新疆野生盘羊mtDNA D-loop区及2个与疾病抗性相关基因的克隆及序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
野生盘羊是新疆优良的野生动物资源,该品种具有体型大、抗病力强、适应性好、产肉性能强和瘦肉率高等特点。为充分利用其优良的遗传资源,本实验室试图用野生盘羊(♂)与巴什拜羊(♀)级进杂交的方法引进野生盘羊血统。但发现其杂交后代与处在同一饲养条件下的盘羊和巴什拜羊相比,易感染传染性胸膜肺炎而死亡。推测可能是杂交羔羊的某些与疾病抗性相关的基因发生了变异。为此,本研究选择TLR9和ISG15疾病抗性相关基因进行比较基因组学分析,以探索杂交羊抗病力减弱的机理。此外,从DNA水平上研究动物遗传多样性和物种间进化关系已成为分子生物学研究的热点,而盘羊是唯一分布于我国的野生绵羊,但对其遗传多样性及其与我国家养绵羊进化关系的研究还不深入。鉴于此,本研究对野生盘羊mtDNA D-loop区进行了分析,为进一步阐明我国野生盘羊遗传多样性及其与我国家养绵羊的进化关系奠定基础。
     1、野生盘羊和巴什拜羊及其杂交羊ISG15基因的克隆与序列分析
     为了探讨疾病抗性相关基因ISG15的mRNA、蛋白保守结构域、3-D结构差异。本研究分三段克隆了这个基因的全长序列,并通过比较基因组学的方法对序列进行了分析。结果显示,新疆野生盘羊、巴什拜羊、F1和F2代ISG15基因总长度分别约为2117bp、2123bp、2074bp、2121bp;新疆野生盘羊ISG15基因mRNA与多物种比对序列的相似性分别为:绵羊93.2%、F1代97.1%、F2代96.9%巴什拜羊97.8%、牛88.8%、猪80.6%、猫79.6%、人67.7%、小鼠66.5%、鱼45.5%、;新疆野生盘羊ISG15基因编码氨基酸与多物种的相似性分别为:绵羊99.2%、F1代99.6%、F2代98.7%、巴什拜羊99.6%、牛95.3%、猪82.3%、猫79.6%、人76%、小鼠73.8%、鱼49.4%;将各物种ISG15蛋白保守结构域进行比较分析发现,在功能域的数量、位置上各物种间都存在差异,其中,盘羊、巴什拜羊的ISG15蛋白存在两个ubiquitin多功能保守域,而F1代羊、F2代羊只含有一个ubiquitin多功能保守域;盘羊、巴什拜羊ISG15蛋白3-D结构的折叠明显少于F1、F2代杂交羊。可能正是由于杂交后代的ISG15基因在mRNA序列,蛋白保守结构域数量,3-D结构上与父母代的ISG15基因出现了差异,而导致了杂交代的ISG15基因在先天免疫和抗病中的作用发生了变化,进而使杂交羔羊抗病力减弱。
     2、野生盘羊和巴什拜羊及其杂交羊TLR9基因的克隆与序列分析
     为了探讨疾病抗性相关基因TLR9的mRNA、蛋白保守结构域、3-D结构。本研究分三段克隆了这个基因的全长序列,并通过比较基因组学的方法对序列进行了分析。结果显示,新疆野生盘羊、巴什拜羊、F1和F2代TLR9基因DNA总长度分别为3193bp、3169bp、3103bp和3109bp;新疆野生盘羊TLR9基因mRNA与多物种比对序列的相似性分别为:绵羊99.9%、山羊99%、F1代96.9%、F2代97.1%、巴什拜羊96.9%、牛95.2%、猪85.1%、猫84%、犬83.7%、马83.4%、人79.4%、猴79.1%、小鼠73.1%,新疆野生盘羊TLR9基因编码氨基酸与其他各物种的比对结果分别为:绵羊97.7%、山羊97%、F1代99.6%、F2代98.7%巴什拜羊99.6%、牛94.6%、猪86.2%、猫84%、犬83.7%、马83.4%、人79.4%、猴79.1%、小鼠73.1%;多物种TLR9蛋白功能域分析显示,物种间TLR9蛋白功能域的数量、种类及相对位置上都存在差异,新疆野生盘羊、巴什拜羊与杂交羊之间差异更明显,即新疆野生盘羊、巴什拜羊存在一个LLR RI和一个TLR共计2个功能域,而F1、F2代杂交羊存在一个LLR RI功能域;新疆野生盘羊和巴什拜羊TLR9蛋白的3-D结构是由胞外段富含亮氨酸的重复序列((LRR)和胞内段TIL(Toll/IL IR)结构域构成的,而F1、F2代杂交羊TLR9蛋白的3-D结构在线预测不出来。综上所述,野生盘羊、巴什拜羊与杂交羊TLR9基因的mRNA序列,蛋白保守结构域数量,3-D结构存在差异。因此,推测来自野生盘羊和巴什拜羊的TLR9基因在其杂交后代中的表达与其父、母本间存在差异,从而导致杂交羔羊抗病力减弱,进而使杂交羔羊在幼龄阶段易感染传染性胸膜肺炎。
     3、野生盘羊mtDNA D-loop区的克隆与序列分析
     为探讨新疆天山亚种野生盘羊mtDNA D-loop序列多样性及其与我国家养绵羊的亲缘关系。通过PCR扩增的方法特异性扩增了新疆天山亚种野生盘羊线粒体(mtDNA)控制区(D-loop)全长序列片段,PCR产物经凝胶回收纯化后测序并进行序列分析。结果显示,1号和2号盘羊序列全长分别为1070bp和1169bp;在检测的2个个体上共发现73个突变位点,其中有7个插入,50个转换,11个颠换,5个缺失,表明碱基的替换有明显偏倚;1号和2号新疆天山亚种野生盘羊mtDNA D-loop区核苷酸突变位点分别为35个和38个,核苷酸变异率分别为3.27%和3.25%,这一结果表明新疆天山亚种野生盘羊群体线粒体D-loop区存在着丰富的多态性,说明了我国新疆野生盘羊遗传资源比较丰富。通过对野生盘羊和其它绵羊的系统进化树分析发现,野生盘羊与我国家养绵羊的亲缘关系较远,初步推测其并非我国家养绵羊的祖先。
Wild Argali is a superordinary wildlife resource in Xinjiang,China.The breed have many features,for example, macro-somatotype、better anti-disease、better accommodation、better toc-flesh and high lean meat rate, and so on. In order to utilize and protect wild animal resource of xinjiang, import blood lineage of Wild Argali largely, the experiment use Wild Argali ((?)),BaShenBai ((?)) or F1 ((?)) for crossing by artificial insemination fecundation The results show that they give birth to crossing sheep of F1、F2,but the anti-disease of F1、F2 is poor.While Wild Argali,BaShenBai have no disease at the same raising condition.So we presume that some disease resistance relational genes of crossing lamb appear variation.Therefore, the TLR9和ISG15 disease resistance relational genes were studied by comparative genomics way,to research the mechanism of the poor anti-disease power of F1、F2 crossing lamb. In addition,It was a hot point which was in molecular biology to research the diversity of animal heredity and the evolution relation among species in the level of DNA,as the research of other animals in this feild,the research in Wild Argali which was belonged to our country had research shallowly.Therefore,we analyzed the Wild Argali mtDNA D-loop region,for the elucidation of the diversity of animal heredity and the evolution relation of Wild Argali in our country.
     1.Wild Argali、BaShenBai and crossing sheep ISG15 Cloning and Sequence Analysis
     The experiment aims at studying for the mRNA、conservative structural domain、3-D structure of ISG15. The ISG15 complete sequences were specificitly amplified by PCR technology.The PCR product was purified by agarose.The ISG15 complete sequences were sequenced and analysised by the method of comparative genomics. The result showed the length of ISG15 complete sequence were 2117bp、2123bp、2074bp、2121bp,respectively,in wild argali、Bashenbai、F1、F2; The Wild Argali Xinjiang ISG15 mRNA sequence had 94.7% identity with the sheep ISG15 mRNA, and cow88.8%, F1 97.1%, pig 80.6%,cat 76.6%, human 67.7%,mouse 66.5%,fish 45.5%. The Wild Argali Xinjiang ISG15 protein sequence had 99.3% identity with the sheep, and cow 89.1%, Fl 92.8%, pig 74.1%,cat 72.1%, human 63.6%,mouse 63.0%,fish 29.0%. The conserved domain of ISG15 were analysised by the method of comparative genomics. The result showed the quantity, type and the relative position of ISG15 protein motif were different in several species.ISG15 contains two domains with structural homology close to ubiquitin, and species protein 3-D structures were also conservative.Interestly, ISG15 contains one UBQ domain and one ubiquitin multifunction domain in several species, except for F1 which contains one UBQ multifunction domain. The investigation presumed that because of the difference of filial generationISG15gene in the mRNA sequence the quantity of protein conservative stuctural domains and the 3D structure between parental generartion ISG15 gene,resulted the effect of filial generation ISG15gene variancein innate immunity and anti-disease.So the anti-disease of filial generation became weak.
     2.Wild Argali、BaShenBai and crossing sheep TLR9 Cloning and Sequence Analysis
     The experiment aims at studying for the mRNA、conservative structural domain、3-D structure of TLR9. The TLR9 complete sequences were specificitly amplifited by PCR technology.The PCR product was purified by agarose.The TLR9 complete sequences were sequenced and analysised by the method of comparative genomics. TLR9 were 3193bp、3169bp、3103bp和3109bp.After gene predicted, The Wild Argali Xinjiang TLR9 mRNA sequence had 99.9% identity with the sheepTLR9 mRNA, and goat 99%,cow 95.2%, pig 85.1%, cat 84%, dog 83.7%, horse 83.4%, human79.4%,monkey 79.1%,mouse 73.1%. The Wild Argali Xinjiang TLR9 protein sequence had 97.7% identity with the sheep TLR9 protein, and goat97%,cow 94.6%, pig 86.2%, cat 84%, dog83.7%, horse 83.4%, human79.4%,monkey 79.1%,mouse 73.1%.The conserved domain of TLR9 were analysised by the method of comparative genomics. The result showed the quantity, type and the relative position of TLR9 protein motif were different in several species. The 3-D of TLR9 was constructived by LRR and TIL(Toll/IL IR) structural domain.The above-mentioned structural feature offered theory accordings to research TLR9 of Wild Argali (O.a.karelini),Xinjiang,China.The investigation presumed that the quantity, type,the relative position of TLR9 conservative structural domain and 3-D structure rch of TLR9 protein motif,which came from Wild Argali and BaShenBai, might occurred distinction on crossing lamb.it led to decrease shaply the anti-disease power of crossing lamb,and then it easily infected infectiousness pleuropneumonia in the immature stage of crossing lamb.
     3.Wild Argali mitochondria displacement loop region Cloning and Sequence Analysis
     The experiment aims at studying Mitochondrial DNA (mtDNA) Genetic Diversity of Wild Argali.The mtDNA D-loop complete sequences of Wild Argali (O.a.karelini),Xinjiang,China were specificitly amplifited by PCR technology.The PCR product was purified by agarose.The mtDNA D-loop sequences were sequenced and analysised. The result showed the length of mtDNA D-loop complete sequence was 1070bp and 1169bp,respectively,in number one and number two.There were 7 insertion loci,50 transitions loci, lltransversion loci and 5 deletions loci 70 mutational loci which were found in two wild Argalis and transitions was the major mutational type.The mutational loci of mtDNA D-loop sequence, from number one and number two Wild Argali (O.a.karelini), were 35 and 38; mutational ratewere 3.12% and 3.25%.It showed that the Wild Argali (O.a.karelini) population has high variation in mtDNA D-loop sequence.Meanwhile,it further showed that there was plentiful genetic resource of Wild Argali Xinjiang,China. On the basis of the analysis of system evolution tree between Wild Argali and other sheep,the relation between Wild Argali and other sheep was far.In speculation Wild Argali was not the ancestor of our country domesticated sheep.
引文
[1]决肯·阿尼瓦什等.野生盘羊与巴什拜羊的杂交研究[J].新疆农业科学,2007,44(5):702-705
    [2]马长宾,孙延鸣等.新疆野生盘羊与巴什拜羊杂交一代生产性能测定[J].畜禽业,2009,(2):44-45
    [3]陶岳,李新萍等.新疆石河子地区湖羊传染性胸膜肺炎流行病学调查研究及预防控制效果的初步研究[J].中国畜牧兽医,2006,33(2):62-65
    [4]余玉群,史军等.新疆盘羊(Ovis、ammon)的地理分布特征[J].生物多样性,1991,7(4):270-276
    [5]决肯·阿尼瓦什,库木尼斯汗·加汗等.野生盘羊与巴什拜羊第二代杂种羔羊生长发育规律的研究[J].新疆农业科学,2007,44(2):212-216
    [6]余玉群,姬明周等.中国盘羊的地理分布和历史变迁[J].生物多样性,2008,16(2):197-204
    [7]罗宁,谷景和等.新疆盘羊种群结构与资源现状[J].自然资源学报,1998,13(1):46-51
    [8]Brow,W.M.(1983).Evolution of animal mitochondrial DNA In:Nei,Kocher R K.Evolution of genes and proteins.Sunderland:Sinauer Associates Ins.162-851.
    [9]Anderson S,De Bruin MHL,Coulson A R et al.Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome[J].J Mol Evol.1982,156:683-717.
    [10]Hecht W.Studies on mitochondrial DNA in farm animals[A].In:Genome analysis in domestic animals.1990,259-268.
    [11]Lin Chich-Sheng,Sun Yu-Lin,Liu Chang-Yeu et al.Complete nucleotide sequence of pig(Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla[J].Genetics.1999,236,107-114.
    [12]Bjorn M.Uring,Ulfur Arnason.The complete mitochondrial DNA sequence of the pig(Sus scrofa)[J].J Mol.Evol.1998,47:302-306.
    [13]Hiendleder S,Lewalski H,Wassmuth R et al.The complete mitochondrial DNA sequence of the domestic sheep(Ovis aries)and comparison with the other major ovine haplotype[J].J Mol Evol.1998a,47:441-448.
    [14]Xu X,Amason U.The complete mitochondrial DNA sequence of the horse,Equus caballus;Extensive heteroplasmy of the control region[J].Gene.1994,148:357-362.
    [15]Pietro P,Maria F,Gianfranco G et al.The complete nucleotide sequence of goat(Capra hircus)mitochondrial genome[J].DNA sequence.2003,14(3):199-203.
    [16]Bibb M J,Van Etten R A,Wright C T et al.Sequence and gene organization of mouse mitochondrial DNA[J].Cell.1981,26:167-180.
    [17]Roe B A,Ma DP,Wilson RK et al.The complete nucleotide sequence of the Xenopus laevis mitochondrial genome[J].J Biol.Chem.1985,260(17):9759-9774.
    [18]Janke A,Xu Xiufeng,Arnason Ulfur.The complete mitochondrial genome of the wallaroo(Macropus robustus)and the phylogenetic relationship among Monotremata,Marsupialia,andEutheria[J].Proc.Natl.Acad.Sci.USA.1997,94:1276-81.
    [19]Crease T J.The complete sequence of the mitochondrial genome of Daphnia pulex(Cladocera:Crustacea)[J].Gene.1999,233(1-2):89-99.
    [20]Broughton R E,Milam J E,Roe B A.The complete sequence of the Zebrafish(Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J].Genome Research.2001,11:1958-1967.
    [21]Vivian WJaime V,Alvaro M et al.The complete sequence of the mitochondrial genome of the Chinook salmon,Oncorhynchus tshawytscha[J].Biol.Res.2003,36 (2):223-231.
    [22]Taanman J W.The mitochondrial genome:Structure,transcription,translation and replication[J] Biochim Biophys Acta.1999,1410:103-123.
    [23]Hiendleder,S.,et al.(1998).The complete mitochondrial DNA sequence of the domestic sheep and comparison with the other major ovine haplotype.J Mol Evol.47(4):441-448.
    [24]赵兴波,冯继东,李宁,王爱华,吴常信.绵羊(Ovi5aries)线粒体DNAD-loop遗传变异类型研究[J].自然科学进展,2001,11(12):1326-1328
    [25]涂正超等.藏绵羊线粒体DNA遗传多样性研究[J].畜牧兽医学报,1998,29(2):132-135
    [26]兰蓉,洪琼花,高源汉,张俊,宿兵,王文,刘爱华,张亚平,施立明.云南绵羊线粒体DNA遗传多态性研究,遗传,1998,20(1):20-23
    [27]李祥龙,张增利,巩元芳,刘铮铸,贾青,王立泽.我国主要地方绵羊品种m tDNA D-loop区PCR-RFLP研究[J].遗传,2006,28(2):165-170
    [28]叶绍辉,王文等.云南保种山羊线粒体DNA限制性酶切研究[J].中国畜牧杂志,1998,34(3):11-12
    [29]贾永红,简承松等.贵州四个山羊品种mtDNA多态性及起源分化[J].动物学研究,1999,20(2):88-92
    [30]李样龙,郑桂茹,张亚平.绵羊、山羊和岩羊mtDNA的RFLP及其遗传分化研究[J].畜牧兽医学报,2000,31(4):289-295
    [31]Brown W K.Evolution of animal mitochondrial DNA.In:Evolution of genes and proteins [M].Nei M.and Koehn R K.eds.,Sunderland.1983.
    [32]张文广等.内蒙古绒山羊mtDNA的分离提纯及RFLP的分析[J].内蒙古农 业大学学报,2001.(1):23-28
    [33]周慧,李迪强,张于光,易湘蓉,刘毅.藏羚羊mtDNA D-loop区遗传多样性研究[J],遗传,2006,28(3):299-305
    [34]周林权,周开亚.从线粒体细胞色素基因探讨矮岩羊物种地位的有效性[J].动物学报,2003.(5):578-584
    [35]Larizza, A., Pesole, A., Reyes, E., Sbisa, E., Saccone, C.,2002. Lineage speci Wcity of the evolutionary dynamics of the mtDNA D-loop region in rodents. J. Mol. Evol.54,145-155.
    [36]Saccone, C., Pesole, G., Sbisa, E.,1991. The main regulatory region of mammalian mitochondrial DNA:structure-function model and evolutionary pattern. J. Mol. Evol.33,83-91.
    [37]Sbisa, E., Tanzariello, F., Reyes, A., Pesole, G., Saccone, C.,1997. Mammalian mitochondrial D-loop region structural analysis:identiWcation of new conserved sequences and their functional and evolutionary implications.Gene 205,125-140.
    [38]Randi, E., Lucchini, V.,1998. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol.47,449-462.
    [39]Ruokenen, M., Kvist, L.,2002. Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol.23,422-432.
    [40]Doda, J.N., Wright, C.T., Clayton, D.A.,1981. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near speciWc template sequences. Proc. Natl. Acad. Sci.USA 78,6116-6120.
    [41]Walberg, M.W., Clayton, D.A.,1981. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9,5411-5421.
    [42]Anderson, S., de Bruijn, M.H.L., Coulson, A.R., Eperon, I.C., Sanger, F.,Young, I.G.,1982. Complete sequence of bovine mitochondrial DNA:conserved features of the mammalian mitochondrial genome. J. Mol.Biol.156,683-717.
    [43]Ghivizzani, S.C., Mackay, S.L.D., Madsen, C.S., Laipis, P.J., Hauswirth,W.W. 1993. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J. Mol. Evol.37,36-47.
    [44]Hoelzel, A.R., Lopez, J.V., Dover, G.A., O'Brien, S.J.,1994. Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J. Mol. Evol.39,191-199.
    [45]Zardoya,R.,et al.(1995).Nucleotide sequence of the sheep mitochondrial DNA D-Loop and its flanking tRNA genes.Curr Genet.28(1):94-96.
    [46]Douzery, E., Randi, E.,1997. The mitochondrial control region of cervidae: evolutionary patterns and phylogenetic content. Mol. Biol. Evol.14,1154-1166.
    [47]Pesole, G., Gissi, C., De Chirico, A., Saccone, C.,1999. Nucleotide substitution rate of mammalian mitochondrial genomes. J. Mol. Evol.48,427-434.
    [48]Arctander, P., Kat, P., Aman, R., Siegismund, H.,1996. Extreme geneticVerence among populations of Gazella granti, Grant's gazelle in Kenya. Heredity76,465-475.
    [49]Nersting, L.G., Arctander, P.,2001. Phylogeography and conservation of impala and greater kudu. Mol. Ecol.10,711-719.
    [50]Simonsen, B.T., Siegismund, H.R., Arctander, P.,1998. Population structure of African buValo inferred from mtDNA sequences and microsatellite loci:high variation but low diVerentiation. Mol. Ecol.7,225-237.
    [51]Birungi, J., Arctander, P.,2000. Large sequence divergence of mitochondrial DNA genotypes of the control region within populations of the African antelope, kob (Kobus kob). Mol. Ecol.9,1997-2008.
    [52]Arctander, P., Johansen, C., Coutellec-Vreto, M.-A.,1999. Phylogeography of three closely related African bovids (Tribe Alcelaphini). Mol. Biol.Evol.16, 1724-1739.
    [53]Matthee, C.A., Robinson, T.J.,1999. Mitochondrial DNA population structure of roan and sable antelope:implications for the translocation and conservation of the species. Mol. Ecol.8,227-238.
    [54]Alpers, D.L., Van Vuuren, B.J., Arctander, P., Robinson, T.J.,2004. Population genetics of thse roan antelope(Hippotragus equinus) with suggestions for conservation. Mol. Ecol.13,1771-1784.
    [55]Pitra, C., Hansen, A.J., Lieckfeldt, D., Arctander, P.,2002. An exceptional case of historical outbreeding in African sable antelope populations.Mol. Ecol.11, 1197-1208.
    [56]管松,何晓红,浦亚斌,叶绍辉,关伟军,马月辉.中国西南地区5个地方绵羊群体ntDNA遗传多样性及系统进化研究[J].畜牧兽医学报,2007,38(3):219-224
    [57]季香,马月辉,叶绍辉,郭军.山羊mtDNA多态性及其遗传结构的研究[J].云南农业大学学报,2008,23(2):220-224
    [58]包鹏甲,罗玉柱,成述儒,曾玉峰.中国五个绵羊群体mtDNA D-环遗传多样性研究[J].家畜生态学报,2008,29(6):17-21
    [59]Yuwen W. Zhang, Elizabeth G. Davis,Frank Blecha, Melinda J.Wilkerson. Molecular cloning and characterization of equineToll-like receptor 9[J].Veterinary Immunology and Immunopathology.2008,124 (8):209-219
    [60]Kim KI, Zhang DE. ISG15 not just another ubiquitin-like protein.Biochem Biophys Res Commun.2003 Aug 1;307(3):431-434.
    [61]Ritchie KJ, Hahn CS, Kim KI,Yan M,Rosario D,Li L,dela Torre JC,Zhang DE. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection[J]. Nat Med,2004,10 (12):1374~1378
    [62]Zhao C, Beaudenon S L, Kelley M L,Waddell M B,Yuan W,Schulman BA,Huibregtse JM,Krug RM.The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein[J].Proc Natl Acad Sci USA.2004 May 18;101(20):7578~7582.
    [63]刘畅,乔文涛,王琛,耿运琪.类泛素蛋白ISG15及其在先天免疫中的作用[J].生物化学与生物物理进展,2006,33(11):1023-1029
    [64]Recht M, Borden E C, Knight E Jr. A human 15-kD a IFN-induced protein induces the secretion of IFN-gamma[J]. J Immunol,1991,147(8):2617~2623
    [65]Malakhova OA, Yan M, Malakhov MP. Protein ISG ylation modulates the JAK-STAT signaling pathway [J].Genes Dev,2003,17(4):455~460
    [66]Okumura A, Lu G, Pitha-Rowe I.Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15[J]. Proc Natl Acad Sci USA, 2006,103 (5):1440~1445
    [67]Yuan W,Krug RM.Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG 15 protein.[J].EMBO J.2001 Feb 1;20(3):362-71.
    [68]Zou W,Kim JH,Handidu A,et al.Microarray analysis reveals that Type Ⅰ interferon strongly increases the expression of immune-response related genes in Ubp43(Usp18)deficient macrophages.[J].Biochem Biophys Res Commun.2007 Apr27;356(1):193-9.
    [69]Andersen JB,Hassel BA.The interferon regulated ubiquitin-like protein,ISG15,in tumorigenesis:friend or foe [J].Cytokine Growth Factor Rev.2006Dec;17(6):411-421.Epub 2006 Nov 13.
    [70]Lu G,Reinert JT,Pitha-Rowe I,et al.ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation.[J].Cell Mol Biol(Noisy-le-grand).2006 May 15;52(1):29-41.
    [71]Kunzi MS, Pitha PM. Role of interferon-stimulated gene ISG15 in the interferon- omega- mediated inhibition of human immunodeficiency virus replication[J]. J Interferon Cytokine Res,1996,16 (11):919~927
    [72]张海莹,李永哲,张洋,冯雪,包书萌,佟大伟,张蜀澜,胡朝军.系统性红斑狼疮患者外周血单个核细胞中ISG15mRNA表达水平的研究[J].中国实验诊断学,2008,10(12):1226-1229
    [73]李晓梅,任珍珍,陈永,钟国华.昆虫泛素基因和功能研究进展.生物技术通报,2009,增刊:62-66
    [74]宋雪梅.小尾寒羊5个与繁殖和疾病抗性相关基因的克隆及比较基因组学分析[D].北京畜牧兽医研究所研究生院博士论文,2007,6
    [75]冯涛.TLR9的结构、功能及信号传导研究进展[J].国外医学免疫学分册,2005,28(2):72-76
    [76]Emaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., Hoffmann,J.A.,1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86 (6),973-983.
    [77]Dzhitov, R., Preston-Hurlburt, P., Janeway Jr., C.A.,1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388 (6640),394-397.
    [78]Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X.,Birdwell, D.,Alejos, E., Silva, M., Galanos, C., Freudenberg,M., Ricciardi-Castagnoli, P., Layton, B., Beutler, B.,1998.Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science 282 (5396),2085-2088.
    [79]Zhang, D., Zhang, G., Hayden, M.S., Greenblatt, M.B., Bussey, C.,Flavell, R.A., Ghosh, S.,2004. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303 (5663),1522-1526.
    [80]Creticos, P.S., Chen, Y.H., Schroeder, J.T.,2004. New approaches in immunotherapy:allergen vaccination with immunostimulatory DNA. Immunol. Allergy Clin. N. Am.24 (4),569-581.
    [81]Klinman, D.M.,2004. Use of CpG oligodeoxynucleotides as immunoprotective agents. Expert Opin. Biol. Ther.4 (6),937-946.
    [82]Klinman, D.M., Currie, D., Gursel, I., Verthelyi, D.,2004. Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol.Rev.199,201-216.
    [83]Schetter, C., Vollmer, J.,2004. Toll-like receptors involved in the response to microbial pathogens:development of agonists for toll-like receptor 9. Curr. Opin. Drug Discov. Dev.7 (2),204-210.
    [84]Wooldridge, J.E., Weiner, G.J.,2003. CpG DNA and cancer immuno therapy: orchestrating the antitumor immune response. Curr.Opin. Oncol.15 (6),440-445.
    [85]Chuang T. H, Ulecitch R. J. Cloning and characterization of a subfamily of human Toll-like re2 cep tors:hTLR7, hTLR8, and hTLR9 [J]. Eur. Cytokine Network,2000,11:372-378
    [86]Kelly JA, Moser KL, Harley JB. The genetics of systemic lupus erythematosus: putting the p ieces together [J]. Genes Immune,2002,3S:S71-S85
    [87]艾军华,吕凤林.TLR9介导DNA病毒的免疫识别[J].病毒学报,2005,21:76-80
    [88]Wagner, H.,2004. The immunobiology of the TLR9 subfamily. Trends Immunol. 25(7),381-386.
    [89]Beutler, B., Rehli, M.,2002. Evolution of the TIR, tolls and TLRs:functional inferences from computational biology. Curr. Top.Microbiol. Immunol.270, 1-21.
    [90]Letunic, I., Goodstadt, L., Dickens, N.J., Doerks, T., Schultz, J.,Mott, R., Ciccarelli, F., Copley, R.R., Ponting, C.P., Bork, P.,2002. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 30(1),242-244.
    [91]GregoryM Barton, Jonathan C Kagan, RuslanMedzhitov. Intracellular localization of Toll-like receptor 9 p revents recognition of selfDNA but facilitate access to vitalDNA [J]. Nature Immunology,2006,7:49-56
    [92]Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H.,Matsumoto, M., Hoshino, K.,Wagner, H., Takeda, K., Akira, S.,2000. A toll-like receptor recognizes bacterial DNA. Nature 408(6813),740-745
    [93]Zarember KA, Godowskil PJ Tissue Expression of Human Toll-Like Receptors and Differential Regulation of Toll-Like Receptor mRN As in Leukocytes in Response to Microbes, Their Products, and Cytokines[J].J Immunol,2002, 168:554-561.
    [94]Bauer, S., Kirschning, C.J., Hacker, H., Redecke, V., Hausmann, S.,Akira, S., Wagner, H., Lipford, G.B.,2001a. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. U.S.A.98 (16),9237-9242.
    [95]Bauer, M., Redecke, V., Ellwart, J.W., Scherer, B., Kremer, J.P.,Wagner, H., Lipford, G.B.,2001b. Bacterial CpG-DNA triggers activation and maturation of human CD11c_, CD123+dendritic cells. J. Immunol.166 (8),5000-5007.
    [96]Mutwiri, G., Pontarollo, R., Babiuk, S., Griebel, P., van Drunen Littel-van den Hurk, S., Mena, A., Tsang, C., Alcon, V., Nichani,A., Ioannou, X., Gomis, S., Townsend, H., Hecker, R., Potter, A.,Babiuk, L.A.,2003. Biological activity of immunostimulatory CpG DNA motifs in domestic animals. A review. Vet. Immunol.Immunopathol.6722,1-15.
    [97]Krug, A., Rothenfusser, S., Hornung, V., Jahrsdorfer, B., Blackwell,S., Ballas, Z.K., Endres, S., Krieg, A.M., Hartmann, G.,2001.Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells.Eur. J. Immunol.31 (7),2154-2163.
    [98]Lipford, G.B., Bendigs, S., Heeg, K., Wagner, H.,2000. Polyguanosine motifs costimulate antigen-reactive CD8 T cells while bacterial CpG-DNA affect T-cell activation via antigen-presenting cell-derived cytokines. Immunology 101 (1), 46-52.
    [99]Verthelyi, D., Ishii, K.J., Gursel, M., Takeshita, F., Klinman, D.M.,2001. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J. Immunol.166 (4),2372-2377.
    [100]Mena, A., Nichani, A., Popowych, Y., Ioannou, X.P., Godson, D.,Mutwiri, G., Hecker, R., Babiuk, L.A., Griebel, P.J.,2003.Bovine and ovine blood mononuclear leukocytes differ markedly in innate immune responses induced by class A and class B CpG-oligodeoxynucleotides. Oligonucleotides 13,245-260.
    [101]Hemmi,H.,Takeuchi,et al.A Toll-like receptor recognizes bacterial DNA [J].Nature,2000,408:740-745.
    [102]Leifer,C.A.,Kennedy,et al.TLR9 is localized in the endoplasmic reticulum prior to stimulation [J].Immunol,2004,173:1179-1183.
    [103]Jayaum S. Booth, Joram J. Buza, Andrew Potter, Lome A. Babiuk, George K. Mutwiri.Co-stimulation with TLR7/8 and TLR9 agonists induce down-regulat-ion of innate immune responses in sheep blood mononuclear and B cells[J]. Developmental and Comparative Immunology2010.27 (1)1384-1391
    [104]Hornung, V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdorfer, B.,Giese, T. Endres, S., Hartmann, G.,2002. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol.168 (9),4531-4537.
    [105]Sparwasser, T., Koch, E.S., Vabulas, R.M., Heeg, K., Lipford, G.B.,Ellwart, J.W., Wagner, H.,1998. Bacterial DNA and immunostimulatory CpG oligonucl-eotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol.28 (6),2045-2054.
    [106]Sparwasser, T., Miethke, T., Lipford, G., Erdmann, A., Hacker, H.,Heeg, K., Wagner, H.,1997. Macrophages sense pathogens via DNA motifs:induction of tumor necrosis factor-alpha-mediated shock. Eur. J. Immunol.27 (7),1671-79.
    [107]Brown, W.C., Estes, D.M., Chantler, S.E., Kegerreis, K.A., Suarez,C.E.,1998. DNA and a CpG oligonucleotide derived from Babesia bovis are mitogenic for bovine B cells. Infect. Immun.66 (11),5423-5432.
    [108]Zhang, Y., Shoda, L.K., Brayton, K.A., Estes, D.M., Palmer, G.H.,Brown, W.C., 2001. Induction of interleukin-6 and interleukin-12 in bovine B lymphocytes, monocytes and macrophages by a CpG oligodeoxynucleotides (ODN 2059) containing theGTCGTT motif. J. Interferon Cytokine Res.21 (10),871-881.
    [109]Werling, D., Hope, J.C., Howard, C.J., Jungi, T.W.,2004. Differential produc-tion of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with Tolllike receptor agonists. Immunology 111 (1), 41-52.
    [110]邹立君,张合喜,王友洁等.TLR9基因多态性与肺癌易感性的关系[J].环境与职业医学,2006,1(23):8-10
    [111]陈耿臻HLA-DRB1及TLR9基因多态性与急性胰腺炎相关性的研究[D].成都:四川大学,2005.
    [112]Lazarus R,Klimecki WT,Raby BA,et al.Single-nucleotide polymorphisms in the Toll-like receptor 9 gene(TLR9):frequencies,pairwise linkage disequilibrium ,and haplotypes in three U.S.ethnic groups and exploratory casecontrol disease association studies [J].Genomics,2003,81:85-91.
    [113]Noguchi E,Nishimura F,Fukai H,et al.An association study of asthma and total serum IgE levels for Toll-like receptors polymorphisms in the Japanese populat-ion [J].Clin Exp Allergy,2004,34:177-183.
    [114]Berghofer B,Frommer T,Konig IR,et al.Common human Toll-like receptor 9 polymorphisms and haplotypes:association with atopy and functional relevance [J].Clin Exp Allergy,2005,35:1147-1154.
    [115]Sato Y,Miyata M,Sato Y,et al.CpG motif-containing DNA fragments from sera of patients with systemic lupus erythematosus proliferate mononuclear cells in vitro [J].J Rheumatol,1999,26:294.
    [116]Griebel,P.J.,Brownlie,et al.Bovine toll-like receptor 9:a comparative analysis of molecular structure,function and expression [J].Vet.Immunol.Immunopathol, 2005,108:11-16.
    [117]丁歆,付琳琳,苏稚辉,等.葡萄膜炎患者外周血单个核细胞TLR9, TLR7 mRNA的表达及意义[J].徐州医学院学报,2008,28(4):222-224
    [118]徐宁.TLR样受体7,9在慢性乙型肝炎发病机制中作用的研究[D].武汉:浙江大学,2007
    [119]E.J.Cargill,J.E.Womack.Detection of polymorphisms in bovine toll-like receptors 3,7,8,and 9 [J].Genomics,2007,89:745-755.
    [120]Huitong Zhou,Jon G.H.Hickford.Polymorphism of Toll-like receptor 9(TLR9) gene in sheep [J].Veterinary Immunology and Immunopathology,2008,121 :140-143.
    [121]Duan,J.,Wainwright,et al.Synonymous mutations in the human dopamine receptor D2(DRD2)affect mRNA stability and synthesis of the receptor [J].Hum.Mol.Genet,2003,12:205-216.
    [122]Komar,A.A.,Lesnik,et al.Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation [J].FEBS Lett,1999,462:387-391.
    [123]Krieg,A.M.CpG motifs in bacterial DNA and their immune effects [J] Annu. Rev.Immunol,2002,20:709-760.
    [124]Samuel CE. Antiviral actionsof interferons. Clin Microbiol Rev,2001,14:778-809
    [125]B rre R. The interferon system of teleost fish. Fish ShellfishImmunol,2006,20: 172-191
    [126]Der SD, Zhou A, Williams BR, et al. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA,1998,95:15623-15628
    [127]Ritchie KJ, Hahn CS, Kim KI, et al. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med,2004,10:1374—1378
    [128]Nicholl MJ, Robinson LH, Preston CM. Activation of cellular interferonrespon sive genes after infection of human cells with herpes simplex virus type 1. J Gen Virol,2000,81:2215-2218
    [129]D'Cunha J, Knight Jr E, Haas AL, et al. Immunoregulatory properties of ISG15, an interferon induced cytokine. Proc Natl Acad Sci USA,1996,93: 211-215
    [130]Thompson J D progressive Higgins D G, Gibson T J. Clustal W:Improving the sensitivity of multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic. Acid. Res. 1994.22:4673-4680
    [131]Kumar S, Tamura K, Ingrid B, Jakobsen I B, Nei M. MEGA4:Molecular evolutionary genetics analysis software. Arizona State University, Tempe, AZ, USA.2001.
    [132]Nighswonger AM, et al. Rapid communication:the ovine cDNA encoding interferon-stimulated gene product 17 (ISG17). Journal ofanimal science,2000, 78(5):1393—1394.
    [133]Liu M,Li XL,Hassel BA.Proteasomes modulate conjugation to theubiquitin-like protein,ISG15.J Biol Chem.2003 Jan 17;278(3):1594-602.
    [134]Malakhova O,Malakhov M,Hetherington C,et al.Lipopolysaccharide activates the expression of ISG15-specific protease UBP43 via interferon regulatory factor 3.[J].J Biol Chem.2002 Apr 26;277(17):14703-11.
    [135]Osiak A,Uterm?hlen O,Niendorf S,et al.ISG15,an interferon-stimulated ubiquitin-like protein,is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus.[J].Mol Cell Biol.2005 Aug;25(15):6338-45.)
    [136]Lu G,Reinert JT,Pitha-Rowe I,et al.ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation.Cell Mol Biol(Noisy-le-grand).2006 May 15;52(1):29-41.
    [137]Lenschow DJ,Giannakopoulos NV,Gunn LJ.et al.Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo.[J].J Virol.2005 Nov;79(22):13974-83.
    [138]D'Cunha J,Knight E Jr,Haas AL,et al.Immunoregulatory properties of ISG15,an interferon-induced cytokine.Proc Natl Acad Sci U S A.1996 Jan 9;93(1):211-5.)
    [139]Flacher V, et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol,2006, 177(11):7959-7967.
    [140]Scumpia P O,et al.Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia,2005,52(2):153-162.
    [141]Jiao X, et al. Enhanced hepatitis C virus NS3 specific Thl immune responses induced by co-delivery of protein antigen and CpG with cationic liposomes. The Journal of general virology,2004,85(Pt 6):1545-1553.
    [142]Amcheslavsky A,et al. Toll-like receptor 9 regulates tumor nec rosisfactor-alpha expression by different mechanisms.Implications for osteoclastogenesis. The Journal of biological chemistry,2004,279(52):54039-54045.
    [143]Li Y, et al. IL-18 gene therapy develops Thl-type immune responses in Leishmania major-infected BALB/c mice:is the effect mediated by the CpG signaling TLR9 Gene therapy,2004,11 (11):941-948.
    [144]Lee SO, et al. Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene,2003, 22(39):7981-7988.
    [145]Bottcher T, et al. Differential regulation of Toll-like receptor mRNAs in experimental murine central nervous system infections. Neuroscience letters, 2003,344(1):17-20
    [146]Liu L, et al. Toll-like receptor-9 induced by physical trauma mediates release of cytokines following exposure to CpG motif in mouse skin. Immunology,2003, 110(3):341-347.
    [147]宋雪梅,李宏滨,杜立新.比较基因组学及其应用[J].生命化学2006,26(5):425-427
    [148]张立岭.绵羊的系统分类和种系发生[J].中国草食动物,2004,24(3):4344
    [149]Brown G G,Gadaleta G,Pepe G,et al.Structural conservation and variation in the D-loop-controlling region of vertebrate mitchondrial DNA.J Mol Biol,1986,192:503-511.
    [150]Ishida N,Hasegawa T,Takeda K,et al.Polymorphic sequence in the D-loop region of equine mitchondrial DNA. Animal Genetics,1994,25:215-221.
    [151]Rosel P E, Haygood M G, Perrin W F. Phylogenetic relationships among the true porpoises(Cetacea:Phocoenidae).Molecular Phylogenetics and Evolution, 1995,4(4):463-474.
    [152]Stefan H, Heidrun L, Rudolph W, Axel J.The Complete Mitochondrial DNASequence of the Domestic Sheep (Ovis aries) and Comparison with the Other Major Ovine Haplotype. J Mol Evol,1998,47:441-448.
    [153]Broughton R E,Milam H E,Roe B A.The complete sequence of the zebrafish(Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J].Genome Research,2001:1958-1967.
    [154]Inoue J G,Miya M,Tsukamoto K,et al.Basal actinopterygian relationships:a mitogenomic perspective on the phylogeny of the"ancient fish"[J].Molecular Phylogenetics and Evolution,2003,26:110-120.
    [155]郑冰蓉,张亚平,昝瑞光.洱海四种鲤鱼线粒体DNA遗传相似性的初步研究[J].遗传,2001,23(6):544-546
    [156]冯政.藏羚、藏绵羊、藏山羊mtDNA D-loop区序列变异与系统发生关系的研究[硕士学位论文].武汉:华中农业大学,2004
    [157]Hoelzel A R. Evolution by D N A turnover in the control region of vertebrate mitochondrial DNA [J]. Curr Opin Gen Dev,1993,3(6):891-895.
    [158]薄吾成.藏羊渊源初探.农业考古,1987,(1):276-280
    [159]谢成侠.中国养牛羊史(附养鹿简史).北京:农业出版社,1985
    [160]冯维棋.我国古代绵羊品种形成初考.农业考古,1991,(3):338-345
    [161]Hiendleder S A low rate of replacement substitutions in two major Ovis aries mitochondrial genomes.Anim Genet.1998a Apr;29(2):116-222.
    [162]Peter Savolainen, Ya-ping Zhang, Jing Luo。Joakim Lundeberg, Thomas Leitner genetic Evidence for an East Asian Origin of Domestic sheep.Science.(2002)298:1610-1613
    [163]Woronzew N N, korobizgna K W et al.Chromossomi dikich baranow iproisschojdjenije domaschnich owjez.Lriroda,1972,3:74-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700