学报,1990,32(5):337~342.
    
    
    陆胜民,席与芳.采后处理对梅果细胞超微结构的影响.食品科学,2001,22(6):62~63.
    吕英民,张大鹏,严海燕.苹果果实韧皮部及其周围薄壁细胞的超微结构观察和功能分析.植物学报,2000,42(1):32~42.
    吕英民,张大鹏,严海燕.发育的苹果果实中的糖卸载机制.园艺学报,1999,26(1):23~28
    吕英民.苹果果实内糖卸载机制的研究:[博士学位论文].北京:中国农业大学,1999.
    马青,崔鸿文.黄瓜抗霜霉病的组织学和超微结构研究.西北农业大学学报,1995,23(5):33~38.
    苗琛,利容千,王建波.甘蓝热胁迫叶片细胞的超微结构研究.植物学报,1994,36(9):730~732.
    潘秋红.果实酸性转化酶研究:[博士学位论文].北京:中国农业大学,2003.
    潘洵操,谢宝贵.荔枝果皮的扫描电镜观察.园艺学报,1996,23(3):227~230.
    彭宜本.苹果果实发育的细胞生物学研究:着重于果实内糖卸载的细胞学机制:[博士学位论文].北京:中国农业大学,2000.
    屈红霞,唐友林,谭兴杰.采后菠萝贮藏品质与果肉细胞超微结构的变化.果树学报,2001,18(3):164~167.
    施国新,杜开和,解凯彬,丁小余,常福辰,陈国祥.Hg~(2+)污染对莼菜冬芽幼叶细胞超微结构伤害的研究.云南植物研究,2000,22(4):456~460.
    汪劲武.种子植物分类学.北京:高等教育出版社,1984:98~99.
    王毅,娄成后,杨世杰.离体蒜薹贮存中薄壁细胞超微结构的变化.植物学报,1994,36(3):165~169.
    王毅,胡适宜.棉花小孢子发生过程中细胞质的超微结构变化:着重“细胞质改组”问题.植物学报,1993(35):255~260
    王国英.葡萄叶片气孔与霜霉病抗性.果树科学,1988,5(3):120~121.
    王新鼎.蚕豆种皮内维管束分布及卸出部位结构.植物学报,1991,33(5):329~334.
    王新鼎.蚕豆种皮韧皮部中ATP酶活性及其与卸出的关系.植物学报,1993,35(5):356~360.
    王永章,张大鹏.乙烯对成熟期新红星苹果果实碳水化合物代谢的调控.园艺学报,2000 27(6):391~395
    王忠主编.植物生理学.北京:农业出版社,2000:221~263.
    王灶安主编.植物学实验图说.北京:农业出版社.1992:79~81.
    魏和平,利容千,王建波.淹水对玉米叶片细胞超微结构的影响.植物学报,2000,42(8):811~817.
    吴江明,张忠恒,于萍.苹果软化过程中质壁互作的生理和结构研究.园艺学报,1995,22(2):181~182.
    吴树明,刘德仪译,A.Fahn著.植物学.广州:中山大学出版社,1990.444~457.
    郗荣庭,张毅萍主编.中国核桃.北京:林业出版社,1992:199,202.
    郗荣庭.核桃优质高效栽培技术.北方果树,2000,6:29~32
    夏春森,王兰英.红星苹果在贮存中果肉发绵生理过程的研究.园艺学报,1981,8(2):29~36.
    肖玲,胥耀平,赵先贵,骆吉花.核桃果皮的发育解剖学研究.西北植物学报,1998,18(4):577~580
    邢树平,张宪省,阎先喜.牡丹苗端由营养生长转向生殖生长过程中超微结构研究.西北植物学
    
    报,1997,17(3):322~325.
    徐焘,郑国昌.百合花粉母细胞胞间连丝的超微结构观察.植物学通报,1994,(1)增刊:1.
    薛妙男,李义平.沙田柚自交花柱的免疫胶体金定位.广西师范大学学报,2000,18(1):81~84.
    杨世杰,娄成后.嫁接隔离层两侧愈伤组织中的壁旁体.植物学报,1988,30(3);480~484.
    杨兴德,庞向宇,邢红华.猕猴桃衰老过程中PG、果胶质和细胞超微结构的变化.园艺学报,1993,20(3):341~345.
    叶宝兴,席湘媛.扁豆雄配子体发育超微结构的观察.植物学通报,1994,(1)增刊:11.
    于惠敏,陈际江,鲍雪珍.葡萄耐盐细胞系的超微结构研究.山东大学学报(自然科学版),2000,35(3):328~332.
    张大鹏,李珉,王毅.葡萄果肉细胞发育过程中超微结构的变化.植物学报,1997,39:389~396.
    张伟成,严文梅,陈梓卿.蒜薹中大分子物质的细胞间迁移及其与细胞内含物再分配、再利用的关系.植物学报,1981,22(2):169~175
    张志农,王慧,王伏雄.黄瓜绒毡层的超微结构研究.植物学通报,1994,1,增刊:31
    张凌云.苹果果实韧皮部质外体卸载的证据:[博士学位论文].北京:中国农业大学,2003.
    郑湘如,王希善编译.植物解剖结构显微图谱.北京:农业出版社,1983:232;110~126.
    张志华,高仪,王文江,等.核桃果实成熟期间主要营养成分的变化.园艺学报,2001,28(6):509~511
    张志华,王文江,高仪,等.核桃光合特性的研究.园艺学报,1993,20(4):319~323
    赵耕春,佟德娟,徐宗尧,张晓萍.Tradescantia stamen柱头纤毛细胞的超微结构观察.武汉植物研究,1998,16:188~190.
    赵智中,张上隆,徐昌杰,等.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用.园艺学报,2001,28(2).112~118
    A Bruce, Downie, Deqing Zhang, et al. Cytological and immunological approach of vessel-associated cells in understanding the winter sugar exchanges in walnut stems. Acta Horticulture, 2001,544:295~300.
    A Tsushi M. Juan L, Roger H, et al. Fluorescent indicators for Ca based on green fluorescent proteins and calmodulin. Nature, 1997, 388(8):882~887.
    Alison GR, Simuon SC,Ian MR,Denton AM,Robert T. Phloem unloading in sink leaves of Nicotiana benthamiana: comparision of a fluorescent solute with a fluorescent virus. The Plant cell, 1997, 9: 1381~1396.
    Alves G, AmeglioT, Fleurat P. Cytological and immunological approach of vessel-associated cells in understanding the winter sugar exchanges in walnut stems. Acta Horticulture,2001,544:295~300
    Ammar ED, Rodriguez-cerezo E, et al. Association of virions and cost protein of tabacco vein molting potyvirus with cylindrical inclusions in tobacco cells. Phytopathology, 1994, 84:520~523.
    Asuka I,Fengshan Ma, YJ Qi,Yoshie M,YL Zhu, GQ Liang and Bao Ding. Plasmodesmata-mediated selective protein tranfic between "symplasmically isolated"cells probed by a viral movement protein. The Plant Cell, 2002,14:2071-2083.
    
    
    Ben-Arie, Kislev RN, Frenkel C. Ultrastructural change in the cell walls of ripening apple and pear fruit. Plant Physiol, 1979, 64:197~202.
    Benhamou N J, Grenier, M.Chrispeels. Accumulation of β-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiol, 1991, 97:739~750.
    Bernier G, Havelange A, Houssa C, et al. Physiological signals that induce flowering. The Plant Cell, 1993, 5:1147~1155.
    Ber(?)ter J, ME Studer Feusi, P R(?)edi. Sorbitol and sucrose partitioning in the growing apple fruit. J Plant Physiol, 1997a, 151:269~276.
    Ber(?)ter J, ME Studer Feusi, P R(?)edi. The effect of girdling on carbohydrate partitioning in the growing apple fruit. J Plant Physiol, 1997b, 151:277~285.
    Ber(?)ter J, ME Studer, Feusi. Comparison of sorbitoi transport in excised tissue discs and cortex tissue of intact apple fruit. J Plant Physiol, 1995, 146: 95~102.
    Beurter J. Sugar accumulation and changes in the activities of related enzymes during development of the apple fruit. J.Plant Physiol. 1985, 139:331~341
    BG Ayre, F Keller and R Turgeon. Symplastic contiuity between companion cells and the translocation stream:long-distance transport is controlled by retention and retrieval mechanism in the phloem. Plant Physiology, 2003,131:1518~1528.
    Bigazzi M. Ultrastructural and cyto chemical observation on fibrillar intranuclear inclusions in the family Campanulaceae. Caryologia, 1986, 39:199~210.
    Blackbourn HD, Jeger MJ, John E Inhibition of degreening in the peel of bananas ripened at tropical temperatures. Ⅱ. Changes in plastid ultrastructure and chlorophyllpretein complexes accompanying ripening in bananas and plantains. Ann.Appl.Biol, 1990, 117:147~161.
    Blakeney A B,Mutton L L. A simple colorimetric method for determination of sugar in fruit and vegetable. J. Sci. Food Agri. 1980, 31:889~897
    Bonald B,Fisher and Core E Cash-Clark. Sieve tuber unloading and post-phloem transport of fluore scent tracers and proteins injected into sieve tubers via severed Aphid stylets. Plant Physiology, 2001, 123:125~137
    Bret-Harte M, Silk WK. Nonvascular, symplasmic diffusion of sucrose cannot satisfy the carbon demands on plasmodemata. In: BES Gunning, AW Robards, eds, Intercellular Communication in plants. Springer-Verlag, Berlin, 1994, pp291~295.
    Brown SC, Coombe BG. Solute accumulation by grape pericarp cells. Ⅲ. Sugar changes in vivo and the effect of shading. Bioehem Physiol Pflanz, 1985,180:371~381
    Burkle, Hibberd JM, Quick WP, et al. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobaccl leaves. Plant Physiol, 1998, 118:59~69.
    Bush D. Electrogenieity, prl-dependence and stoichiometry of the proton-sucrose symplast. Plant Physiology, 1990, 9:1590~1596.
    C Kuhn, VR Franeeschi,A Schulz,R Lemoine,WB Frommer.Macromolecular traficking indicated by localization and turnover of sucrose transporters in enucleate sieve element. Science, 1997, 275,
    
    28:1298~1300.
    Canny MJ. What becomes of the transpiration stream? Tansley Review no. 22. New Phytologist, 1990, 114:341~368.
    Carrington JC, Kasschau KD. Cell-to-cell and long distance transport of viruses in plants. The Plant Cell, 1996, 8:1669~1681.
    Chen BY, Y Wang, HW Janes. ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit. Plant Physiol, 1998, 116:101~106.
    Chen JQ, CC Black. Biochemical and immunological properties of alkaline invertase isolated from sprouting soybean hypocotyls. Arch.Biochem.Biophys, 1992, 295:61~69.
    Chiplin GR et al. Differential softening and physico-chemical changes in the mesocarp of ripening mango fruit. Acta Hort, 1990, 269:233~239.
    Christina Ku" hn, Mohammad-Reza Hajirezaei, Alisdair R. Fernie, Ute Roessner-Tunali,Tomasz Czechowski, Brigitte Hirner, and Wolf B. Frommer. The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiology, 2003, Vol. 131:102-113,
    Christina Kuhn, Mohammad-Reza Hajirezaei, et al. Changes in soluble sugar and activity of α-galactosidases and acid invertase during muskmelon (Cucumis melo 1.) fruit development. J Plant Physiol, 1997, 151:41~50.
    Cleland KF, Fujiwara T, Lucas WJ. Plasmodesmata-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma, 1994, 178:81~85.
    Cochrane MP. Morphology of the crease region in relation to assimilate uptake and water loss during caryopsis development in barley and wheat. Aust. J.Plant.Physiol., 1983, 10(6):473~491.
    Cole, Coleman J. Internization of fluorescein isothiocyanate-dextran by suspension-cultured plant cells. Journal of Cell Science, 1990, 96:721~730.
    Coombe BG Research on development and ripening of the grape berry. Amer. J Enol.Vitic., 1992, 43(1):101~110.
    Coombe BG. The development of fleshy fruits. Ann. Rev. Plant Physiol, 1986, 27:507~528.
    Crawford KM, Zambryski PC. Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr. Biol., 2000, 10:1032~1040.
    Crawford RM, Braendle R. Oxygen deprivation stress in achanging envirnment. J Exp.Bot.,1976, 47:145~149.
    Dali N, Mich aud D, Yelle S. Evidence for the involvement of sucrose phosphate synthase in the
    pathway of sugar accumulation in sucrose-accumulating tomato fruits. Plant Physiology, 1992, 99:434~439.
    Damon S, Hewitt J. Sink metabolism in tomato fruit. Ⅱ.Phloem unloading and sugar uptake. Plant Physiology, 1988, 87:731~736.
    David E Ramos. Walnut orchard management. Oakland: published by Division of Agriculture and Natural Resources University of California, 1985, 92~94.
    
    
    Davis C,Robinson S E Sugar accumulation in grape berries.Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissue. Plant Physiol, 1996, 111:275~283
    Dejong, T Hendriks, H Thomas. Transient reduction in secreted 32kDa chitinase prevents somatic embryogenensis in the carrot (Daucus carrot L.) variant cell development. Genetics. 1995, 16(4):332~343.
    Delrot S. Proton fluxes associated with sugar uptake in vicia faba leaf tissue. Plant Physiology, 1981, 68:706~711.
    Ding B, Itaya A, Woo Y. Plasmodesmata and cell-to-cell communication in plants. Int. Rev. Cytol. 1999, 190:251~316.
    Ding B, Parthasarathy MV, Niklas K, et al. A morphometric analysis of the phloem unloading pathway in developing tabacco leaves. Planta, 1988, 176:307~318.
    Ding B. Intercellular protein trafficking through plasmodesmata. Plant Mol. Biol., 1998, 38:279~310.
    DP Zhang, YM Lu, YZ Wang, et al. Acid invertase is predominately localized to cell walls of both the practically symplastically isolated sieve element/companion cell complex and parenchyma cells in developing apple fruits. Plant Cell and Environment, 2001,24(7): 691~702
    Dylewsi DP, Singh NK, Cherry JH. Effect of heat shock and adaptation on the ultrastructure of cowpea (Vigna unguiculata)cells. Protoplasma, 1991, 163:125~135.
    Egli DB.and W P. Bruening. Source-sink relationships, seed sucrose levels and seed growth rates in soybean. Annals of Botany, 2001, 88: 235~242.
    Ehlers K, Kollmann R. Synchronization of mitotic activity in protoplast-derived Solanum nigrum L. microcalluses is correlated with plasmodesmal connectivity. Planta, 2000, 210:269~278.
    Eliott K J, Butler WO, et al. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol. Biol., 1993, 21:515~524.
    Ellis EC, Turgeon R, Spanswick RM. Quantitative analysis of photosynthate unloading in developing seeds of Phaseolus vulgaris. Ⅱ. Pathway and turgor sensitivity. Plant Physiol, 1992,99:644~651
    Epel BL, Bandurski RS. Tissue to tissue symplastic communication in the shoots of etiolated corn seedling, Plant Physiol, 1990,79:604~609
    Erwee MG, Goodwin PB. Characterization of the Egeria densa leaf symplat: response to plasmolysis, deplasmolysis and to aromatic amino acids. Protoplasma, 1984, 122(3):162~168.
    Erwee MG, Goodwin PB. Characterization of the Egeria densa Planch. Leaf symplast. Inhibition of the intercellular movement of fluorescent probes by group Ⅱ ions. Planta, 1983, 158:320~328.
    Erwee MG, Goodwin PB. Symplast domains in extra stellar tissues of Egenia densa Planch. Planta, 1985,163:9~19.
    Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants. Plant Sci, 2000, 154:1~11.
    Farrar JF. Fluxes of carbon in roots of barley plants. New Phytol, 1985, 99:57~69
    Faust M. Phosiology of temperature zone fruit trees. New York: John wiley and Sons, 1989, 223~241.
    
    
    Felker FC, Shannon FC. Movement of (14)~C-labelled assimilates into pernels of Zea mays L. An anatomical examination and microautoradiographic study of assimilate transfer. Plant physiology, 1980, 65:864~870.
    Fieuw S, Willenbrink J. Isolation of protoplasts from tomato fruit(Lycopersicon esculentum): first uptake studies. Plant Sci., 1991, 76: 9~17.
    Fieuw S, Willenbrink J. Sugar transport and sugar-metabolising enzymes in sugar beet storage roots (Beta vulgaris ssp. altissima). J Plant Physiol, 1990,137:216~223
    Fisher DB, Oparka KJ. Post-phloem transport: principles and problem. Journal of Experimental Botany, 1996, 47, Special Issue, pp1141~1154.
    Forney CF, Breen PJ. Sugar content and uptake in the structure berry fruit. Journal of the American Horticultural Society, 1986, 111:241~258.
    Frantisˇek Balusˇka, Fatima Cvrcˇkova', John Kendrick-Jones, Dieter Volkmann Frommer WB, Sonnewald V. Molecular analysis of cabon partitioning in solanaceous species. Journal of Experimental Botany, 1995, 46:587~607.
    Frantisˇek Balusˇka., Fatima Cvrcˇkova', John Kendrick-Jones, and Dieter Volkmann. Sink plasmodesmata as gateways for phloem unloading. Myosin Ⅷ and calreticulin as molecular determinants of sink strength? Plant Physiology, 2001, Vol. 126, 39~46.
    Frommer WB, U Sonnewald. Molecular analysis of carbon partitioning in solanaeeous species. J.Exp.Bot, 1995, 46:587~607.
    Gahrtz M, Schmelzer E, Stolz J et al. Expression of the Pm SUC1 sucrose carrier gene from plantago major L. is induced during seed development. Plant Journal, 1996, 9:93~100.
    Gamalei Y. Structure and function of leaf minor veins in trees and herbs. Trees, 1989, 3:96~110.
    Gao Z,Petreikov M,Zamski E,et al. Carbohydrate metabolism during early fruit development of sweet melon(Cucumis melo). Plant Physiol, 1999, 106:1~8
    Gerace L, Comeau C, Benson M. Organization and modulation of nuclear lamina structure. J Cell Sci., 1990, 1(Suppl.):137~160.
    Ghoshroy S, Freedman K, Lartey R, Citovsky V. Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J., 1998, 13:591~602.
    Ghoshroy S, Lartey R., Sheng J, Citovsky V. Transport of proteins and nucleic acids through plasmodesmata. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, 48:27~50.
    Giaquinta RT, Wlin NL. Sadler, VR Franceschi. Pathway of phloem unloading in corn roots. Plant Physiol., 1983, 72:362~367.
    Gifford RM, Thorne JH, Hitz WD, et al. Crop productivity and photoassimilate partitioning. Science, 1984, 225:801~808.
    Gilbertson RL, Lucas WJ. How do viruses traffic on the 'vascular highway'? Trends Plant Sci., 1996, 1:260~268.
    Gillaspy G, Ben David H, Grussem W. Fruit: a development perspective. The Plant Cell, 1993, 5:1939~1451.
    
    
    Gisel A, Barella S, Hempel FD, Zambryski PC. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development, 1999, 126:1879~1889.
    Golecki B, Schulz A, Thompson GA. Translocation of structural P proteins in the phloem. The Plant Cell, 1999, 11:127~140.
    Goodwin PB. Molecular size limit for movement in the symplast of the Elodea leaf. Planta, 1983, 157: 124~130.
    Grigon N, Tourain B. 6(5)carboxyfluorescein as a tracer of phloem sap translocation. Amer.J. Bot, 1989, 76(6): 871~877.
    Grookes PR, Grierson D. Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation. Plant Physiol., 1983, 72:1088~1093.
    Grusak MA, DI Beebe, R Turgeon. Phloem loading.In:Zamski,E.and A.A.Schaffer,(ed.):Photoassimilate distribution in plants and crops;source-sink relationships, Marcel Dekker, Inc,New York.1996,PE209~228.
    Haupt S, Duncan GH, Holzberg S, Oparka KJ. Evidence for symplastic phloem unloading in sink leaves of barley. Plant Physiol, 2001,125:209~218
    Herbers K, Sonnenwald U. Molecular determinants of sink strength. Curt Opin Plant Biol, 1998, 1:207~216.
    Herve C,Christina B,T Ameglio and P Cruiziat. Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles.Fact or artifacts? Plant Physiology, 2000, 124:1191~1202.
    Hirose T, Imaizumi N, Scofield GN, et al. cDNA cloning and tissue specific expression of a gene for sucrose transporter from rices (Oryza sativa L.). Plant Cell Physiol, 1997, 38:1389~1396.
    Imlau A, Truenit E, Sauer N. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissue. The Plant Cell, 1999,11: 309~322.
    Isla MI, Vattuone MA, Ordonez RM, et al. Invertase activity associated with the walls of Solanum tuberosum tubers. Phytochemistry, 1999, 50:525~534.
    Jacobs M J, et al. Enumeration, location, characterization of endophytic bacteria within sugar beetroots. Can. J. Bot., 1985, 63:1262~1265.
    Jang JC, Sheen J. Sugar sensing in higher plants. The Plant Cell, 1994, 6:1665~1679.
    Johnson C, Hall JL. Pathway of uptake and accumulate of sugars in tomato fruit. Ann. Bot, 1988, 61:593~603.
    Karl J. Oparka and Alison G. Roberts. Plasmodesmata. A not so open-and-shut case. Plant Physiology, 2001, 125:123~126.
    Katja Juergensen, Joachim Scholz-Stacke. The companion cell-specific Arabidopsis disacchride carrier AtSUC2 is expressed in nematode-induced syncytia. Plant Physiology, 2003, 131:61~69
    Kempers R, A Ammerlaan, AJE Van Bel. Symplasmic constriction and ultrastructural features of sieve
    
    element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol. 1998, 116:271~278.
    Kempers R, Prior DAM, et al. Plasmodesmata between sieve element and companion cell of extrafascicular stem phloem of cucurbita maxima permit passage of 3kDa flulorescent probes.The Plant Journal, 1993, 4:567~575.
    Kevin AE, Maddy D, Ruth AM, et al. GFP2moesin illuminates act in cyto skeleton dynamics in living and demonst rates cell shape changes during morphogenesis in Drosophila. Developmental Biology, 1997, 191(1):103~117.
    King GA, Herdson KG, Lill RE. Growth and anatomical and ultrastructure studies of nectarine fruit cell development. Bot Gaz., 1987, 148:443~455.
    Kiyosue T, Shinozaki K. Cloning of a carrot cDNA for a member of the family of ADP-ribosylation factors (ARFs) and charaeterizationof the binding of nucleotides by its product after expression in E.coli. Plant Cell Physiology, 1995, 36(5):849~856.
    KJ Oparka, R Turgeon. Sieve elements and companion cell-traffic control. Developmental Biology, 1993, 161(1):203~217.
    Knoblauch M, AJE Van Bel. Sieve tube in action. The Plant Cell, 1998, 10:35~50.
    Koch KE, Avigne WT. Post-phloem non-vascular transfer in citrus kinetics metabolism and sugar gradients. Plant Physiology, 1990, 93:1405~1416.
    Koch KE, Lowell CA. Assimilate transfer through citrus juice vesicle stalk: a non-vascular portion of the transport path. In: Cronshaw J, Lucas WJ. Phloem transport, New York: AR Liss, Inc. 1986, 247~258.
    Koch KE, Xu J, McCarty DR. A maise invertase clone. Maise Gen. Coop. Newsletter, 1992, 66:46~49.
    Komatsu A,Takanokura Y, Moriguchi T, et al.Differential expression of three sucrose phosphate synthase isoforms during accumulation in titus fruit(Citrus unshiu Marc.). Plant Sci., 1999, 140:169~178
    Krishnan HB, Pueppke SG. Cherry fruit invertase: partial purification, characterization and activity during fruit development. J. Plant Physiol. 1990, 135:662~666
    Lang A, During H. Partitioning control by water potential gradient. Evidence for compartation breakdown in grape berries. Journal of Experimental Botany, 1991,42:1117~1122.
    Laurière C, M Laurière, A Sterm, L.Faya, MJ Chrispeels. Characterization of β-fructosidase, an extracellular glycoprotein of carrot cells. Biochemistry, 1988, 70:1483~1491.
    Lin W, Schmitt MR, Giaquinta RT, et al. Sugar transport in isolated corn root protoplasts. Plant Physiology, 1984, 76(4):894~897.
    Loescher WH. Physiology and metabolism of sugar alcohols in higher plants. Physiol.Plant, 1987, 70:553~557.
    Lucas W J, Ding B, Van der schoot C. Plasmodesmata and the supracelluar nature of plants. New Phytologist, 1993, 125:435~476.
    Macerae E,Quiek W P, Benk C,et al. Carbohydrare metablisim during posthavest ripening in kivifruit. Planta. 1992, 188:314-325
    
    
    Mahajan SK, Schaad MC. Cell wall architecture of the elongating maize coleoptile. Plant Physiology, 2001, Vol.127: 551~565.
    Mansfied MA, Linge WL, Key JL. The effects of lethal heat shock on non~adapted and thermotolerant root cell of Glycine max. J Ultrastr. Mol. Res., 1988, 99:96~105.
    Matsuda Y, Liang G, Zhu Y, Ma F, Nelson RS, Ding B. The Commelina yellow mottle virus promoter drives companion cell-specific gene expression in multiple organs of transgenic tobacco. Protoplasma, 2002, 10:1007~1019
    McLean BG, Hempel FD, Zambryski PC. Plant intercellular communication via plasmodesmata. The Plant Cell, 1997, 9:1043~1054.
    Mierzwa RJ, Evert RF. Plasmodesmatal frequency in the root of sugar beet. American Journal of Botany, 1984, 71:39(s).
    Minchin PEH, MR Thorpe, JW Palmer, RF Picton. Carbon partitioning between apple fruit: short-term and long-term response to availability of photosynthate. J. Exp. Bot., 1997, 48:1401~1406.
    Misaghi IJ, et al. Endophytic bacteria in symptom-free cotton plants. Phytopathology, 1990, 80:808~811.
    Murphy R. Phloem transport plant biology. Alank, Liss Inc., New York, Spring er-verlag, Berlin, 1986, pp259~262
    Murphy R. Water flow across the sieve tube boundary estimating turgor and some implications for phloem loading and unloading. Ⅳ. Root tips and seed coats. Annals of Botany, 1989, 63:571~579.
    Nancy A, Eckardt. A calcium-regulated gatekeeper in phloem sieve tubes. The Plant Cell, May 2001, Vol.13: 989.
    Nicholas C Carpita, Marianne Defernez, Kim Findlay, Brian Wells, Douglas A. Shoue, Gareth Catchpole, Reginald H. Wilson, and Maureen C. McCann. Communication between the Maternal Testa and the embryo and/or endosperm affect Testa attributes in tomato. Plant Physiology, 2003, Vol.133: 145~160.
    Nii N, Coombe BG. Structure and Development of the berry and pedicel of the grape. Acta Hort, 1983, 139:129~140.
    Offler CE, B Horder. The cellular pathway of short distance transfer of photosynthates in developing tomato fruit. Plant Physiol, 1992, 99(suppl.): 41.
    Offier CE, Patrick KJ. Pathway of photosynthate transfer in the developing seed of Vicia faba L.: a structural assessment of the role of transfer cells in unloading from the seed coat. J Exp Bot., 1993, 44: 1~24.
    Offier CE, SM Nerlich, JW Patrick. Pathway of photosynthate transfer in the developing seed of Vicia faba L.transfer in relation to seed anatomy. J Exp.Bot., 1989, 40:769~780.
    Oparka KJ, Duckett CM, Prior DAM, et al. Real-time imaging of phloem unloading in the root of Arabidopsis. The Plant Journal, 1994, 6:759~766.
    Oparka KJ, Gates P. Transport of assimilate in the developing caryopsis of rice. The pathway of water and assimilate carbon. Planta, 1981, 152:388~396.
    
    
    Oparka K J, Murant EA, Wright KM, et al. The drug probenecid inhibits the vacular accumulation of fluorescent anions in onion epidermal cells. Journal of Cell Science, 1991, 99:557~563.
    Oparka KJ, Prior DA. (14)~C-sucrose efflux from the perimedulla of growing potato tuber. Plant Cell and Environment, 1987, 10:667~675.
    Oparka KJ, Prior DA. Movement of Lucifer Yellow CH in potato tuber storge tissue. A comparison of symplastic and apoplastic transport. Planta, 1988, 176:533~540.
    Oparka K J, Prior DAM, Wright KM. Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana. J Exp Bot, 1995, 46: 187~199.
    Oparka K J, Roberts AG, Boevink P, Santa Cruz S, Roberts ;Ⅰ Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell, 1999, 97:743~754.
    Oparka K J, Santa Cruz S. The great escape: Phloem transport and unloading of macromolecules. Annu. Rev. Plant Physiol., 2000, 51:323~347.
    Oparka KJ, Turgeon R. Sieve elements and companion cells: traffic control centers of the phloem. The Plant Cell, 1999, 11:739~750.
    Oparka KJ, Van Bel AJE. Pathway of phloem loading and unloading. A plea for uniform terminology. In: Pollock CJ. Farrar JF, Gordon A J, eds. Carbon partition within and between organisms. Oxford: BIOS, Scientific Publishers Ltd, 1992, 249~254.
    Oparka KJ, Viola R, Wright KM, et al. Sugar transport and metabolism in the potato tuber. In:Pollock CJ, Farrar JF. Goron AJ, eds. Carbon portioning within and between organisms. Oxford: BIOS Scientific Publishers Ltd, 1992, 91~114.
    Oparka KJ. Phloem unloading in the potato tuber. Pathway and sites of ATPase. Protoplasma, 1986, 131:201~210.
    Oparka KJ. Uptake and compartmentation of fluorescent probes by plant cells. Journal of Experimental Botany, 1991, 42: 565~579.
    Oparka KJ. What is phloem unloading? J.Plant Physiol., 1990, 94:393~396.
    Palmquist EM. The path of fluorescein movement in the kidney bean. American Journal of Botany, 1979, 26:665~667.
    Palmquist EM. The simultaneous movement of carbohydrates and fluorescein in opposite directions in the phloem. American Journal of Botany, 1978, 25:97~105.
    Patrick JW and Offler CE. Post-sieve element transport of sucrose in developing seed. Aust. J. Plant Physiology, 1995,22:681~702.
    Patrick JW, Offier CE. Post-sieve element transport of photoassimilates in sink regions. Journal of Experimental Botany, 1996, 47:1165~1177.
    Patrick JW, Offler CE. Post-sieve element transport of sucrose in developing seeds. Aust. J. Plant. Physiol, 1995, 22:681~702.
    Patrick JW. Sieve element unloading: celluar pathway, mechanism and control. Plant Physiol, 1990, 78:298~308.
    
    
    Patrik JW. Phloem unloading: Sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol, 1997,48:191~222
    Peng YiBen, Zhang DaPeng. Ultrastructure of epidermis and flesh of the developing apple fruit. Acta Botanica Sinica., 2000, 42(8):749~802.
    Pfister-Sieber M, Braendle R. Aspects of plant behavior under anoxia and post-anoxia. Proc Royal Soc Edinburgh, 1994, 102B:313~324.
    Pfluger J, Zambryski PC. Cell growth: the power of symplasmic isolation. Curr. Biol., 2001, 11:436~439.
    Platt-Aloia KA, Thomson WW. Ultrastructure of the mesocarp of mature avocado fruit and changes associated with ripening. Ann.Bot., 1981, 48:451~465.
    Pomper KW, Breen P J, Levels of apoplastic solutes in developing strawberry fruit. Journal of Experimental Botany. 1995, 46:743~752.
    Quick WP, AA Schaffer. Sucrose metabolism in sources and sinks. In:Zamski, E., and A.A.Schaffer(ed.). Photoassimilate distribution in plants and crops; source-sink relationships,. Marcel Dekker, 1996, Inc, New York. PP. 115~156
    Qun Zhu, Maria Isabel Ordiz, Tsegaye Dabi, Roger N. Beachy, Chris Lam bRF Evert. Sieve-tube structure in relation to function. Bio Science, 1982, Vol.32,No. 10:789~795.
    R Turgeon,R Medville, and KC Nicon. The evolution of minor vein phloem and phloem loading. American J.Botany, 2001, 88(8):1331~1339.
    R Viola, AG Robert, S Haupt, S Gazzani,RD Hancock.Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. The Plant Cell, 2001, 13:385~398.
    Raven PH, Evert RF, Eichhorn SE. The evolution of fruits. In PH Raven, RF Evert, SE Eichhorn, eds, Biology of Plants(Fifth Edition). Worth Publishers, New York, 1992, pp429~435
    Richard D Sjolund. The phloem sieve element:a river runs through it. The Plant Cell, 1997,9:1137~1146.
    Riesmeier JW, Himer B, Frommer WB. Expression of the sucrose transporter from potato correlates with the sink-to-source transition in leaves. The Plant Cell, 1993,5:1591~1598
    Riesmeier JW, Willmitzer L, Frommer WB. Isolotion and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J., 1992, 11:4705~4713.
    Roesmeier JW, B Hirner, WB Frommer. Potato sucrose transporter expression in minor veins indicates a role in phloem loading. The Plant Cell, 1993, 5:1591~1598.
    Ronald K,Ankie A and Aart JE van Bel. Symplasmic constriction and ultrastructrue features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmiclly phloem-loading species. Plant Physiology, 1998,116:271~278.
    Roshani Shakya and Arnd Sturm. Characterization of source-and sink-specific sucrose/H+ symporters from carrot. Plant Physiology, 1998, 118:1473~1480
    Ruan YL, JW Patrick. The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta, 1995, 196:443~449.
    Ruan YL, Llewellyn DJ, Furbank RT. The control of single-celled cotton fiber elongation by
    
    developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K transporters and expansion. The Plant Cell, 2001, 13:47~60.
    Ruan YL, Patrick JW. The celluar pathway of post-phlom sugar transport in developing tomato fruit. Planta, 1995, 196:434~444.
    Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ. The phloem as a conduct for inter-organ communication. Curr. Opin. Plant Biol., 2001, 4:202~209.
    Sarer N, T Caspari F, Klebl F, W Tanner. Functional expression of the chlorella hexose transporter in Schizosaccharomyces pombe. Proc.Natl.Acad.Sci., 1990, 87:7949~7952.
    Sauer N, Baier K, Gahrtz M., Stadler R., Stolz J, Truernit E. Sugar transport across the plasma membrane of higher plants. Plant Mol. Biol., 1994, 26:1671~1679.
    Sauer N, Friedlaader, Graml-wicke U. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J., 1990, 9:3045~3050.
    Sauer N, R Stadler. A sink specific H+/monosaccharide contransporter from Nicotiana tobacum: cloning and heterologous expression in baker's yeast. Plant J., 1993, 4:601~610.
    Sauer N, Stolz. SUC1 and SUC2: two sucrose transporter from Arabidopsis thaliana: expression and characterization in beker's yeast and identification of the histidine-tagged protein. Plant Journal. 1994, 6:67~77.
    Sauer N, Tanner W. The hexose carrier from chorella cDNA cloning of an eukaryotic H+-cotransporter. FEBS lett., 1989, 259:43~46.
    Sauer N. Sugar transport across the Plasma membrane of higher plants. Plant Mol Biol., 1994, 26:1671~1679.
    Schmalstig JG, Geiger DR. Phloem unloading in developing leaves of sugar beet. Ⅰ: Evidence for pathway through the symplast. Plant Physiol, 1985, 79: 237~241.
    Schuiz A. Phloem: structure related to function. Prog Bot., 1998, 59:430~447
    Schulz A. Plasmodesmal widening accompanies the shortterm increase in symplastic phloem unloading in pea root tips under osmotic stress. Protoplasma, 1995, 188:22~37.
    Sinnewald U, L Willmitzer. Molecular approaches to sink-source interactions. Plant Physiol., 1992, 99:1267~1270.
    Smith AM, Denyer K. Starch synthesis in developing pea embryos. New phytologist, 1992, 122:21~3.
    Sophie Haupt, George H Duncan, Steve Holzberg, Karl J Oparka. Evidence for symplastic phloem unloading in sink leaves of barley. Plant Physiology, 2001, Vol. 125:209~218.
    Stefan Meyer, Christian Lauterbach, Matthias Niedermeier, Inga Barth, Richard D. Sjolund and Norbert Sauer. Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiology, 2004, 134: 684~693.
    Stewart WW. Lucifer dyes-highly fluorescent dyes for biological tracing. Nature, 1981,292:17~21.
    Stonmel JR, Simon PW. Multiple forms of invertase from Daucus carota cell culture. Phytochem, 1990, 29:2087~2089.
    Sung S JS, Xu D-P. Identification of activity filling sucrose sinks. Plant Physiology, 1989, 89:1117~
    
    1121.
    Suttle TC, Kende H. Ethylene action and loss of memberane integrity during petal senescence in tradescatia. Plant Physiol., 1980, 65:1067~1072.
    Tayler MA, E Rabe, Gjacobs MC Dood. Physiological and anatomical changes associated with ripening in the inner and outer mesocarp of cold stored songold plums and the concomitant of development internal disorders. J. Hor. Sci., 1993, 68(6): 911~918.
    Tegeder M, Wang XD, Frommer WB, et al. Sucrose transport into developing seeds of Pisum Sativum L. Plant Journal, 1999, 18(2): 151~161.
    Terru BR, Robards AW. Hydrodynamic radius atone governs the mobility of molecules through plasmodesmata. Pianta, 1987, 171:145~157.
    Thebud R, Santarius KA. Effect of high-term perature stress on various biomembranes of leaf cell in sita and in vitro. Plant Phiol., 1982, 70:200~205.
    Thompson GA, Schulz A. Macromolecular trafficking in the phloem. Trends Plant Sci., 1999, 4:354~360.
    Thorne JH. Phloem unloading of C and N assimilates in developing seeds. Ann. Rev. Plant Physiol, 1985, 36:317~343.
    Thome JH. Phloem unloading of C and N assimilates in developing seeds. Ann. Rev. Plant Physiol., 1985, 36:317~343.
    Thorpe MR, PE Minchin. Mechanisms of long-distance and short-distance transport from sources to sinks.In: Zamski E and AA SCHAFFER, (ed.): Photoassimilate distribution in plants and crops; source-sink relationships, Marcel Dekker, Inc,New York. 1996, pp261~282.
    Tomasz Czechowski, Brigitte Hirner, Wolf B Frommer. The Sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiology, 2003, Vol. 131:102~113.
    Tomos AD, Pritchard J. Biophysical and biochemical control of cell expansion in roots and leaves. Jounal of Experimental Botany, 1994, 45:1721~1731.
    Truerrit E, Sauer N. The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ synporter gene directs expression of β-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta, 1995, 196:564~570.
    Tucker EB. Calcium-loaded 1,2-bis(2-aminophenoxy)-N,N,N,N'-tetraacetic acid blocks cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Planta, 1990, 182:34~38.
    Turgeon R, Beebe DU, Gowan E. The intermediary cell: minor-anatomy and raffinose oligosaccharide synthesis in the Scrophulariaceae. Planta, 1993, 191:446~456.
    Turgeon R. Phloem unloading in tobacco sink leaves: insensitivity to anoxia indicates a symplastic pathway. Planta, 1987, 171:73~81.
    Turgeon R. Plasmodesmata and solute exchange in the phloem. Aust. J. Plant Physiol., 2000, 27:521~529.
    Turgeon R., Medville R, Nixon KC. The evolution of minor vein phloem and phloem loading. Am. J.
    
    Bot., 2001, 88:1331~1339.
    V Haywood, Friedrick Kragler and W Lucas. Plasmodesmata: pathways for protein and ribonucleoprotein signaling. The Plant Cell, 2002,Supplement,S303~S325.
    Van Bel Aart JE. Transport phloem:low profile,high impact. Plant Physiology, 2003,132:1509~1510.
    Van Bel AJE, Kempers R. Symplasmic isolation of the sieve element-companion cell complex in the phloem of Ricinus communis and Salix alba stems. Planta, 1991, 183:69~76.
    Van Bel AJE, Van Rijen HVM. Microelectroderecorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta, 1994, 192:165~175.
    Van der Schoot C, Van Bel AJE. Glass microelectrode measurements of sieve tube membrane potentials in internode discs and petiole strips of tomato (Solanum lycopersicum L.). Protoplasma, 1989, 149:144~154.
    Van der Schoot C, Van Bel AJE. Mapping membrane potential differences and dye coupling in internodal tissues of tomato(Solanum lycopersicum L.). Planta, 1989, 182:9~21.
    Vizzoto G, Pinton R, Varanini Z, et al. Sucrose accumulation in developing peach fruit. Physiol Plant, 1996, 96:225-230
    Von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBOJ. 1990, 9, 3033~3044.
    Wang F, Sanz A, Brenner M Let al. Sucrose synthase, starch accumulation and tomato fruit strength. Sugar accumulation and changes in the activities of related enzymes during development of the apple fruit. J.Plant Physio, 101:321-327
    Wang HL, Offler CE. Patrick JW. The celluar pathway of photosynthate transfer in the developing wheat grain.Ⅱ: A structural analysis and histochemical studies of the pathway from the crease phloem to the endosperm cavity. Plant cell and Enviroment, 1995,18:373~388.
    Wang N, Fisher DB. The use of fluorescent tracer to characterize the post-phloem transport pathway in maternal tissues of developing wheat grains. Plant Physiology, 1994,125:17~27.
    Warmbrodt RD. Studies on the roots of Zea Mays L. Structure of the adventitious roots with respect to phloem unloading. Botany Cazettle, 1985, 146:169~180.
    Weber H, Borisjuk L, Heim U, et al. A role for sugar transports during seed development:molecular characterization of a hexose and a sucrose carrier in fava bean seeds. The Plant Cell, 1997, 9(6): 895~908.
    Weig A, Komor E. An active sucrose carrier(SCH)that is predominantly expressed in the seedling of Rianus Communis L. J. Plant phyisol, 1996, 147:685~690.
    Wright KM, Oparka KJ. Metabolic inhibitors induce symplastic movement of solutes from the transport phloem of Arabidopsis roots. J. Exp. Bot., 1997, 48:1807~1814.
    Wright KM, Oparka KJ. Physicochemical properties alone do not predict the movement and
    
    compartmentation of fluorescent xenobiotics. Journal of Experimental Botany, 1994, 45(270): 35~44.
    Wright KM, Oparka KJ. The fluorescent probe HPTS as a phloem-mobile, symplastic tracer an evaluation using confocal laser scanning microscopy. Journal of Experimental Botany, 1996, 47,(296): 439~445.
    Wyse RE, Cronshaw J et al. (eds). Phloem transport. Alan R. Liss Inc. New York, 1986, p197.
    Wyse RE. Sucrose uptake by sugar beet tap root tissue. Plant Physiology, 1979, 64: 837~841.
    Yamaguchi H, Kanayama, J Soejima, S Yamaki. Changes in the amounts of the NAD-dependent sorbitol dehydrogenase and its involvement in the development of apple fruit. J.Amer.Soc.Hort.Sci, 1996, 121:848~852.
    Yamaki S. Physiolgy and metabolism and compartment:Biochemistry of sugar metablism and compartmentation in fruit. Acta Hort., 1995, 398:109~120
    Yong-Ling Ruan, Danny J Llewellyn, Robert T Furbank. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K1 transporters andexpansin. The Plant Cell, 2001, Vol. 13: 47~60.
    Young-min Woo, Amy M Clore, Ronald J Burnett, Newton P Carneiro, Brian A LarkinsZein. Protein interactions, rather than the asymmetric distribution of zein mRNAs on endoplasmic reticulum membranes, influence protein body formation in maize endosperm. The Plant Cell, 2002, 14: 655~672.
    Zambryski, P, Crawford K. Plasmodesmata: Gatekeepers for cell-to-cell transport of developmental signals in plants. Annu. Rev. Cell Dev. Biol., 2000, 16:393~421.
    Zamski E. Anatomical and physiological characteristics of sink cells. In: Zamski, E. and A.A.SCHAFFER,(ed.):Photoassimilate distribution in plants and crops: source-sink relationships,PP.283~310. Marcel Dekker, Inc, New York.(1996)
    Zhang DP, Chen SW, Peng YB, Shen YY. Abscisic acid-specific binding sites in the flesh of developing apple fruit. J Exp Bot, 2001a, 52:2097~2103
    Zhang DP, Lu YM, Wang YZ, Duan CQ, Yah HY, Acid invertase is predominantly localized to cell walls of both the practically symplasmically isolated element/companion cell complex and parenchyma cells in developing apple fruits. Plant Cell Environ, 2001b,24:691~702
    Zhang DP, M LI, Y Wang. Ultrastructural changes in the mesocarp cells of grape berry during its development. Acta Bot. Sin., 1997, 39:389~396
    Zhang DP, Wang YZ. Post-translational inhibitory regulation of acid invertase induced by fructose and glucose in developing apple fruit. Sci Chin (Ser C), 2002, 45:309~321
    Zhang LY, Peng YB, Travier SP, Fan Y, Lu YF, Lu YM, Gao XP, Shen YY, Delrot S and Zhang DP. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol., 2004, 135(1):574~586
    Zhang WC, WM Yan. Organic substances transportation in higher plants. Beijing: Science Press, 1987. 57~88
    
    
    Zhao R, Dielen V, Kinet JM, Boutry M. Co-suppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. The Plant Cell, 2000,12:535~546
    Zhu Y, Green L, Woo YM, Owens R, Ding B. Cellular basis of potato spindle tuber viroid systemic movement. Virology, 2001, 279:69~77.
    Zhu Y, Qi Y, Xun Y, Owens R, Ding B. Movement of potato spindle tuber viroid reveals regulatory Points of phloem-mediated RNA traffic. Plant Physiol, 2002,130:138~146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700