从自然到仿生:超疏水材料制备方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:From Nature to Biomimetics: Studies on the Preparation of the Superhydrophobic Materials
  • 作者:屈孟男
  • 论文级别:博士
  • 学科专业名称:有机化学
  • 学位年度:2008
  • 导师:曹小平 ; 张俊彦
  • 学科代码:070303
  • 学位授予单位:兰州大学
  • 论文提交日期:2008-05-01
摘要
本论文以自然界中多种超疏水性现象为基础,发展了一系列针对于不同种类材料的超疏水表面制备方法,同时进行了详细的结构表征和有关的性能测试.主要研究内容和结论如下:
     1.综述了对自然界中超疏水现象的研究进展,以及在此基础上所发展的仿生超疏水表面的制备方法研究进展.并对超疏水表面的种类、超疏水表面的性质和一些潜在应用做出了归纳.
     2.提出了一种新颖的合金超疏水性表面的制备方法:对于钢、铜和钛合金,通过湿化学刻蚀和表面化学修饰使其表面呈现出优异的超疏水性能;详细研究了这些合金超疏水性材料的表面结构以及表面化学成分;考察了钢和铜合金在腐蚀环境下的超疏水性能;最后对这一现象给出了相关的理论解释.
     3.提出了一种新颖的贵金属超疏水表面的制备方法:对于惰性金属铂,在钛硅基底上通过在阳极氧化铝模板的孔道中电沉积铂纳米线的方法构筑出了超疏水表面所要求的微纳米复合结构,并通过表面化学修饰获得了由铂纳米线阵列组成的超疏水表面;详细研究了所制备的超疏水材料的表而结构以及表面化学成分;并考察了其在在腐蚀环境下的超疏水性能;此方法可以拓展到其它的贵金属的超疏水表面的制备中.
     4.提出了导电聚合物超疏水表面的制备方法:对丁聚苯胺,首次在钛硅基底上在阳极氧化铝模板的孔道中沉积聚苯胺纳米线的方法构筑出了超疏水表面所要求的微纳米复合结构,并通过表面化学修饰获得了聚苯胺纳米线阵列组成的超疏水表面;同时还考察了所制备的超疏水材料的表而结构以及表而化学成分;并考察了其在腐蚀环境下的超疏水性能;此方法可以拓展到其他的导电聚合物的超疏水表面的制备中.
Inspired by the superhydrophobic phenomena in the nature, a series of methods for the superhydrophobic surfaces preparation of different kinds of materials were developed. The detail structure investigation and the related properties of the fabricated superhydrophobic surfaces were carried out. The main contents and conclusions are listed in the following.
     1. The recent development of the studies on superhydrophobic phenomena which existed in the nature was reviewed. The current biomimetic preparation of the superhydrophobic surfaces, the category of the artificial superhydrophobic surfaces, the properties of the superhydrophobic surfaces, and the potential applications of the superhydrophobic surfaces were reviewed too.
     2. A novel preparation method of superhydrophobic surface for the steel, copper and titanium alloy was presented that the wet-chemical etching method and the surface modification were employed to fabricate biomimetic superhydrophobic surfaces on these engineering materials. The topography and the chemical composition of these surfaces were investigated in detail. The superhydrophobicity of the steel and copper alloy in the corrosive environment were also evaluated. The related theory models were employed to explain this phenomenon.
     3. A novel preparation method of superhydrophobic surface for the noble metal was presented that a superhydrophobic surface was achieved on Pt via the electrodeposition of Pt into the pores of anodic aluminum oxide template followed by surface fluorination. The topography and the chemical composition of the surface were investigated in detail. The preparation method is easily to be extended from platinum to other metal materials.
     4. A preparation method of superhydrophobic surface for the conducting polymer was demonstrated that Polyaniline was electrodeposited into the pores of anodic aluminum oxide template followed by surface fluorination. The topography and the chemical composition of the surface were investigated. The preparation method is able to be extended from Polyaniline to other conducting polymers.
引文
1. (a) Makal, U.; Uslu, N.; Wynne, K. J. Water Makes It Hydrophobic, Contraphilic Wetting for Polyurethanes with Soft Blocks Having Semifluorinated and 5,5-Dimethylhydantoin Side Chains. Langmuir 2007, 23, 209.
    (b) Zheng, Z.; Azzaroni, O.; Zhou, F.; Huck, W. T. S. Topography Printing to Locally Control Wettability. J. Am. Chem. Soc. 2006,128, 7730.
    (c) Li, T.; Liu, S.; Feng, S.; Aubrey, C. E. Face-Integrated Fukui Function, Understanding Wettability Anisotropy of Molecular Crystals from Density Functional Theory. J. Am. Chem. Soc. 2005, 127, 1364.
    (d) Li.; K. W. Scaling of Spontaneous Imbibition Data with Wettability Included. J. Contam. Hydrol. 2007, 89, 218.
    (e) Schembre. J. M.; Tang, G. Q.; Kovscek, A. R. Wettability Alteration and Oil Recovery by Water Imbibition at Elevated Temperatures. J. Petrol. Sci. Eng. 2006, 52, 131.
    (f) Hwang, S.; Lee, K. P.; Lee, D. S.; Powers, S. E. Effects of Fractional Wettability on Capillary Pressure-Saturation-Relative Permeability Relations of Two-Fluid Systems. Adv. Water Resour. 2006, 29, 212.
    2. (a) Bergeron, V.; Bonn, D.; Martin, J. Y.; Vovelle, L. Controlling Droplet Deposition with Polymer Additives. Nature, 2000, 405, 772.
    (b) Mahadevan, L. Non-Stick Water. Nature, 2001, 411, 895.
    (c) Cottin-Bizonne, C.; Barrat, J.-L.; Bocquet, L.; Charlaix, E. Low-Friction Flows of Liquid at Nanopatterned Interfaces. Nat. Mater. 2003, 2, 237.
    (d) Quere, D.; Lafuma, A.; Bico, J. Slippy and Sticky Microtextured Solids. Nanotechnology, 2003,14, 1109.
    3. (a) Blossey, R. Self-Cleaning Surfaces-Virtual Realities. Nat. Mater. 2003, 2, 301.
    (b) Liu, Y.; Mu, L.; Liu, B.; Kong, J. Controlled Switchable Surface. Chem. Eur. J. 2005, 11, 2622.
    (c) Parkin, I. P.; Palgrave, R. G. Self-Cleaning Coatings. J. Mater. Chem. 2005, 15, 1689.
    (d) Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Bioinspired Surfaces with Special Wettability. Acc. Chem. Res. 2005, 38, 644.
    4. Feng, X. Jiang, L. Design and Creation of Superwetting/Antiwetting Surfaces. Adv. Mater. 2006,18, 3063.
    5. (a) Zhai, L.; Cebeci, F. C.; Cohen, R. E.; Rubner, M. F. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Lett. 2004, 4, 1349.
    (b) Guo, Z.; Zhou, F.; Hao, J.; Liu, W. Stable Biomimetic Super-Hydrophobic Engineering Materials. J. Am. Chem. Soc. 2005, 127, 15670.
    (c) Truesdell, R.; Mammoli, A.; Vorobieff, P.; Swol, F. V.; Brinker, C. J. Drag Reduction on a Patterned Superhydrophobic Surface. Phys. Rev. Lett. 2006, 97, 044504.
    (d) Meng, X. M.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Dong, L.; Xiao, Z. Y.; Liu, Y. C.; Fan, X. W. Wettability Conversion on ZnO Nanowire Arrays Surface Modified by Oxygen Plasma Treatment and Annealing. Chem. Phys. Lett. 2005, 413, 450.
    6. (a) Ma, M. L.; Hill, R. M. Superhydrophobic Surfaces. Curr. Opin. Colloid In. 2006, 11, 193.
    (b) Nakajima, A. Design of a Transparent Hydrophobic Coating. J. Ceram. Soc. Jpn. 2004, 112, 533.
    (c) Nakajima, A.; Hashimoto, K.; Watanabe, T. Recent Studies on Super-Hydrophobic Films. Monatsh. Chem. 2001,132, 31.
    (d) Callies, M.; Quere, D. On Water Repellency. Soft. Mater. 2005,1, 55.
    7. (a) Youngblood, J. P.; McCarthy, T. J. Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma. Macromolecules 1999, 32, 6800.
    (b) Oner, D.; McCarthy, T. J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000,16, 7777.
    (c) Wier, K. A.; Gao, L.; McCarthy, T. J. Two-Dimensional Fluidics Based on Differential Lyophobicity and Gravity. Langmuir 2006, 22, 4914.
    (d) Gao, L.; McCarthy, T. J. The "Lotus Effect" Explained: Two Reasons Why Two Length Scales of Topography Are Important. Langmuir 2006, 22, 2966.
    8. (a) Ohmae, N. Humidity effects on tribology of advanced carbon materials. Tribol. Int. 2006, 39, 1497.
    (b) Nakajima, A.; Hashimoto, K.; Watanabe, T. Recent Studies on Super-Hydrophobic Films. Monatsh. Chem. 2001, 132, 31.
    (c) Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Langmuir 2000,16, 7044.
    9. (a) Shirtcliffe, N. J.; Pyatt, F. B.; Newton, M. I.; McHale, G. A Lichen Protected by a Super-Hydrophobic and Breathable Structure. J. Plant Physiol. 2006, 163, 1193.
    (b) Patankar, N. A. Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars. Langmuir 2004, 20, 8209.
    10. (a) Richard, D.; Clanet, C; Quere, D. Surface Phenomena: Contact Time of a Bouncing Drop. Nature 2002, 417, 811.
    (b) Singh, S.; Houston, J.; van Swol, F.; Brinker, C. J. Superhydrophobicity: Drying Transition of Confined Water. Nature 2006, 442, 526.
    (c) Ma, M; Hill, R. M. Superhydrophobic Surfaces. Curr. Opin. Colloid In. 2006,11,193.
    11. (a) Gao, X.; Jiang, L. Biophysics: Water-Repellent Legs of Water Striders. Nature 2004, 432, 36.
    (b) Dickinson, M. Animal Locomotion: How to Walk on Water. Nature 2003, 424, 621.
    12. Barthlott, W.; Neinhuis, C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces Planta 1997, 202, 1.
    13. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces, From Natural to Artificial. Adv. Mater. 2002, 14, 1857.
    14. (a) Mock, U.; Forster, R.; Menz W.; Ruhe, J. Towards Ultrahydrophobic Surfaces: a Biomimetic Approach. J. Phys.-Condens. Mat. 2005, 17, S639.
    (b) Otten, A.; Herminghaus, S. How Plants Keep Dry: a Physicist's Point of View. Langmuir 2004, 20, 2405.
    (c) Guo, Z.; Liu, W. Biomimic from the Superhydrophobic Plant Leaves in Nature, Binary Structure and Unitary Structure. Plant Sci. 2007,172, 1103.
    15. (a) Wagner, T.; Neinhuis, C; Barthlott, W.; Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures. Acta Zool. 1996, 77, 213.
    (b) Lee, W.; Jin, M.-K.; Yoo, W.-C.; Lee, J.-K. Nanostructuring of a Polymeric Substrate with Weil-Defined Nanometer-Scale Topography and Tailored Surface Wettability. Langmuir 2004, 20, 7665.
    16. Martin, J. T.; Juniper, B. E. The Cuticles of Plants. Edward Arnold, London, 1970.
    17. Koch, K.; Dommisse, A.; Barthlott, W. Chemistry and Crystal Growth of Plant Wax Tubules of Lotus (Nelumbo nucifera) and Nasturtium (Jropaeolum majus) Leaves on Technical Substrates. Cryst. Growth Des. 2006, 6, 2571.
    18. Wenzel, R. N. Resistance of Solid Surface to Wetting by Water. Ind. Eng. Chem. 1936,28, 988.
    19. Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944,40,546.
    20. (a) Lafuma, A.; Quere, D. Superhydrophobic States. Nat. Mater. 2003, 2, 457.
    (b) Bico, J.; Marzolin, C.; Quere, D. Pearl Drops. Europhys. Lett. 1999, 47, 220.
    (c) Ishino, C.; Okumura, K.; Quere, D. Wetting Transitions on Rough Surfaces. Europhys. Lett. 2004, 68,419.
    21. (a) Marmur, A. The Lotus Effect: Superhydrophobicity and Metastability. Langmuir 2004, 20, 3517.
    (b) Dupuis, A.; Yeomans, J. M. Modeling Droplets on Superhydrophobic Surfaces: Equilibrium States and Transitions. Langmuir 2005, 21, 2624.
    (c) Patankar, N. A. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces. Langmuir 2003, 19, 1249.
    (d) Patankar, N. A. Transition between Superhydrophobic States on Rough Surfaces. Langmuir 2004, 20, 7097.
    22. (a) He, B.; Patankar, N. A.; Lee, J. Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces. Langmuir 2003, 19, 4999.
    (b) Patankar, N. A. Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars. Langmuir, 2004, 20, 8209.
    23. (a) Baret, J.-C; Decre, M.; Herminghaus, S.; Seemann, R. Electroactuation of Fluid Using Topographical Wetting Transitions. Langmuir 2005, 21, 12218.
    (b) Buehrle, J.; Herminghaus, S.; Mugele, F. Impact of Line Tension on the Equilibrium Shape of Liquid Droplets on Patterned Substrates. Langmuir 2002,18, 9771.
    24. Decher, G.; Hong, J. D. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process. I. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles on Charged Surfaces. Makromol. Chem., Macromol. Symp. 1991, 46, 321.
    25. (a) Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Science 1997, 277, 1232.
    (b) Zhang, X.; Shen, J. Self-Assembled Ultrathin Films: From Layered Nanoarchitectures to Functional Assemblies. Adv. Mater. 1999, 11, 1139.
    (c) Hammond, P. T. Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Adv. Mater. 2004, 16, 1271.
    (d) Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. Ultrathin Polymer Coatings by Complexation of Polyelectrolytes at Interfaces: Suitable Materials, Structure and Properties. Macromol. Rapid Commun. 2000, 27, 319.
    26. (a) Phuvanartnuruks, V.; McCarthy, T. J. Stepwise Polymer Surface Modification: Chemistry-Layer-by-Layer Deposition. Macromolecules 1998, 31, 1906.
    (b) Chen, W.; McCarthy, T. J. Layer-by-Layer Deposition: a Tool for Polymer Surface Modification. Macromolecules 1997, 30, 78.
    27. Shi, F.; Wang, Z.; Zhang, X. Combining a Layer-by-Layer Assembling Technique with Electrochemical Deposition of Gold Aggregates to Mimic the Legs of Water Striders. Adv. Mater. 2005,17, 1005.
    28. Zhai, L.; Cebeci, F. C.; Cohen, R. E.; Rubner, M. F. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Lett. 2004, 4, 1349.
    29. Zhai, L.; Berg, M. C; Cebeci, F. C.; Kim, Y.; Milwid, J. M.; Rubner, M. F.; Cohen, R. E. Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle. Nano Lett. 2006, 6, 1213.
    30. Zhang, L.; Chen, H.; Sun, J.; Shen, J. Layer-by-Layer Deposition of Poly(diallyldimethyl ammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate-Facile Method to Prepare a Superhydrophobic Surface. Chem. Mater. 2007,19, 948.
    31. Jisr, R. M.; Rmaile, H. H.; Schlenoff, J. B. Hydrophobic and Ultrahydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes. Angew. Chem. Int. Ed. 2005, 44, 782.
    32. (a) Rusu, M.; Kuckling, D.; Mohwald, H.; Schonhoff, M. Adsorption of Novel Thermosensitive Graft-Copolymers: Core-Shell Particles Prepared by Polyelectrolyte Multilayer Self-Assembly. J. Colloid Interf. Sci. 2006, 298, 124.
    (b) Li, H.; Meng, B.; Di, Y.; Li, X. Self-Assembled Colloidal Crystalline Arrays Using Hollow Colloidal Spheres. Synthetic Met. 2005, 149, 225.
    (d) Feng, J. J.; Zhou, C. Orientational Defects Near Colloidal Particles in a Nematic Liquid Crystal. J. Colloid Interf. Sci. 2004, 269, 72.
    33. Ming, W.; Wu, D.; van Benthem, R.; de With, G. Superhydrophobic Films from Raspberry-like Particles. Nano Lett. 2005, 5, 2298.
    34. Lim, H. S.; Han, J. T.; Kwak, D.; Jin, M.; Cho, K. Photoreversibly Switchable Superhydrophobic Surface with Erasable and Rewritable Pattern. J. Am. Chem. Soc. 2006,128, 14458.
    35. Zhang, X.; Shi, F.; Yu, X.; Liu, H.; Fu, Y.; Wang, Z.; Jiang, L.; Li, X. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface. J. Am. Chem. Soc. 2004,126, 3064.
    36. Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Chabrol, G.; Perry, C. C. Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces. Adv. Mater. 2004, 16, 1929.
    37. Han, J. T.; Jang, Y.; Lee, D. Y.; Park, J. H.; Song, S.-H.; Ban, D.-Y.; Cho, K. Fabrication of a Bionic Superhydrophobic Metal Surface by Sulfur-Induced Morphological Development. J. Mater. Chem. 2005, 75, 3089.
    38. Yan, H.; Kurogi, K.; Mayama, H.; Tsujii, K. Environmentally Stable Super Water-Repellent Poly(alkylpyrrole) Films. Angew. Chem. Int. Ed. 2005, 44, 3453.
    39. Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process. J. Am. Chem. Soc. 2005,127, 13458.
    40. (a) Roig, A.; Molins, E.; Rodriguez, E.; Martinez, S.; Moreno-Mafias, M.; Vallribera, A. Superhydrophobic Silica Aerogels by Fluorination at the Gel Stage. Chem. Commun. 2004, 2316.
    (b) Tadanaga, K.; Morinaga, J.; Matsuda, A.; Minami, T. Superhydrophobic-Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol-Gel Method. Chem. Mater. 2000,12, 590.
    (c) Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Perry, C. C. Intrinsically Superhydrophobic Organosilica Sol-Gel Foams. Langmuir 2003,19, 5626.
    (d) Rao, A. V.; Kulkarni, M. M.; Bhagat, S. D. Transport of Liquids Using Superhydrophobic Aerogels. J. Colloid Interf. Sci. 2005, 285, 413. (e) Rao, A. V.; Hegde, N. D.; Hirashima, H. Absorption and Desorption of Organic Liquids in Elastic Superhydrophobic Silica Aerogels. J. Colloid Interf. Sci. 2007, 305, 124.
    41. Hikita, M.; Tanaka, K.; Nakamura, T.; Kajiyama, T.; Takahara, A. Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups. Langmuir 2005, 21, 7299.
    42. Shang, H. M.; Wang, Y.; Limmer, S. J.; Chou, T. P.; Takahashi, K.; Cao, G. Z. Optically Transparent Superhydrophobic Silica-Based Films. Thin Solid Films 2005, 472, 37.
    43. Wu, X.; Zheng, L.; Wu, D. Fabrication of Superhydrophobic Surfaces from Microstructured ZnO-Based Surfaces via a Wet-Chemical Route. Langmuir 2005, 21,2665.
    44. Han, J. T.; Lee, D. H.; Ryu, C. Y.; Cho, K. Fabrication of Superhydrophobic Surface from a Supramolecular Organosilane with Quadruple Hydrogen Bonding. J. Am. Chem. Soc. 2004,126, 4796.
    45. Teshimaa, K.; Sugimurab, H.; Inouec, Y.; Takaic, O.; Takano, A. Transparent Ultra Water-Repellent Poly(ethylene terephthalate) Substrates Fabricated by Oxygen Plasma Treatment and Subsequent Hydrophobic Coating. Appl. Surf. Sci. 2005, 244, 619.
    46. (a) Song, X.; Zhai, J.; Wang, Y.; Jiang, L. Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties. J. Phys. Chem. B 2005, 109, 4048.
    (b) Jin, M.; Feng, X.; Xi, J.; Zhai, J.; Cho, K.; Feng, L.; Jiang, L. Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force. Macro. Rapid Commun. 2005, 26, 1805.
    47. (a) Guo, Z. G.; Zhou, F.; Hao, J. C; Liu, W. M. Effects of System Parameters on Making Aluminum Alloy Lotus. J. Colloid Interf. Sci. 2006, 303, 298.
    (b) Qian, B.; Shen, Z. Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates. Langmuir 2005, 21, 9007.
    48. (a) Akamatsu, K.; Ikeda, S.; Nawafune, H.; Yanagimoto, H. Direct Patterning of Copper on Polyimide Using Ion Exchangeable Surface Templates Generated by Site-Selective Surface Modification. J. Am. Chem. Soc. 2004, 126, 10822.
    (b) Husemann, M.; Morrison, M.; Benoit, D.; Frommer, J.; Mate, C. M.; Hinsberg, W. D.; Hedrick, J. L.; Hawker, C. J. Manipulation of Surface Properties by Patterning of Covalently Bound Polymer Brushes. J. Am. Chem. Soc. 2000,122, 1844.
    (c) Roy, S.; Thomas, J. M.; Holmes, E. A.; Kellis, J. T., Jr.; Poulose, A. J.; Robertson, C. R.; Gast, A. P. Simultaneous Observation of Enzyme Surface Diffusion and Surface Reaction Using Microfluidic Patterning of Substrate Surfaces. Anal. Chem. 2005, 77, 8146.
    (d) Liu, Y.; Klep, V.; Luzinov, I. To Patterned Binary Polymer Brushes via Capillary Force Lithography and Surface-Initiated Polymerization. J. Am. Chem. Soc. 2006,128, 8106.
    (e) Stroock, A. D.; Dertinger, S. K.; Whitesides, G. M.; Ajdari, A. Patterning Flows Using Grooved Surfaces. Anal. Chem. 2002, 74, 5306.
    49. Abdelsalam, M. E.; Bartlett, P. N.; Kelf, T.; Baumberg, J. Wetting of Regularly Structured Gold Surfaces. Langmuir 2005, 21, 1753.
    50. Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C. D. W.; Riehle, M. O. Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns. Nano Lett. 2005, 5, 2097.
    51. Notsu, H.; Kubo, W.; Shitanda I.; Tatsuma T.; Super-Hydrophobic/Super-Hydrophilic Patterning of Gold Surfaces by Photocatalytic Lithography. J. Mater. Chem. 2005, 15, 1523.
    52. (a) Park, K.-H.; Marshall, W. J. Remarkably Volatile Copper(II) Complexes of N,N'-Unsymmetrically Substituted 1,3-Diketimines as Precursors for Cu Metal Deposition via CVD or ALD. J. Am. Chem. Soc. 2005,127, 9330.
    (b) Lourie, O. R.; Jones, C. R.; Bartlett, B. M.; Gibbons, P. C; Ruoff, R. S.; Buhro, W. E. CVD Growth of Boron Nitride Nanotubes. Chem. Mater. 2000, 12, 1808.
    (c) Zheng, B.; Lu, C.; Gu, G.; Makarovski, A.; Finkelstein, G.; Liu, J. Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor. Nano Lett. 2002, 2, 895.
    (d) Klinke, C.; Bonard, J.-M.; Kern, K. Formation of Metallic Nanocrystals from Gel-like Precursor Films for CVD Nanotube Growth: An in Situ TEM Characterization. J. Phys. Chem. 52004,108, 11357.
    (e) Cooper, J. B.; Pang, S.; Albin, S.; Zheng, J.; Johnson, R. M. Fabrication of Boron-Doped CVD Diamond Microelectrodes. Anal. Chem. 1998, 70, 464.
    (f) Hwang, S.; Choi, H.; Shim, I. Copper CVD Precursors Containing Alkyl 3-Oxobutanoate Ligands. Chem. Mater. 1996, 8, 981.
    (g) Ding, Z.; Hu, X.; Lu, G. Q.; Yue, P.-L.; Greenfield, P. F. Novel Silica Gel Supported TiO_2 Photocatalyst Synthesized by CVD Method. Langmuir 2000,16, 6216.
    53. Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; McKinley, G. H.; Gleason, K. K. Superhydrophobic Carbon Nanotube Forests. Nano Lett. 2003, 3,1701.
    54. Huang, L.; Lau, S. P.; Yang, H. Y.; Leong, E. S. P.; Yu, S. F.; Prawer, S. Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film. J.Phys. Chem. B 2005,109, 7746.
    55. Li, S.; Li, H.; Wang, X.; Song, Y.; Liu, Y; Jiang, L.; Zhu, D. Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes. J. Phys. Chem. B. 2002,106, 9214.
    56. Gu, Z.-Z.; Uetsuka, H.; Takahashi, K.; Nakajima, R.; Onishi, H.; Fujishima, A.; Sato, O. Structural Color and the Lotus Effect. Angew. Chem. Int. Ed. 2003, 42, 894.
    57.
    (a) Wnek, G. E.; Carr, M. E.; Simpson, D. G.; Bowlin, G. L. Electrospinning of Nanofiber Fibrinogen Structures. Nano Lett. 2003, 3, 213.
    (b) Salalha, W.; Dror, Y.; Khalfin, R. L.; Cohen, Y.; Yarin, A. L.; Zussman, E. Single-Walled Carbon Nanotubes Embedded in Oriented Polymeric Nanofibers by Electrospinning. Langmuir 2004, 20, 9852.
    (c) Kim, G-M.; Wutzler, A.; Radusch, H.-J.; Michler, G. H.; Simon, P.; Sperling, R. A.; Parak, W. J. One-Dimensional Arrangement of Gold Nanoparticles by Electrospinning. Chem. Mater. 2005, 17, 4949.
    (e) Li, D.; Wang, Y.; Xia, Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3, 1167.
    (f) Li, J.; He, A.; Zheng, J.; Han, C. C. Gelatin and Gelatin-Hyaluronic Acid Nanofibrous Membranes Produced by Electrospinning of Their Aqueous Solutions. Biomacromolecules 2006, 7, 2243.
    58. Ma, M.; Hill, R. M.; Lowery, J. L.; Fridrikh, S. V.; Rutledge, G. C. Electrospun Poly(Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity. Langmuir 2005, 21, 5549.
    59. Ma, M.; Mao, Y; Gupta, M.; Gleason, K. K.; Rutledge, G. C. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition. Macromolecules 2005, 38, 9742.
    60. Erbil, H. Y.; Demirel, A. L.; Avc, Y.; Mert, O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science 2003, 299, 1377.
    61. Chen, A.; Peng, X.; Koczkur K.; Miller, B. Super-Hydrophobic Tin Oxide Nanoflowers. Chem. Commun. 2004,1964.
    62. Zhu, Y; Zhang, J.; Zheng, Y; Huang, Z.; Feng, L.; Jiang, L. Stable, Superhydrophobic, and Conductive Polyaniline/Polystyrene Films for Corrosive Environments. Adv. Funct. Mater. 2006,16, 568.
    63. Jiang, L.; Zhao, Y.; Zhai, J. A Lotus-Leaf-like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics. Angew. Chem. Int. Ed. 2004, 43, 4338.
    64. Li, H.; Wang, X.; Song, Y.; Liu,Y.; Li, Q.; Jiang,L.; Zhu, D. Super-"Amphiphobic" Aligned Carbon Nanotube Films. Angew. Chem. Int. Ed. 2001, 40, 1743.
    65. (a) Hong, Y. C; Shin, D. H.; Cho, S. C; Uhm, H. S. Surface Transformation of Carbon Nanotube Powder into Super-Hydrophobic and Measurement of Wettability. Chem. Phys. Lett. 2006, 427, 390.
    (b) Meng, X. Q.; Zhao, D. X.; Zhang, J. Y.; Shen, D. Z.; Lu, Y. M.; Dong, L.; Xiao, Z. Y.; Liu, Y. C.; Fan, X. W. Wettability Conversion on ZnO Nanowire Arrays Surface Modified by Oxygen Plasma Treatment and Annealing. Chem. Phys. Lett. 2005, 413, 450.
    (c) Zhu, Y.; Zhang, J. C; Zhai, J.; Zheng, Y. M.; Feng, L.; Jiang, L. Multifunctional Carbon Nanofibers with Conductive, Magnetic and Superhydrophobic Properties. ChemPhysChem 2006, 7, 336.
    (d) Wang, S.; Feng, L.; Jiang, L. One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces. Adv. Mater. 2006, 18, 767.
    (e) Wang, S.; Feng, X.; Yao, J.; Jiang, L. Controlling Wettability and Photochromism in a Dual-Responsive Tungsten Oxide Film. Angew. Chem. Int. Ed. 2006, 45, 1264.
    (f) Wu, X.; Shi, G. Production and Characterization of Stable Superhydrophobic Surfaces Based on Copper Hydroxide Nanoneedles Mimicking the Legs of Water Striders. J. Phys. Chem. B 2006, 110, 11247.
    (g) Gao, L.; McCarthy, T. J. A Perfectly Hydrophobic Surface (θ_A/θ_R = 180°/180°). J. Am. Chem. Soc. 2006, 128, 9052.
    (h) Ferrari, M.; Ravera, F.; Liggieri, L. Preparation of a Superhydrophobic Surface by Mixed Inorganic-Organic Coating. Appl. Phys. Lett. 2006, 88, 203125.
    (i) Xiao, W.; Huang, Z.; He, Z. Tuning the Wettability on La_(0.7)Sr_(0.3)MnO_3 Coatings from Superhydrophilicity to Superhydrophobicity by Hierarchical Microstructure. Appl. Phys. Lett. 2006, 89, 083101.
    66. (a) Muto, H.; Kusumori, T.; Nakamura, T.; Asano, T.; Hori, T. New PLAD Apparatus and Fabrication of Epitaxial Films and Junctions of Functional Materials: SiC, GaN, ZnO, Diamond and GMR Layers. Appl. Surf. Sci. 2006, 252, 4886.
    (b) Castaneda, L.; Garcia-Valenzuela, A.; Zironi, E. P.; Cafietas-Ortega, J.; Terrones, M.; Maldonado, A. Formation of Indium-Doped Zinc Oxide Thin Films Using Chemical Spray Techniques: The Importance of Acetic Acid Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport. Thin Solid Films 2006, 503, 212.
    (c) Gao, P. X.; Wang, Z. L. Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals. J. Am. Chem. Soc. 2003,125,11299.
    (d) Hu, J. Q.; Li, Q.; Wong, N. B.; Lee, C. S.; Lee, S. T. Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers. Chem. Mater. 2002, 14, 1216.
    (e) Shim, M.; Guyot-Sionnest, P. Organic-Capped ZnO Nanocrystals: Synthesis and n-Type Character. J. Am. Chem. Soc. 2001,123, 11651.
    (f) Liu, D. F.; Xiang, Y. J.; Wu, X. C; Zhang, Z. X.; Liu, L. F.; Song, L.; Zhao, X. W.; Luo, S. D.; Ma, W. J.; Shen, J.; Zhou, W. Y.; Wang, G.; Wang, C. Y.; Xie, S. S. Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers. Nano Lett. 2006, 6, 2375.
    67. Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. J. Am. Chem. Soc. 2004,126, 62.
    68. Feng, X.; Zhai, J.; Jiang, L. The Fabrication and Switchable Superhydrophobicity of TiO_2 Nanorod Films. Angew. Chem. Int. Ed 2005, 44, 5115.
    69. Zhu, W.; Feng, X.; Feng, L.; Jiang, L. UV-Manipulated Wettability between Superhydrophobicity and Superhydrophilicity on a Transparent and Conductive SnO_2 Nanorod Film. Chem. Commun. 2006,2753.
    70. Chen, S.; Hu, C.; Chen, L.; Xu, N. Facile Fabrication of Superhydrophobic Surface from Micro/Nanostructure Metal Alkanethiolate Based Films. Chem. Commun. 2007, 1919.
    71. Larmour, I. A.; Bell, S. E. J.; Saunders, G. C. Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition. Angew. Chem. Int. Ed. 2007,46,1710.
    72. Luo, Z.; Zhang, Z.; Hu, L.; Liu, W.; Guo, Z.; Zhang, H.; Wang, W. Stable Bionic Superhydrophobic Coating Surface Fabricated by a Conventional Curing Process. Adv. Mater. 2008, 20, 970.
    73. Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angew. Chem. Int. Ed. 2002, 41, 1221.
    74. Feng, L.; Song, Y.; Zhai, J.; Liu, B.; Xu, J.; Jiang, L.; Zhu, D. Creation of a Superhydrophobic Surface from an Amphiphilic Polymer. Angew. Chem. Int. Ed. 2003, 42, 800.
    75. Yabu, H.; Shimomura, M. Single-Step Fabrication of Transparent Superhydrophobic Porous Polymer Films. Chem. Mater. 2005,17, 5231.
    76. Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner, D.; Youngblood, J.; McCarthy, T. J. Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langmuir 1999, 75, 3395.
    77. Feng, L.; Yang, Z.; Zhai, J.; Song, Y.; Liu, B.; Ma, Y.; Yang, Z.; Jiang, L.; Zhu, D. Superhydrophobicity of Nanostructured Carbon Films in a Wide Range of pH Values. Angew. Chem. Int. Ed. 2003, 42,4217.
    78. (a) Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-Induced Amphiphilic Surfaces. Nature 1997, 388, 431.
    (b) Lee, D.; Rubner, M. F.; Cohen, R. E. All-Nanoparticle Thin-Film Coatings. Nano Lett. 2006, 6, 2305.
    79. Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate. Adv. Mater. 1999,11, 1365.
    80. Y.; Wu, Sugimura, H.; Inoue, Y.; Takai, O. Thin Films with Nanotextures for Transparent and Ultra Water-Repellent Coatings Produced from Trimethylmethoxysilane by Microwave Plasma CVD. Chem. Vap. Deposition 2002, 8,47.
    81. Bravo, J.; Zhai, L.; Wu, Z.; Cohen, R. E.; Rubner, M. F. Transparent Superhydrophobic Films Based on Silica Nanoparticles. Langmuir 2007, 23, 7293.
    82. Kousik, G.; Pitchumani, S.; Renganathan, N. G. Electrochemical Characterization of Polythiophene-Coated Steel. Prog. Org. Coat. 2001, 43, 286.
    83. Li, M.; Zhai, J.; Liu, H.; Song, Y.; Jiang, L.; Zhu, D. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. J. Phys. Chem. B 2003,107, 9954.
    84. Zhao, N.; Shi, F.; Wang, Z.; Zhang, X. Combining Layer-by-Layer Assembly with Electrodeposition of Silver Aggregates for Fabricating Superhydrophobic Surfaces. Langmuir 2005, 21, 4713.
    85. Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Perry, C. C. Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir 2005, 21, 937.
    86. Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L. Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. Adv. Mater. 2005, 17, 1977.
    87. (a) Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch,W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J.; Adhesive Force of a Single Gecko Foot-Hair. Nature 2000, 405, 681.
    (b) Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Y. Microfabricated Adhesive Mimicking Gecko Foot-Hair. Nat. Mater. 2003, 2, 461.
    88. (a) McHale, G; Herbertson, D. L.; Elliott, S. J.; Shirtcliffe, N. J.; Newton, M. I. Electrowetting of Nonwetting Liquids and Liquid Marbles. Langmuir 2007, 23, 918.
    (b) Herbertson, D. L.; Evans, C. R.; Shirtcliffe, N. J.; McHale, G.; Newton, M. I. Electrowetting on Superhydrophobic SU-8 Patterned Surfaces. Sensor. Actuat. A: Phys.2006,130,189.
    89. Shen, Y.; Couzis, A.; Koplik, J.; Maldarelli, C.; Tomassone, M. S. Molecular Dynamics Study of the Influence of Surfactant Structure on Surfactant-Facilitated Spreading of Droplets on Solid Surfaces. Langmuir 2005, 21, 12160.
    90. Zhang, X.; Tan, S.; Zhao, N.; Guo, X.; Zhang, X.; Zhang, Y.; Xu, J. Evaporation of Sessile Water Droplets on Superhydrophobic Natural Lotus and Biomimetic Polymer Surfaces. ChemPhysChem, 2006, 7, 2067.
    91. Yoshida, N.; Abe, Y.; Shigeta, H.; Nakajima, A.; Ohsaki, H.; Hashimoto, K.; Watanabe, T. Sliding Behavior of Water Droplets on Flat Polymer Surface. J. Am. Chem. Soc. 2006,128, 743.
    92. Dupuis, A.; Yeomans, J. M. Dynamics of Sliding Drops on Superhydrophobic Surfaces. Europhys. Lett. 2006, 76, 105.
    93. (a) Wasserman, S. R.; Tao, Y. T.; Whitesides, G. M. Structure and Reactivity of Alkylsiloxane Monolayers Formed by Reaction of Alkyltrichlorosilanes on Slicon Substrates. Langmuir 1989, 5, 1074.
    (b) Xia, Y.; Whitesides, G. M. Extending Microcontact Printing as a Microlithographic Technique. Langmuir 1997, 13, 2059.
    (c) Delamarche, E.; Bernard, A.; Schmid, H.; Michel, B.; Biebuyck, H. Patterned Delivery of Immunoglobulins to Surfaces Using Microfluidic Networks. Science 1997, 276, 779.
    (d) Bu, W.; Li, H.; Sun, H.; Yin, S.; Wu, L. Polyoxometalate-Based Vesicle and Its Honeycomb Architectures on Solid Surfaces. J. Am. Chem. Soc. 2005, 127, 8016.
    (e) Rao, A. V.; Kulkarni, M. M.; Bhagat, S. D. Transport of Liquids Using Superhydrophobic Aerogels. J. Colloid Interf. Sci. 2005, 285, 413.
    94. (a) Notsu, H.; Kubo, W.; Shitanda I.; Tatsuma T.; Super-Hydrophobic/Super-Hydrophilic Patterning of Gold Surfaces by Photocatalytic Lithography. J. Mater. Chem. 2005, 75, 1523.
    (b) Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Perry, C. C.; Roach, P. Porous Materials Show Superhydrophobic to Superhydrophilic Switching. Chem. Commun. 2005, 3135.
    (c) Lin, J.-J.; Chu, C.-C; Chiang, M.-L.; Tsai, W.-C. Manipulating Assemblies of High-Aspect-Ratio Clays and Fatty Amine Salts to Form Surfaces Exhibiting a Lotus Effect. Adv. Mater. 2006, 18, 3248.
    (d) Tian, Y.; Liu, H.; Deng, Z. Electrochemical Growth of Gold Pyramidal Nanostructures: Toward Super-Amphiphobic Surfaces. Chem. Mater. 2006, 18, 5820.
    (e) Chen, H.; Zhang, F.; Fu, S.; Duan, X. In Situ Microstructure Control of Oriented Layered Double Hydroxide Monolayer Films with Curved Hexagonal Crystals as Superhydrophobic Materials. Adv. Mater. 2006, 75, 3089.
    95. (a) Li, X.; Wan, M. Morphology and Hydrophobicity of Micro/Nanoscaled Cuprous Iodide Crystal. Cryst. Growth Des. 2006, 6, 2661.
    (b) Pacifico, J.; Endo, K.; Morgan, S.; Mulvaney, P. Superhydrophobic Effects of Self-Assembled Monolayers on Micropatterned Surfaces: 3-D Arrays Mimicking the Lotus Leaf. Langmuir 2006, 22, 11072.
    (c) Boyle, D. S.; Govender, K.; O'Brien, P. Novel Wet-Chemical Routes to Nano- and Microstructured Semiconductor Layers for Improved Efficiency Photovoltaic Devices. Thin Solid Films 2003, 431-432, 483.
    (d) Chen, A.; Peng, X.; Koczkur K.; Miller, B. Super-Hydrophobic Tin Oxide Nanoflowers. Chem. Commun. 2004, 1964.
    96. (a) Huang, L.; Kawi, S.; Hidajat, K.; Ng, S. C. Preparation of M41S Family Mesoporous Silica Thin Films on Porous Oxides. Micropor. Mesopor. Mat. 2005, 82, 87.
    (b) Panella, B.; Hirscher, M. Hydrogen Physisorption in Metal-Organic Porous Crystals. Adv. Mater. 2005, 17, 538.
    (c) Jeong, U.; Ryu, D. Y.; Kho, D. H.; Kim, J. K.; Goldbach, J. T.; Kim, D. H.; Russell, T. P. Enhancement in the Orientation of the Microdomain in Block Copolymer Thin Films upon the Addition of Homopolymer. Adv. Mater. 2004,16, 533.
    97. (a) Wagterveld, R. M.; Berendsen, C. W. J.; Bouaidat, S.; Jonsmann, J. Ultralow Hysteresis Superhydrophobic Surfaces by Excimer Laser Modification of SU-8. Langmuir 2006, 22, 10904.
    (b) Cho, W. K.; Kang, S. M.; Kim, D. J.; Yang, S. H.; Choi, I. S. Formation of Superhydrophobic Surfaces by Biomimetic Silicification and Fluorination. Langmuir 2006, 22, 11208.
    (c) Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C. D. W.; Riehle, M. O. Air-Trapping on Biocompatible Nanopatterns. Langmuir 2006, 22, 11230.
    (d) Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate. Adv. Mater. 1999,11, 1365.
    (e) Feng, L.; Yang, Z.; Zhai, J.; Song, Y.; Liu, B.; Ma, Y.; Yang, Z.; Jiang, L.; Zhu, D. Superhydrophobicity of Nanostructured Carbon Films in a Wide Range of pH Values. Angew. Chem. Int. Ed. 2003, 42, 4217.
    (f) Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G A. J.; Milne, W. I.; McKinley, G. H.; Gleason, K. K. Superhydrophobic Carbon Nanotube Forests. Nano Lett. 2003, 3, 1701.
    98. (a) Oner, D.; McCarthy, T. J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000, 16, 7777.
    (b) Baldacchini, T.; Carey, J. E.; Zhou, M.; Mazur, E. Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser. Langmuir 2006, 22, 4917.
    (c) Erbil, H. Y.; Demirel, A. L.; Avc, Y.; Mert, O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science 2003, 299, 1377.
    (d) Tadanaga, K.; Morinaga, J.; Matsuda, A.; Minami, T. Superhydrophobic-Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol-Gel Method. Chem. Mater. 2000, 12, 590.
    99. (a) Qian, B.; Shen, Z. Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates. Langmuir 2005, 21, 9007.
    (b) Guo, Z.; Zhou, F.; Hao, J.; Liu, W. Stable Biomimetic Super-Hydrophobic Engineering Materials. J. Am. Chem. Soc. 2005,127, 15670.
    100. (a) Youngblood, J. P.; McCarthy, T. J. Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoro ethylene) Using Radio Frequency Plasma. Macromolecules 1999, 32, 6800.
    (b) Jiang, Y.; Wang, Z.; Yu, X.; Shi, F.; Xu, H.; Zhang, X.; Smet, M.; Dehaen, W. Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructures: Toward Fabrication of Superhydrophobic /Superhydrophilic Surfaces and pH-Responsive Surfaces. Langmuir 2005, 21, 1986.
    (c) Zhao, N.; Shi, F.; Wang, Z.; Zhang, X. Combining Layer-by-Layer Assembly with Electrodeposition of Silver Aggregates for Fabricating Superhydrophobic Surfaces. Langmuir 2005, 21, 4713.
    (d) Ma, M.; Hill, R. M.; Lowery, J. L.; Fridrikh, S. V.; Rutledge, G. C. Electrospun Poly(Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity. Langmuir 2005, 21, 5549.
    101. (a) Huang, L.; Lau, S. P.; Yang, H. Y.; Leong, E. S. P.; Yu, S. F.; Prawer, S. Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film. J.Phys. Chem. B 2005, 109, 7746.
    (b) Zhu, L.; Feng, Y.; Ye, X.; Zhou, Z. Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures. Sensor. Actuat. A: Phys. 2006,130-131, 595.
    (c) Zheng, J.; He, A.; Li, J.; Xu, J.; Han, C. C. Studies on the Controlled Morphology and Wettability of Polystyrene Surfaces by Electrospinning or Electrospraying. Polymer 2006, 47, 7095.
    (d) Oner, D.; McCarthy, T. J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000,16,7777.
    102. Ren, S.; Yang, S.; Zhao, Y.; Yu, T.; Xiao, X. Preparation and Characterization of an Ultrahydrophobic Surface Based on a Stearic Acid Self-Assembled Monolayer over Polyethyleneimine Thin Films. Surf. Sci. 2003, 546, 64.
    103. Guo, Z.; Liu, W. Biomimic from the Superhydrophobic Plant Leaves in Nature, Binary Structure and Unitary Structure. Plant Sci. 2007, 172, 1103.
    104. (a) Feng, L.; Song, Y.; Zhai, J.; Liu, B.; Xu, J.; Jiang, L.; Zhu, D. Creation of a Superhydrophobic Surface from an Amphiphilic Polymer. Angew. Chem. Int. Ed. 2003, 42, 800.
    (b) Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angew. Chem. Int. Ed. 2002, 41, 1221.
    105. Bartell, F. E.; Shepard, J. W. The Effect of Surface Roughness on Apparent Contact Angles and on Contact Angle Hysteresis. I. The system Paraffin-Water-Air. J. Phys. Chem., 1953, 57, 211.
    106. Qu, M.; Zhang, B.; Song, S.; Chen, L.; Zhang, J.; Cao, X. Fabrication of Superhydrophobic Surfaces on Engineering Materials by a Solution-Immersion Process. Adv. Funct. Mater. 2007,17, 593.
    107. (a) Martin, C. R. Nanomaterials, A Membrane-Based Synthetic Approach. Science
    1994, 266, 1961.
    (b) Masuda, H.; Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268, 1466.
    (c) Masuda, H.; Nishio, K.; Baba, N. Fabrication of a One-Dimensional Microhole Array by Anodic Oxidation of Aluminum. Appl. Phys. Lett. 1995, 63, 3155.
    (d) Hoyer, P.; Baba, N.; Masuda, H. Small Quantum-Sized CdS Particles Assembled to Form a Regularly Nanostructured Porous Film. Appl. Phys. Lett. 1995, 66, 2700.
    (e) Masuda, H.; Yamada, H.; Satoh, M. Highly Ordered Nanochannel-Array Architecture in Anodic Alumina. Appl. Phys. Lett. 1997, 71, 2770.
    (f) Hoyer, P. Formation of a Titanium Dioxide Nanotube Array. Langmuir 1996, 12, 1411.
    (g) Roukevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M. Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates. J. Phys. Chem. 1996, 100, 14037.
    (h) Evans, P. R.; Yi, G.; Schwarzacher, W. Current Perpendicular to Plane Giant Magnetoresistance of Multilayered Nanowires Electrodeposited in Anodic Aluminum Oxide Membranes. Appl. Phys. Lett., 2000, 76, 481.
    108. (a) Todorovic, M.; Schultz, S. Writing and Reading of Single Magnetic Domain per Bit Perpendicular Patterned Media. Appl. Phys. Lett. 1999, 74, 2516.
    (b) Crouse, D.; Lo, Y.-H.; Miller, A. E.; Crouse, M. Self-Ordered Pore Structure of Anodized Aluminum on Silicon and Pattern Transfer. Appl. Phys. Lett. 2000, 76,49.
    109. (a) Vorobyova. A. I.; Outkina, E. A. Study of Pillar Microstructure Formation with Anodic Oxides. Thin Solid Films 1998, 324, 1.
    (b) Mozalev, A.; Poznyak, A.; Mozaleva, I.; Hassel, A. W. The Voltage-Time Behaviour for Porous Anodizing of Aluminium in a Fluoride-Containing Oxalic Acid Electrolyte. Electrochem. Commun. 2001, 3, 299.
    (c) Mozalev, A.; Surganov, A.; Imai, H. The Formation of Nanoporous Membranes from Anodically Oxidized Aluminium and Their Application to Li Rechargeable Batteries. Electrochim. Acta 2001, 46, 2825.
    (d) Mozalev, A.; Surganov, A.; Magaino, S. Anodic Process for Forming Nanostructured Metal-Oxide Coatings for Large-Value Precise Microfilm Resistor Fabrication. Electrochim. Acta 1999, 44, 3891.
    110. (a) Chu, S. Z.; Wada, K.; Inoue, S.; Todoroki, S. Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate. J. Electrochem. Soc. 2002, 149, B321.
    (b) Rabin, O.; Herz, P. R.; Lin, Y.-M.; Akinwande, A. I.; Cronin, S. B.; Dresselhaus, M. S. Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass. Adv. Funct. Mater. 2003,13, 631.
    111. (a) Tian, M.; Xu, S.; Wang, J.; Kumar, N.; Wertz, E.; Li, Q.; Campbell, P. M.; Chan, M. H. W.; Mallouk, T. E. Penetrating the Oxide Barrier in Situ and Separating Freestanding Porous Anodic Alumina Films in One Step. Nano Lett. 2005, 5, 697.
    (b) Sander, M. S.; Tan, L.-S. Nanoparticle Arrays on Surfaces Fabricated Using Anodic Alumina Films as Templates. Adv. Funct. Mater. 2003,13, 393.
    (c) Lei, Y.; Chim, W. K.; Sun, H. P. Highly Ordered CdS Nanoparticle Arrays on Silicon Substrates and Photoluminescence Properties. Appl. Phys. Lett. 2005, 86, 103106.
    (d) Yang, Y.; Chen, H.; Mei, Y.; Chen, J.; Wu, X.; Bao, X. Anodic Alumina Template on Au/Si Substrate and Preparation of CdS Nanowires. Solid State Commun. 2002, 123, 279.
    (e) Chu, S.-Z.; Wada, K.; Inoue, S.; Hishita, S.-i.; Kurashima, K. Fabrication and Structural Characteristics of Ordered TiO_2-Ru(-RuO_2) Nanorods in Porous Anodic Alumina Films on ITO/Glass Substrate. J. Phys. Chem. B 2003, 107, 10180.
    (f) Wu, M. T.; Leu, I. C.; Yen, J. H.; Hon, M. H. Novel Electrodeposition Behavior of Ni on Porous Anodic Alumina Templates without a Conductive Interlayer. J. Phys. Chem. B 2005, 109, 9575.
    (g) Chu, S.-Z.; Wada, K.; Inoue, S.; Todoroki, S.; Takahashi, Y. K.; Hono, K. Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition. Chem. Mater. 2002, 14, 4595.
    (h) N. Yasui, A. mada, T. Den, Electrodeposition of (001) Oriented CoPt L1_0 Columns into Anodic Alumina Films. Appl. Phys. Lett. 2003, 53, 3347.
    112. (a) Monroy, F.; Rivillon, S.; Ortega, F.; Rubioa, R. G. Dilational Rheology of Langmuir Polymer Monolayers: Poor-Solvent Conditions. J. Chem. Phys. 2001,115, 530.
    (b) Rivillona, S.; F. Monroy, F.; Ortega, F.; Rubioa, R. G. Dilational Rheology of Monolayers of a Miscible Polymer Blend: From Good- to Poor-Solvent Conditions. Eur. Phys. J. E 2002, 9, 375.
    (c) Monroy, F.; Ortega, F.; Rubioa, R. G. Dilatational Rheology of Insoluble Polymer Monolayers: Poly(vinylacetate). Phys. Rev. E 1998, 58, 7629.
    113. (a) Xu, C. W.; Wang, H.; Shen, P. K.; Jiang, S. P. Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells. Adv. Mater. 2007,19, 4256.
    (b) Zhao, G.-Y.; Xu, C.-L.; Guo, D.-J.; Li, H.; Li, H.-L. Template Preparation of Pt Nanowire Array Electrode on Ti/Si Substrate for Methanol Electro-Oxidation. Appl. Surf. Sci. 2007, 253, 3242.
    114. Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y. The Lowest Surface Free Energy Based on -CF_3 Alignment. Langmuir 1999,15, 4321.
    115. Qu, M.; Zhao, G.; Wang, Q.; Cao, X.; Zhang, J. Fabrication of Superhydrophobic Surfaces by a Pt nanowire Array on Ti/Si Substrates. Nanotechnology 2008, 19, 055707.
    116. (a) Qian, B.; Shen, Z. Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates. Langmuir 2005, 21, 9007.
    (b) Guo, Z.; Zhou, F.; Hao, J.; Liu, W. Stable Biomimetic Super-Hydrophobic Engineering Materials. J. Am. Chem. Soc. 2005, 727, 15670.
    (c) Guo, Z.; Liu, W. A Robust Superhydrophobic Surface of Ti6A14V with crater-like Structure. Adv. Eng. Mater. 2007, 9, 316.
    (d) Jun, L.; Guo, Z.; Jian, F.; Hao, J. Fabrication of Superhydrophobic Surface on Magnesium Alloy. Chem. Lett. 2007, 36,416.
    117. (a) Soudan, P.; Gaudet, J.; Guay, D.; Belanger, D.; Schulz, R. Electrochemical Properties of Ruthenium-Based Nanocrystalline Materials as Electrodes for Supercapacitors. Chem. Mater. 2002, 14, 1210.
    (b) Hu, C. C; Tsou, T. W. Ideal Capacitive Behavior of Hydrous Manganese Oxide Prepared by Anodic Deposition. Electrochem. Comm. 2002, 4, 105.
    (c) Fusalba, F.; Ho, H. A.; Breau, L.; Belanger, D. Poly(Cyano-Substituted Diheteroareneethylene) as Active Electrode Material for Electrochemical Supercapacitors. Chem. Mater. 2000, 12, 2581.
    (d) Toupin, M.; Brousse, T.; Belanger, D. Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chem. Mater. 2002, 14, 3946.
    (e) Villers, D.; Jobin, D.; Soucy, C; Cossement, D.; Chahine, R.; Breau, L.; Belanger, D. The Influence of the Range of Electroactivity and Capacitance of Conducting Polymers on the Performance of Carbon Conducting Polymer Hybrid Supercapacitor. J. Electrochem. Soc. 2003,150, A747.
    118. (a) Hu, C.-C; Chen, E.; Lin, J.-Y. Capacitive and Textural Characteristics of Polyaniline-Platinum Composite Films. Electrochim. Acta 2002, 47, 2741.
    (b) Hu, C.-C; Li, W.-Y.; Lin, J.-Y. The Capacitive Characteristics of Supercapacitors Consisting of Activated Carbon Fabric-Polyaniline Composites in NaNO_3. J. Power Sources 2004, 137, 152.
    (c) Gupta, V.; Miura, N. Polyaniline/Single-Wall Carbon Nanotube (PANI/SWCNT) Composites for High Performance Supercapacitors. Electrochim. Acta 2006, 52, 1721.
    (d) Belanger, D.; Ren, X.; Davey, J.; Uribe, F.; Gottesfeld, S. Characterization and Long-Term Performance of Polyaniline-Based Electrochemical Capacitors. J. Electrochem. Soc. 2000, 147, 2923.
    (e) Fusalba, F.; Gouerec, P.; Villers, D.; Belanger, D. Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors. J. Electrochem. Soc. 2001,148, Al.
    (f) Ryu, K. S.; Kim, K. M.; Park, N.-G.; Park, Y. J.; Chang, S. H.; Symmetric Redox Supercapacitor with Conducting Polyaniline Electrodes. J. Power Sources 2002,103, 305.
    119. (a) Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angew. Chem. Int. Ed. 2002, 41, 1221.
    (b) Yabu, H.; Shimomura, M. Single-Step Fabrication of Transparent Superhydrophobic Porous Polymer Films. Chem. Mater. 2005,17, 5231.
    (c) Feng, L.; Song, Y.; Zhai, J.; Liu, B.; Xu, J.; Jiang, L.; Zhu, D. Creation of a Superhydrophobic Surface from an Amphiphilic Polymer. Angew. Chem. Int. Ed. 2003, 42, 800.
    (d) Zhang, J.; Li, J.; Han,Y. Superhydrophobic PTFE Surfaces by Extension. Macromol. Rapid Commun. 2004, 25, 1105.
    120. Yan, H.; Kurogi, K.; Mayama, H.; Tsujii, K. Environmentally Stable Super Water-Repellent Poly(alkylpyrrole) Films. Angew. Chem. Int. Ed. 2005, 44, 3453.
    121. (a) Martin, C. R. Nanomaterials, A Membrane-Based Synthetic Approach. Science 1994, 266, 1961.
    (b) Mozalev, A.; Surganov, A.; Imai, H. The Formation of Nanoporous Membranes from Anodically Oxidized Aluminium and Their Application to Li Rechargeable Batteries. Electrochim. Acta 2001, 46, 2825.
    (c) Rabin, O.; Herz, P. R.; Lin, Y.-M.; Akinwande, A. I.; Cronin, S. B.; Dresselhaus, M. S. Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass. Adv. Funct. Mater. 2003, 13, 631.
    (d) Tian, M.; Xu, S.; Wang, J.; Kumar, N.; Wertz, E.; Li, Q.; Campbell, P. M.; Chan, M. H. W.; Mallouk, T. E. Penetrating the Oxide Barrier in Situ and Separating Freestanding Porous Anodic Alumina Films in One Step. Nano Lett. 2005, 5, 697.
    122. (a) Ren, S.; Yang, S.; Zhao, Y.; Yu, T.; Xiao, X. Preparation and Characterization of an Ultrahydrophobic Surface Based on a Stearic Acid Self-Assembled Monolayer over Polyethyleneimine Thin Films. Surf. Sci. 2003, 546, 64.
    (b) Ren, S.; Yang, S.; Wang, J.; Liu, W.; Zhao, Y. Preparation and Tribological Studies of Stearic AcidSelf-Assembled Monolayers on Polymer-Coated Silicon Surface. Chem. Mater. 2004,16, 428.
    123. Li, Y.; Huang, X. J.; Heo, S. H.; Li, C. C; Choi, Y. K.; Cai, W. P.; Cho, S. O. Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays. Langmuir 2007, 23, 2169.
    124. Coffinier, Y; Janel, S.; Addad, A.; Blossey, R.; Gengembre, L.; Payen, E.; Boukherroub, R. Preparation of Superhydrophobic Silicon Oxide Nanowire Surfaces. Langmuir 2007, 23, 1608.
    125. Zhu, Y; Zhang, J.; Zheng, Y; Huang, Z.; Feng, L.; Jiang, L. Stable, Superhydrophobic, and Conductive Polyaniline/Polystyrene Films for Corrosive Environments. Adv. Funct. Mater. 2006,16, 568.
    126. Xu, L.; Chen, W.; Mulchandani, A.; Yan, Y. Reversible Conversion of Conducting Polymer Films from Superhydrophobic to Superhydrophilic. Angew. Chem. Int. Ed. 2005, 44, 6009.
    127. Fujimatu, E.; Ishikawa, T.; Kitajima, J. Aromatic Compound Glucosides, Alkyl Glucoside and Glucide from the Gruit of Anise. Phytochemistry 2003,11, 603.
    128. (a) Nuchter, M.; Ondruschka, B.; Lautenschlager, W. Microwave-Assisted Synthesis of Alkyl Glycosides. Synth. Commun. 2001, 31, 1277.
    (b) Huo, C; Wang, C; Zhao, M.; Peng, S. Stereoselective Synthesis of Natural N-(1-Deoxy-D-β-fructos-1-yl)-L-amino Acids and Their Effect on Lead Decorporation. Chem. Res. Toxicol. 2004, 17, 1112.
    (c) McReynolds, K. D.; Hadd, M. J.; Gervay-Hague, J. Synthesis of Biotinylated Glycoconjugates and Their Use in a Novel ELISA for Direct Comparison of HIV-1 Gp120 Recognition of GalCer and Related Carbohydrate Analogues. Bioconjugate Chem. 1999, 10, 1021.
    (d) Bar, T.; Schmidt, R. R. Glycosylimidate, 35 Synthese eines Cerebrosids mit (4E,8E)- Sphingadienin-Struktur aus Tetragonia tetragonoides mit antiulcerogener Aktivitat. Liebigs Ann. Chem. 1988, 669.
    129. Outcalt, R. J.; Wu, T. T.; Cooke, K. B.; Larochelle, D. Synthesis of Trimethacarb Hydroxymethyl Metabolites and Corresponding Glucoside Derivatives. J. Agric. Food Chem. 1987,35, 836.
    130. Wang, Y.; Li, L.; Wang, Q.; Li, Y. An Improved Phase Transfer Catalyzed Synthetic Method for Ononin and Rothindin. Synth. Commun. 2001, 31, 3423.
    131. (a) Joubert, P.; Beaupere, D.; Wadouachi, A.; Chateau, S.; Sangwan, R. S.; Sangwan-Norreel, B. S. Effect of Phenolic Glycosides on Agrobacterium tumefaciens virH Gene Induction and Plant Transformation J. Nat. Prod. 2004, 67, 348. (b) Qu, M. N.; Niu, Y. H.; Cao, X. P. Synthesis of a Series of New Natural Glucosides. Chin. J. Org. Chem. 2005, 25(supplement), 352.
    132. Yao, X. Natural Pharmaceutics Chemistry, 3 ed., People's Medical Publishing House, Beijing, 2002, p. 86 (in Chinese).
    133. Black, G. P.; Murphy, P. J.; Thornhill, A. J.; Walshe, N. D. A.; Zanetti, C. Synthesis of the Left Hand Unit of Batzelladine F; Revision of the Reported Relative Stereochemistry. Tetrahedron 1999, 55, 6547.
    134. Yuan, T.-M; Luh, T.-Y.; Liu, Y.; Boeckman, R. K. Nickel-Catalyzed, Geminal Dimethylation of Allylic Dithioacetals: (E)-1-Phenyl-3,3-Dimethyl-1-Butene. Organic Synthese, Coll. Vol. 9, p. 649; Vol. 74, p. 187.
    135. Zhou, L.; Li, Y.; Cao, X. R Stereoselective Synthesis of (Z)-5-(Trideca-4-enyl) Resorcinol and Gibbilimbols A-D. Chin. J. Chem. 2004, 22, 1343.
    136. Annunziata, R.; Cinquini, M.; Cozzi, F.; Gennari, C.; Raimondi, L. Stereoselectivity of Intramolecular Nitrile Oxide Cycloadditions to Z and E Chiral Alkenes. J. Org. Chem. 1987, 52, 4674.
    137. Feldman, K. S. Cyclization Pathways of a (Z)-Stilbene-Derived Bis(orthoquinone monoketal). J. Org. Chem. 1997, 62, 4983.
    138. Zhou, L.; Cao, X. P.; Newmann, B.; Stammler, H. G.; Kuck, D. Multiple Stille Cross-Coupling Reactions with Tribenzotriquinacenes and Fenestrindanes-En Route to Extend Convex-Concave and Saddle-shaped Carbon Frameworks. Synlett 2005, 2771.
    139. Baker, R.; Castro, J. L. Total Synthesis of (+)-Macbecin I. J. Chem. Soc, Perkin Trans. 1.1990,47.
    140. Pring, B. G. Isolation and Identification of Amides from Piper callosum. Synthesis of Pipercallosine and Pipercallosidine. J. Chem. Soc, Perkin Trans. 1.1982, 1493.
    141. (a) Wang, X. L.; Xia, Y. M.; Feng, J. P.; Cao, X. P.; Pan, X. F. Total Synthesis of Natural Product (±)-Aiphanol. Chem. J. Chinese Univ. 2005, 26, 259 (in Chinese), (b) Feng, J. P.; Wang, X. L.; Cao, X. P. The First Total Synthesis of the (±)-Palstatin. Chin. J. Chem. 2006, 24, 215.
    142. (a) Buckingham, J. Dictionary of Organic Compounds, 5 ed., Suppl. 5, Chapman and Hall, New York, 1987, p. 433.
    (b) Momin, R. A.; Ramsewak, R. S.; Nair, M. G. Bioactive Compounds and 1,3-Di[(cis)-9-octadecenoyl]-2-[(cis,cis)-9,12-octadecadienoyl]glycerol from Apium Graveolens. L. Seeds. J. Agric. Food Chem. 2000,48,3785.
    (c)van Nguyen,T.;Debenedetti,S.;Kimpe,N.D.Synthesis of Coumarins by Ring-Closing Metathesis Using Grubbs' Catalyst.Tetrahedron Lett.2003,44,4199.
    (d)Buckingham,J.Dictionary of Organic Compounds,5 ed.,Suppl.1,Chapman and Hall,New York,1983,p.559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700