一粒小麦中抗白粉病新基因的发掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由白粉菌侵染引起的白粉病是小麦的重要病害之一,抗病品种的培育和利用是控制该病害的关键措施。为了发现新的小麦抗白粉病基因,对抗白粉病的8份一粒小麦和2份二粒小麦种质进行了抗性遗传分析。结果表明一粒小麦223410、223418、223423和223426携一个显性抗病基因;223404和223414携一个隐性抗病基因;一粒小麦223405、223409和二粒小麦223309、223310携多个抗病基因。等位性测验表明223410、223418、223423和223426的抗病基因相互等位或者紧密相斥连锁,223409中有一个抗病基因与223410的抗病基因相互等位或者紧密连锁,223404的抗病基因与223410的抗病基因在遗传上相互独立,223309与223310可能携有相互等位或者紧密连锁的抗病基因。
     标记分析表明223410的抗病基因Mlm2033和223426的抗病基因Mlm80均与染色体7A长臂的Xgwm344紧密连锁。为了比较它们与位于7AL的Pml的关系,将已报道的与Pml紧密连锁的五个RFLP标记转化成了STS标记,其中三个在作图亲本间检测到多态,并被定位于紧靠Mlm2033与Mlm80的位置。其中来源于RFLP标记PSR680的Xmag2185与Mlm2033和Mlm80两基因的遗传距离不到2 cM。此外通过比较基因组作图和EST-STS标记分析还发现了与这两个抗病基因连锁的多个标记。该研究为Pml位点的图位克隆打下了基础,同时也将促进这些抗病基因向普通小麦转移。
     标记分析表明一粒小麦223404的抗病基因mlm404位于染色体5AL,SSR标记位点Xzmf39和Xzmg43分别位于基因的两侧,与其遗传距离分别为2.8 cM和2.0 cM。为了精细定位该基因,我们用5AL的RFLP探针和EST开发的STS标记丰富了mlm404附近的标记密度,发现了与其更为紧密连锁的STS标记MAG1493。mlm404与大麦抗白粉病基因Mlo直系同源基因TmMlo紧密连锁,遗传距离为1.0 cM。与感病材料223389相比,抗病材料223404的TmMlo编码的蛋白有一个氨基酸替换。此外,223404的TmMlo表达受到抑制。基因mlm404是一个未报道的新抗白粉病基因位点。
     遗传分析表明一粒小麦223405的白粉病抗性由一个主效隐性抗病基因加微效基因共同控制。利用177个F_(2:3)家系进行简单区间作图在染色体5AL的Xzmf39/Xmag1491~Xmag1493区间发现了一个主效QTL Qpm. nau-5A。该QTL解释了57.8%的表型变异,其抗性等位位点来源于抗病亲本223405。来自于感亲本223389的等位位点呈显性,显性度为73.4%。连锁的分子标记表明Qpm. nau-5A可能是mlm404的一个等位基因。
Powdery mildew, caused by Blumeria graminis(DC.) E. O. Speer f. sp. tritici (Bgt), isone of the devastating diseases of wheat. Breeding and deploying cultivars carryingresistance genes against powdery mildew is the key measure to control this disease. Tosearch for new powdery mildew resistance genes, eight einkorn accessions and two emmeraccessions were studied for the inheritance of their resistance to powdery mildew. Theresults showed that einkorn accessions 223410, 223418, 223423 and 223426 each carried adominant resistance gene, 223404 and 223414 each had a recessive resistance gene, andeinkorn accessions 223405 and 223409 and emmer accessions 22309 and 223310 eachcarried more than one resistance genes. Allelism tests indicated that the resistance genes in223410, 223418, 223423 and 223426 were likely allelic or tightly linked to each other, aresistance gene in 223409 was also likely allelic or linked to the resistance gene in 223410,the resistance gene in 223404 was inherited independent of that in 223410, and 223309might carry resistance genes allelic or linked to that in 223310.
     Marker mapping of the resistance gene, Mlm2033, in 223410 and that, Mlm80, in223426 indicated that they were both closely linked to Xgwm344 on the long arm ofchromosome 7A. To establish their genetic relationship with Pml on 7AL, five RFLPmarkers previously reported to co-segregate with Pmla were converted to STS markers,three of which detected polymorphism between the mapping parents and were mappedclose to Mlm2033 or Mlm80. Xmag2185, the locus determined by the STS marker derivedfrom PSR680, one of the RFLP markers, was placed less than 2 cM away from Mlm2033and Mlm80, suggesting that they are allelic or tightly linked to Pmla. In addition, through comparative and EST mapping, more markers linked to these two genes were identified.This research established the basis for map-based cloning of the Pml locus. The markersfor both genes will also facilitate their transfer to wheat.
     Marker mapping of the resistance gene, mlm404, in 223404 showed that it was flankedby SSR markers loci Xcfd39 and Xgwm126 on chromosome 5AL with a genetic distance of2.8 and 2.0 cM, respectively. To fine mapping the resistance gene, STS markers weredesigned using some RFLP probes and ESTs mapped on the long arm of chromsome 5ALto densify markers on the chromosome region surrounding mlm404, and the STS markermore closely linked to mlm404, MAG1493, was identified. The resistance gene mlm404was tightly linked to TmMlo, the barley Mlo ortholog in T. monococcum, with a geneticdistance 1.0 cM. One amino acid was substituted in the protein encoded by TmMlo of theaccession 223404 compared with that of the susceptible accession 2233389. In addition, thetranscription of TmMlo of 223404 was suppressed. Currently, no known powdery mildewresistance gene was mappd to the locu of mlm404.
     Genetic analysis showed that a major gene plus several minor genes controlled thepowdery mildew resistance in 223405. A major QTL named as Qpm. nau-5A was identifiedthrough simple interval mapping using 177 F_(2:3) families in the intervalXzmf39/Xmag1491~Xmag1493 on chromosome 5AL. This QTL explained 57.8%phenotypic variation, of which the resistance allele originated from the resistant parent223405 and the dominant allele originated from susceptible parent 223389 with a degree of73.4%. Qpm. nau-5A was likely allelic to mlm404 according to its linked molecularmarkers.
引文
刘万才,邵振润(1998)我国小麦白粉病大区流行的气候因素分析。植保技术与推广18:3-5
    刘景芳,张增艳,陈孝,刘曼西,谢皓,辛志勇(2002)小麦抗白粉病基因Pm13及Pm4累加体的分子标记辅助选择。植物病理学报32:296—300.
    张增艳,陈孝,张超,辛志勇,陈新民(2002)分子标记选择小麦抗白粉病基因Pm4b、Pm13和Pm21的聚合体。中国农业科学35:789-793
    张庆利,刘艳华(2003)小麦抗白粉病基因Pm23的RAPD标记。西北植物学报23:1882-1888
    段双科,许育彬,吴兴元(2002)小麦白粉病菌致病毒性和抗病基因及抗病育种研究进展。麦类作物学报22:83—86
    王心宇,陈佩度,张守忠(2001)小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报。28.640—646.
    郑儒永等(1987)中国真菌志第一卷
    Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:10306-10311
    Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J (2004) Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J 40:512-22
    Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop MN, Jones M, Ghesquiere A (2006) Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J doi: 10.1111/j.1365-313X.2006.02792
    Alvarez ME, Pennell RI, Meijer P-J, Ishikawa A, Dixon RA, Lamb C. (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773-84
    Anderson JC, Pascuzzi PE, Xiao F, Sessa G, Martin GB (2006) Host-mediated phosphorylation of type Ⅲ effector AvrPto promotes pseudomonas virulence and avirulence in tomato. Plant Cell 18:502-514
    Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjorn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579-89
    Andriotisa VME, Rathjena JP (2006) The Pto kinase of tomato which regulates plant immunity is repressed by its myristoylated N-terminus. J Biochem & Mol Biol doi: 10.1074/jbc.M603197200
    Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boiler T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983
    Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H.Related (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 5:5118-29
    Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295: 2077-2080
    Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Casais AC, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25: 2007-2016
    Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding - Prospects and challenges. Curr Sci 87: 607-619
    Bakari KA, Maric-Claire, Bernard C, Jean-paul D, Didier F, Maria M-D, Daniel E, Didier M (2006) A major gene mapped on chromosome XII is the main factor of a qualitatively inherited resistance to Meloidogyne fallax in Solanum sparsipilum. Theor Appl Genet 112: 699-707
    Bansal PK, Abdulle R, Kitagawa K (2004) Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex. Mol Cell Biol 24: 8069-8079
    Bennett FGA (1984) Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol 33: 279-300.
    Bernal AJ, Pan Q, Pollack J, Rose L, Kozik A, Willits N, Luo Y, Guittet M, Kochetkova E, Michelmore RW (2005) Functional analysis of the plant disease resistance gene Pto using DNA shuffling. J Biol Chem 280: 23073-83
    Beβer K, Jarosch B, Langen G, Kogel KH (2000) Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. Mol Plant Pathol 1: 277-286
    Bennett FGA (1984) Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol 33: 279-300
    Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102: 3135-3140
    Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16: 3480-3495
    Bogdanove AJ (2002) Protein-protein interacting proteins in pathogen recognition by plants. Plant Mol Biol 50: 981-989
    Bogdanove AJ, Martin GB (2000) AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proc Natl Acad Sci USA 97: 8836-8840
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153-166
    Bowen KL, Everts KL, Leath S (1991) Reduction in yield of winter wheat in North Carolina due to powdery mildew and leaf rust. Phytopathology 81: 503-511
    Brading PA, Hammond-Kosack KE, Parr A, Jones JD (2000) Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to Cladosporium fulvum. Plant J 23: 305-318
    Brigglel W (1966) Transfer of resistance to Erysiphe graminis f. sp. tritici from Khapli emmer and Yuma durum to hexaploid wheat. Crop Sci 6: 459- 461
    Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99: 9328-9333.
    Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695-705
    Cao H, Bowling SA, Gordon S, Dong X (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583-1592
    Cao H, Glazebrook J, Clark JD, ko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57-63
    Cenci A, Ovidio RD, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98: 448-454
    Century KS, Holub EB, Staskawicz BJ (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci USA 92: 6597-6601
    Ceoloni C, Signore GD, Ercoli L, Donini P (1992) Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistance transfers. Hereditas 116: 239-245
    Chandra-Shekara AC, Navarre D, Kachroo A, Kang HG, Klessig D, Kachroo P (2004) Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J 40: 647-659
    Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM, Doussinault G (2001) A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet 103: 962-971
    Chantret N, Sourdille P, Roder M, Tavaud M, Bernard M, Doussinault G (2000) Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theor Appl Genet 100: 1217-1224
    Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat - Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125-1129
    Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact 18: 511-520
    Clarkson JDS (2000) Virulence survey report for wheat powdery mildew in Europe. 1996-1998. http://www.crpmb.org/2000/1204clarkson
    Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973 -977
    Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Voge J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature genetics 6: 716-721
    Coppinger P, Repetti PP, Day B, Dahlbeck D, Mehlert A, Staskawicz BJ (2004) Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. Plant J 40: 225-237
    Coquoz JL, Buchala A, MP H, M'etrauxJP. (1995) Arachidonic acid induces local but not systemic synthesis of salicylic acid and confers systemic resistance in potato plants to Phytophthora infestans and Alternaria solani. Phytopathology 85:1219-1224
    Davis R (2000) Signal transduction by the JNK group of MAP kinases. Cell 103: 239-252
    Dawson WO, Hilf ME (1992) Host-range determinants of plant viruses. Annu Rev Plant Physiol & Plant Mol Biol 43: 527-555
    Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, Staskawicz BJ (2005) Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell 17:1292-1305
    de Witt PJGM (1992) Molecular characterization of gene-for-gene systems in plant - fungus interactions and the applications of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30: 391-418
    DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA 101: 9927-9932
    Del PO, Pedley KF, Martin GB (2004) MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23: 3072-3082
    Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92: 6602-6606
    Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRSl-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100: 8024-8029
    Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99: 2404-2409
    Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181-2191
    Despres C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPRl/NIMl protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12: 279-290
    Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh C, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evlution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56: 77-88
    Diaz-Pendon JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5: 223-233
    Dodds PN, Lawrence GJ, Ellis JG (2001) Six amino acid changes confined to the Leucine-Rich Repeat-Strand-Turn motif determine the difference between the and rust resistance specificities in flax. Plant Cell 13: 163-178
    Dubcovsky J, Dvorak J (1995) Ribosomal RNA loci: nomads of the Triticeae genomes. Genetics 140: 1367-1377
    Dubcovsky J, Luo MC, Dvorak J (1995) Differentiation between homoeologous chromosomes 1A of wheat and 1A'" of Triticum monococcum and its recognition by the wheat Phl locus. Proc Natl Acad Sci USA 92: 6645-6649
    Dubcovsky J, Luo MC, Zhon GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum mococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143: 983-999
    Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32: 927-934
    Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42: 185-209
    Ekengren SK, Liu Y, Schiff M, Dinesh-kumar SP Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36: 905-917
    Elliott C, Muller J, Miklis M, Bhat RA, Schulze-Lefert P, Panstruga R (2005) Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem J 385: 243-254
    Elliott C, Zhou F, Spielmeyer W, Panstruga R, Schulze-Lefert P (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. MPMI 15: 1069-1077
    Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3: 279-284
    Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene 1 that determine differences in gene-for-gene specificity. Plant Cell 11:495-506
    Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutation in common wheat. Jpn J Genet 65: 135-152
    Endo TR (1996) Chromosome of Aegilops species inducing chromosomal structural changes in common wheat. US-Japan joint Seminar. 71: 243-246
    Everts KL. Leath S (1992) Effect of early season powdery mildew on development, survival, yield contribution of tillers of winter wheat. Phytopathology 82: 1273-1278
    Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999). EDS1, an essential component of R gene mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA 96: 3292-3297
    Feuillet C, S Travella C, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253-15258
    Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20: 5400-5411
    Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17: 2601-2613
    Fitzgerald HA, Chern MS, Navarre R, Ronald PC (2004) Overexpression of (At) NPR1 in rice leads to a BTH and environment-induced lesion-mimic cell death phenotype. Mol Plant-Microbe Interact 17: 140-151
    Flor HH (1956) The complementary genetic system in flax and flax rust. Adv Genet 8: 29-54 Fraser RSS (1990) The genetics of resistance to plant viruses. Annu Rev phytopathol 28:179-200
    Freialdenhoven A, Peterhansel C, Kurth J, Kreuzaler F, Schulze-Lefert P (1996) Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell 8: 5-14
    Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34: 621-625
    Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat alien translocations conferring resistance to diseases and pests-current status. Euphytica 91: 59-87
    Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10: 947- 956
    Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98: 373-378
    Geffroy V, Sevignac M, de Oliveira JCF, Fouilloux G, Skroch P, Thoquet P, Gepts P, Langin T, Dron M (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes inved in specific resistance. Mol Plant-Microbe Interact 13: 287-296
    Glazebrook, J., Rogers, E.E., and Ausubel, F.M. (1996). Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143: 973-982
    Gomez-Gomez L, Bauer Z, Boiler T (2001) Both the extracellular leucinerich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13: 1155-1163
    Gonzalez-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JD (2006) The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18:1067-1083
    Griffey CA, Das MK (1994) Inheritance of adult-plant resistance to powdery mildew in Massey and Knox winter wheats. Crop Sci 34: 641-646
    Griffey CA, Das MK, Stromberg EL (1993) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77: 618-622
    Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14: 817-831
    Guyomarc'h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105: 736-744
    Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel collinear region in wheat chromosomes IAS and rice chromosome 5S. Funct Integr Genomics 4: 47-58
    Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55: 77-84
    Hammond-Kosack KE, Jones DA, Jones JDG (1996) Ensnaring microbes-components of plant disease resistance. New Phytol 133: 11-24
    Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotech 14:177-193
    Hammond-Kosack KE, Tang SJ, Harrison K, Jones JDG (1998) The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal avirulence gene product Avr9. Plant Cell 10:1251-1266
    Haiti L, Weiss H, Stephan U, Zeller FJ, Jahoor A (1995) Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet 90: 601-606
    Hartl LH, Zeller WFJ, Jahoor A (1993) Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat (Triticum aestivum L.). Theor Appl Genet 86: 959-963
    Hautea RA, Coffman WR, Sorrells ME, Bergstrom GC (1987) Inheritance of partial resistance to powdery mildew in spring wheat. Theor Appl Genet 73: 609-615
    Heese A, Ludwig AA, Jones JDG (2005) Rapid phosphorylation of a syntaxin during the Avr9/Cf-9-race-specific signaling pathway. Plant Physiol 138: 2406-2416
    Heun M, Friebe B, Bushuk W (1990) Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology 80:1129-1133
    Holt BF, Belkhadir Y, Dang JL (2005) Antagonistic control of disease resistance protein stability in the plant immune system. Science 309: 929-932
    Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ, Kianian PMA, Simons K, Gehlhar S, Rust JL, Syamala RR, Obeori K, Bhamidimarri S, Karunadharma P, Chao S, Anderson OD, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Akhunov ED, Dvorak J, Miftahudin, Ross K, Gustafson JP, Radhawa HS, Dilbirligi M, Gill KS, Peng JH, Lapitan NLV, Greene RA, Bermudez-Kandianis CE, Sorrells ME, Feril O, Pathan MS, Nguyen HT, Gonzalez-Hernandez JL, Conley EJ, Anderson JA, Choi DW, Fenton D, Close TJ, McGuire P E, Qualset CO, Kianian SF (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168: 687-699
    Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 5. Alleles at the Pml locus. Theor Appl Genet 96:1129-1134
    Hsam SLK, Huang XQ, Zeller FJ (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 6. Alleles at the Pm5 locus. Theor Appl Genet 102: 127-133
    Hsam SLK, Zeller FJ (1997) Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar 'Amigo'. Plant Breed 116:119-122
    Hu G, de Hart AK, Li Y, Ustach C, Handley V, Navarre R, Hwang CF, Aegerter BJ, Williamson VM, Baker B (2005) EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J 42: 376-391
    Hu XY, Ohm HW, Dweikat I (1997) Identification of RAPD markers linked to the gene Pml for resistance to powdery mildew in wheat. Theor Appl Genet 94: 832-840
    Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003a) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164: 655-664
    Huang XQ, Hsam SL, Mohler V, Roder MS, Zeller FJ (2004) Genetic mapping of three alleles at the Pm3 locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.). Genome 47: 1130-1037
    Huang XQ, Hsam SLK, Zeller FJ (1997) Chromosomal locationof genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 4. Gene Pm24 in Chinese landrace 'Chiyacao'. Theor Appl Genet 95: 950-953
    Huang XQ, Hsam SLK, Zeller FJ (2000a) Chromosomal locationof two novel genes for resistance to powdery mildew in Chinese landraces (Triticum aestivum L. em. Thell.). J Genet & Breed 54: 311-317
    Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000b) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101: 407-414
    Huang XQ, Wang LX, Xu MX, Roder MS (2003b) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 106: 858-865
    Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39: 285-312
    Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112: 519-533
    Jain SK, Langen G, Hess W, Borner T, Huckelhoven R, Kogel KH (2004) The white barley mutant albostrians shows enhanced resistance to the biotroph Blumeria graminis f.sp. hordei. Mol Plant-Microbe Interact 17: 374-382
    Jakobson I, Peusha H, Timofejeva L, Jarve K (2005) Adult plant and seedling resistance to powdery mildew in a Triticum aestivum x Triticum militinae hybrid line. Theor Appl Genet 112: 760-769
    Jamir Y, Guo M, Oh H-S, Petnichi-Ocwieja T, Chen S, Tang X, Dickman MB, Collmer A, Alfanl JR (2004) Identification of pseudomonas syringae type III effector that can suppress programmed cell death in plants and yeast. Plant J 37: 554-565
    Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE (2006) A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311: 222-226
    Jansen C, Korell M, Eckey C, Biedenkopf D, Kogel KH (2005) Identification and transcriptional analysis of powdery mildew induced barley genes. Plant Sci 168: 373-380
    Jarosch B, Kogel KH, Schaffrath U (1999) The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f.sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact 12: 508-514
    Jarve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a Triticum timopheevii - derived powdery mildew resistance gene transferred to common wheat. Genome 43:377-381
    Jia JKM, Chao DS, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pml2, a powdery mildew resistance gene transferred hom Aegilops speltoides to wheat. Theor Appl Genet 92: 559-565
    Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19: 4004-4014
    Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B (2002) NPK1, a MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell 3: 291-297
    Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S (2003) Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J 33: 719-731
    Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999). Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 96:13583-13588
    Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in arabidopsis. Plant Cell 15:1846-1858
    Johnson JW, Baenziger PS, Yamazaki WT, Smith RT (1979) Effects of powdery mildew on yield and quality of isogenic lines of 'Chancellor' wheat. Crop Sci 19: 349-352.
    Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging Science266: 789-793
    J0rgensen JH (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13: 97-119. Jorgensen JH 1973. Gene Pm6 for resistance to powdery mildew in wheat. Euphytica 22: 43
    Jorgensen LB, Brown RE, Mundy J (2002) Knockout of arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16: 490-502
    Juris SJ, Shao F, Dixon JE (2002) Yersinia Yop effectors target mammalian signaling pathways. Cell Microbiol. 4: 201-211
    Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturuse modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98: 9448-9453
    Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R (2003) Cytosolic HSP90 and HSP70 are essential components of INF1 -mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol 4: 383-391
    Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98: 6511-6515
    Keller M, Keller B, Schachermayr G, Winzeler M, StampJES, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat spelt population. Theor Appl Genet 98: 903-912
    Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187-195
    Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL (2005) The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc Natl Acad Sci USA 102: 6496-6501
    Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS, Chung WS, Moon BC, Kang CH, Park CY, Yoo JH, Kang YH, Koo SC, Koo YD, Jung JC, Kim ST, Schulze-Lefert P, Lee SY, Cho MJ (2002a) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein: isolation and characterization of a rice Mlo homologue. J Biol Chem 277:19304-19314
    Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002b) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416: 447-450
    Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF, Linthorst HJM (1998) Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci USA 95:1933-1937
    Kobayashi Y, Yamada M, Kobayashi I, Kunoh H (1997) Actin microfilaments are required for the expression of nonhost resistance in higher plants. Plant Cell Physiol 38: 725-733
    Kobe B, Deisenhofer J (1994) The leucine-rich repeat: versatile binding motif. Trends Biochem Sci 19: 415-421
    Kogel KH, Langen G (2005) Induced disease resistance and gene expression in cereals. Cellular Microbiol 7:1555-1564
    Kroj T, Rudd JJ, Nurnberger T, Gabler Y, Lee J, Scheel D (2003) Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. J Biol Chem 278:2256-2264
    Kuang H, Wei F, Marano MR, Wirtz U, Wang X, Liu J, Shum WP, Zaborsky J, Tallon LJ, Rensink W, Lobst S, Zhang P, Tornqvist CE, Tek A, Bamberg J, Helgeson J, Fry W, You F, Luo MC, Jiang J, Robin Buell C, Baker B (2005) The Rl resistance gene cluster contains three groups of independently evolving type I Rl homologues and shows substantial structural variation among haplotypes of Solarium demissum. Plant J 44: 37-51
    Kumar D, Gustafsson C, Klessig DF (2006) Validation of RNAi silencing specificity using synthetic genes: salicylic acid-binding protein 2 is required for innate immunity in plants. Plant J 45: 863-868
    Lahaye T (2004) Illuminating the molecular basis of gene-forrgene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2. Trends Plant Sci 9: 1-4
    Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attacks. Cell 56: 215-224
    Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199
    Lander ES, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181
    Lebsock KL, Briggle LW (1974) Gene Pm5 for resistance to Erysiphe graminis f.sp. tritici in Hope wheat. Crop Sci. 14: 561-563
    Lee S, Kim SY, Chung E, Joung YH, Pai HS, Hur CG, Choi D (2004) EST and microarray analyses of pathogen-responsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Funct Integr Genomics (2004) 4: 196-205
    Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberte JF (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74: 7730-7737
    Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosah S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180-1183
    Liu BH (1998) Statistical Genomics: linkage, mapping, and QTL analysis. CRC, Boca Raton, pp 172-173
    Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119: 21-24
    Liu SX, Griffey CA, Saghai Maroof MA (2001) Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci 41:1268-1275
    Liu Y, Schiff M, Dinesh-Kumar SP (2004) Invement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38: 800-809
    Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002a) Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415-429
    Liu Z, Sun Q, Ni Z, Yang T (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118: 215-219
    Liu ZQ, Sun Q, Ni Z, Nevo E, Yang TM (2002b) Molecular characterization of a novel powdery mildewresistance gene Pm30 in wheat originating from wild emmer. Euphytica 123: 21-29
    Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74: 152-156
    Ma ZQ, Sorrells ME, Tanksley SD (1994) RELP marker linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37: 871-875
    Ma ZQ, Wei JB, Cheng SH (2004) PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. Theor Appl Genet (2004) 109: 140-145
    Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dang JL (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112: 379-389
    Mackey D, Holt BF , Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1 -mediated resistance in Arabidopsis. Cell 108: 743-754
    Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002-1004
    Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399-403
    Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the function of plant disease resistance proteins. Annu Rev Plant Biol 54: 23-61
    Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW et al (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436
    Mateo A, Muhlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004): LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136: 2818-2830
    McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Annu Rev Phytopathol 40: 349-379
    McIntosh RA, Baker EP (1970) Cytogenetic studies in wheat IV. Chromosomal location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica 19: 71-77
    Mcintosh RA, Bennett FGA (1978) Telocentric mapping of genes Pm3a and Hg on chromosome 1A of hexaploid wheat. Cereal Research Communications 6: 9-14
    McIntosh RA, Devos KM, Dubcovsky J, Morris CF, APPELS R, Anderson OD (2005) Catalogue of gene symbols for wheat: 2005 supplement, http://wheat.pw.usda.gov/GG2/pubs.shtml
    Mclntosh RA, Devos KM, Dubcovsky J, Rogers WJ (2004) Catalogue of gene symbols for wheat: 2004 Supplement, http://wheat.pw.usda.gov/GG2/pubs.shtml
    Mclntosh RA, Hart GE, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: A.E. Slinkard (Ed.), Proceedings of the 9th International Wheat Genet Symposium, University Extension Press, University of Saskatchewan, Saskatoon, Canada, Vol. 5, pp. 1-235
    Mclntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In Proc. 10th Int. Wheat Genet Symp (Ed. NE Pogna, M Romano, EA Pogna and G Galterio) 4, pp 1-34
    Mei MF, Yao GQ, Jinag YM, Ma ZQ (2005) Characterizing the genetic diversity of a group of einkora wheat lines. Journal of Triticeae Crops 25: 20-25
    Mellersh DG, Heath MC (2003) An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol Plant-Microbe Interact: 16: 398-404
    Menke FLH, van Pelt J, Pieterse CMJ, Klessiga DF (2004) Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16: 897-907
    Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004-1006
    Meyer SLF, Heath MC (1988) A comparison of the death induced by fungal invasion or toxic chemicals in cow pea epidermal cells. II. Responses induced by Erysiphe cichoracearum. Can J Bot 66: 624-634
    Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregnat analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828-9832
    Mingeot D, Chantret N, Baret PV, Dekeyser A, Boukhatem N, Sourdille P, Doussinault G, Jacquemin JM (2002) Mapping QTL inved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breed 121:133-140
    Mishina TE, Zeier J (2006) The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol DOI: 10.1104/pp.l06.081257
    Mosher RA, Durrant WE, Wang D, Song J, Dong X (2006) A comprehensive structure-function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Plant Cell 18: 1750-1765
    Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944
    Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductases gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16: 465-477
    Nasir KH, Takahashi Y, Ito A, Saitoh H, Matsumura H, Kanzaki H, Shimizu T, Ito M, Fujisawa S, Sharma PC, Ohme-Takagi M, Kamoun S, Terauchi R (2005) High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant J 43: 491-505
    Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14: 275-286
    Nelson RR (1978) Genetics of horizontal resistance to plant diseases. Annu Rev Phytopathol 16: 359-378
    Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45: 737-744
    Niewoehner AS, Leath S (1998) Virulence of Blumeria graminis f. sp. tritici on winter wheat in the eastern United States. Plant Dis 82: 64-68
    Nishimura MT, Stein M, Hou B-H, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301: 969-972
    Nuhse TS, Boiler T, Peck SC (2003) A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. J Biol Chem 278: 45248-45254
    Osbourn A (1996) Saponins and plant defence-a soap story. Trends Plant Sci 1: 4-9
    Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and Interleukin-1 receptors with N and L6. Plant Cell 9: 879-894
    Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8: 2033-2046
    Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DA, Xiao S, Coleman MJ, Dow M, Jones JD, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 99: 10865-10869
    Pedley KF, Martin GB (2004) Identification of MAPKs and their possible MAPK kinase activators invoved in the Pto-mediated defense response of Tomato. J Biol Chem 279: 49229-49235
    Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111-1120
    Piedras P, Hammond-Kosack KE, Harrison K, Jones JDG (1998) Rapid, Cf-9- and .Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol Plant-Microbe Interact 11: 1155-1166
    Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129: 1076-1085
    Powers HR, Sando WJ (1960) Genetic control of the host-parasite relationship in wheat powdery mildew. Phytopathology. 50: 454-457
    Pulgsley AT, Cartey MV (1953) Resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici. Aust J of Biol Sci 6: 335- 346
    Qi LL, Cao MS, Chen PD, Li WL, Liu DJ (1996) Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39:191-197
    Qiu YC, Zhou RH, Kong XY, Zhang SS, Jia JZ (2005) Microsatellite mapping of a Triticum urartu Tum, derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor Appl Genet 111: 1524-1531
    Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172: 1901-1914
    Rairdan GJ, Delaney TP (2002) Role of salicylic acid and NIM1/NPR1 in race-specific resistance in Arabidopsis. Genetics 161: 803-811
    Ramonell KM, Zhang B, Ewing RM, Chen Y, Xu D, Stacey G, Somerville S (2002) Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol 3: 301-311
    Reader SM, Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer. Euphytica 53: 57-60
    Reignault P, Sancholle M (2005) Plant-pathogen interactions: will the understanding of common mechanisms lead to the unification of concepts? C R Biologies 328: 821-833
    Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277: 559-565
    Rivas S, Mucyn T, van den Burg HA, Vernoort J, Jones JDG (2002 a) An -400 kDa membrane-associated complex that contains one molecule of resistance protein Cf-4. Plant J 29: 783-796
    Rivas S, Romeis T, Jones JDG (2002b) The Cf-9 disease resistance protein is present in an ~420-kilodalton heteromultimeric membrane-associated complex at one molecule per complex. Plant Cell 14: 689-702
    Roberts JJ, Caldwell RM (1970) General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici in 'Knox'wheat. Phytopathology 60: 1310
    Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149: 2007-2023
    Roelfs AP (1977) Foliar fungal diseases of wheat in the People's Republic of China. Plant Dis Rep 61: 836-841
    Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinases play an essential role in a plant defense response. EMBO J 20: 5556-5567
    Romeis T, Piedras P, Jones JDG (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12: 803-815
    Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604-1615
    Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121-126
    Rooney HC, Van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783-1786
    Rowland O, Ludwig AA, Merrick C, Baillieul F, Tracy F, Durrant WE, Fitz-Laylin L, Nekrasov V, Yoshioka H, Jonathan JDG (2005) Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell 17:1-16
    Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against Potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067-1075
    Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound induced signalling. Plant Cell 14: 749-762
    Rusterucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13: 2211-2224
    Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8: 1809-1819
    Saari EE, Wilcoxson RD (1974) Plant disease situation of high-yielding dwarf wheats in Asia and Africa. Ann Rev Phytopath 12: 49-68
    Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123-133
    Santos FR, Pena SDJ, Epplen JT (1993) Genetic and population study of a Y-linked tetranucleotide repeat DNA polymorphism. Human Genetics 90: 655-656
    Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552-560
    Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273: 300-306
    Schaffrath U, Freyd E, Dudler R (1997) Evidence for different signaling pathways activated by inducers of acquired resistance in wheat. Mol Plant-Microbe Interact 10: 779-783
    Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655-11660
    Schneider DM, Heun M, Fischbeck G (1991) Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breeding 107:161-164
    Schornack S, Ballvora A, Gurlebeck D, Peart J, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB- LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37: 46-60
    Schulze-Lefert P (2004) Knocking on the heaven's wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Opin Plant Biol 7: 377-383
    Schweizer P, Schlagenhauf E., Schaffrath U, Dudler R (1999) Different patterns of host genes are induced in rice by Pseudomonas syringae, a biological inducer of resistance, and the chemical inducer benzothiadiazole (BTH). Eur J Plant Pathol 105: 659-665
    Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138: 2165-2173
    Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274: 2063-2065
    Sears ER, Briggle LW (1969) Mapping the gene Pml for resistance to Erysiphe graminis f.sp. tritici on chromosome 7A of wheat. Crop Sci 9: 96-97
    Shah J, Kachroo P, Nandi A, Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1 -independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25: 563-574
    Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai) selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant-Microbe interact 10: 69-78
    Shaner G (1973) Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology 63:867-872
    Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A yersinia effector and a pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109: 575-588
    Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H (2003) Virus-induced silencing of WIPK and S1PK genes reduced resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol Genet Genomics 269: 583-591
    Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144-147
    Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis Toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14: 3149-3162
    Shirasu K, Lahaye T, Tan MW, Zhou FS, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99: 355-366
    Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, and Raskin I (1995) Salicylic acid in rice. Biosynthesis, conjugation, and possible role. Plant Physiol 108: 633-639
    Singrun C, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2004) Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet 109: 210-214
    Singrun Ch, Hsam SLK, Hartl L, Zeller FJ, Mohler V (2003) Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet 106:1420-1424
    Sorrells ME, Rota ML, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkd JD Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi L, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi D-W, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13: 1818-1827
    Sourdille P, Cadalen T, Guyomarc'h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530-538
    Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003). NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytoso. Plant Cell 15: 760-770
    Srichumpa P, Brunner S, Keller B, Yahiaoui N (2005) Allelic series of four powdery mildew resistance genes at Pm3 locus in hexaploid bread wheat. Plant Physiology 139: 885-895
    Srnic G, Murphy JP, Lyerly JH, Leath S, Marshall DS (2005) Inheritance and chromosomal assignment of powdery mildew resistance genes in two winter wheat germplasm lines. Crop Sci 45:1578-1586
    Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18: 731-746
    Tameling WI, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJ, Takken FL (2006) Mutations in the NB-ARC domain of 1-2 that impair ATP hydrolysis cause autoactivation. Plant Physiology 140:1233-1245
    Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJC (2002) The tomato R gene products 1-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14: 2929-2939.
    Tang D, Ade J, FryeCA, Innes RW (2005) Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J 44: 245-257
    Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060-2063
    Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27: 205-233
    Tanksley SD and Nelson JC (1995) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92: 191-203
    Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063-1066
    Tao W, Liu D, Liu J, Feng Y, Chen P (2000) Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor Appl Genet 100: 564-568
    Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15: 317-330
    Tena G, Asai T, Chiu W, Sheen J (2001) Plant mitogen-activated protein kinase signaling cascades. Curr Opin Plant Biol 4: 392-400
    The TT, McIntosh RA, Bennett FGA (1979) Cytogenetical studies in wheat IX monosomic analysis, telocentric mapping and linkage relationship of gene Sr21, Pm4 and Mle. Aust J Biol Sci 32: 115-125
    Thoday JM (1961) Location of polygenes. Nature 191:368-370
    Tor M, Brown D, Cooper A, Woods-Tor A, Sjolander K, Jones JDG, Holub EB (2004) Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol 135:1100-1112
    Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14:1005-1015
    Trognitz F, Manosalva P, Gysin R, Nino-Liu D, Simon R, Herrera MD, Trognitz B, Ghislain M, Nelson R (2002) Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja × dihaploid S. tuberosum hybrids. Mol Plant-Microbe Interact 15: 587-597
    Truman W, de Zabala MT, Grant M (2006) Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J 46:14-33
    van den Burg HA, Westerink N, Francoijs KJ, Roth R, Woestenenk E, Boeren S, de Wit PJ, Joosten MH, Vervoort J (2003) Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. J Biol Chem. 278: 27340-27346
    van der Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JD (2002) Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J 29: 439-451
    van der Biezen EA, Jones JDG (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 12: 454-456
    van der Hoorn RAL, De Wit PJ, Joosten MH (2002) Balancing selection favors guarding resistance proteins. Trends Plant Sci 7: 67-71
    van der Hoorn RAL, Roth R, De Wit PJGM (2001). Identification of distinct specificity determinants in resistance protein Cf-4 allows construction of a Cf-9 mutant that confers recognition of avirulence protein AVR4. Plant Cell 13: 273-285
    van der Hoorn RAL, Wulff BBH, Rivas S, Durrant MC, van der Ploeg A, de Wit PJGM, Jonesb JDG (2005) Structure-function analysis of Cf-9, a receptor-like protein with extracytoplasmic leucine-rich repeats. Plant Cell 17:1000-1015
    van der Planck JE (1968) Diseases Resistances in Plants, Academic Press, New York and London
    van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allef S (2003) An ancient R gene from the wild potato species Solatium bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J. 36: 867-882.
    Vogel JP, Raab TK, Schiff C, Somerville SC (2002) PMR6 a pectate lyase-like gene required for powdery mildew susceptibility in arabidopsis. Plant Cell 14: 2095-2106
    Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40: 968-978
    Vogel JP, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci USA 7:1897-1902
    Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036-1040
    Wang GL, Song WY, Ruan DL, Sideris S, Ronald PC (1996) The closed gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant-Microbe Interact 9: 850-855
    Ward E, Uknes S, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals J (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085-1094
    Ward SV, Manners JG (1974) Environmental effects on the quantity and viability of conidia produced by Ersiphe graminis. Tans Brit Mryco Soc 62: L119-128
    Wei F, Rod A. Wing, Wise RP (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14: 1903-1917
    Weigel RR, Pfitzner UM, Gatz C (2005) Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell 17: 1279-1291
    Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA. 93: 8776-8781
    Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143-180
    Wildermuth MC, Dewdney J, Wu G, Ausubel MS (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-571
    Wise RP (2000) Disease Resistance: what's brewing in barley genomics. Plant Disease. 84:1160-1170
    Wittmann S, Chatel H, Fortin MG, Laliberte JF (1997) Interaction of the viral protein genome linked of turnip mosaic virus with the translational eukaryotic initiation factor (iso)4E of Arabidopsis thaliana using the yeast two hybrid system. Virology 234: 84-92
    Wu AJ, Andriotis VME, Durrant MC, Rathjena JP (2004) A patch of surface-exposed residues mediates negative regulation of immune signaling by tomato Pto kinase. Plant Cell 16: 2809-2821
    Wu K , Tian L, Hollingworth J, Brown DC, Miki B (2002) Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol 128: 30-37
    Wulff BBH, Thomas CM, Smoker M, Grant M, Jones JDG (2001). Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell 13: 255-272
    Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42: 95-110
    Xiao S, Charoenwattana P, Holcombe L, Turner JG (2003) The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco. 6:289-94
    Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120
    Xie C, Sun Q, Ni Z, Yang T, Nevo E, Fahima T (2003) Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor Appl Genet 106: 341-345
    Yahiaoui N, Srichumpa P, Dudler Robert, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b form hexaploid wheat. Plant J 37: 528-538
    Yang KY, Liu Y, Zhang S (2001) Activation of a mitogenactivated protein kinase pathway is inved in disease resistance in tobacco. Proc Natl Acad Sci USA 98: 741-746
    Yang S, Hua J (2004) A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16: 1060-1071
    Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40: 909-919
    Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell 18: 747-763
    Yu DZ, Yang XJ, Yang LJ, Jeger MJ, Brown JKM (2001) Assessment of partial resistance to powdery mildew in Chinese wheat varieties. Plant Breed 120: 279-284
    Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 34: 768-777
    Zeller FJ, Hsam SLK (1996) Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.). Theor Appl Genet 93: 38-40
    Zeller FJ, Hsam SLK (1998) Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.). Proceedings of the 9th International Wheat Genetics Symposium. Edited by A.E. Slinkard. University Extension Press, Saskatoon, Sask. pp. 178-180
    Zeller FJ, Stephan U, Lutz J (1993) Present status of wheat powdery mildew resistance genetics. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genet Symp, China Agricultural Scientech Press, Beijing, China, pp 929-931
    Zeller FJ, Kong L, Mohler HV, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell) 7 Gene Pm29 in line Pova. Euphytica 123:187-194
    Zhang S, Du H, Klessig DF (1998) Activation of tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell 10: 435-449
    Zhang Y, Goritschnig S, Dong X, Li X (2003) A Gain-of-function mutation in a plant disease resistance gene leads to constitutive activation downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15: 2636-2646
    Zhang Y, Li X (2005) A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by uppressor oinprl-1, constitutive 1. Plant Cell 17: 1306-1316
    Zhou F, Menke FL, Yoshioka K, Moder W, Shirano Y, Klessig DF (2004) High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. Plant J 39: 920-932
    Zhou J, Tang X, Frederick R, Martin G (1998) Pathogen recognition and signal transduction by the Pto kinase. J Plant Sci Res 111: 353-356
    Zhu Z, Zhou R, Kong X, Dong Y, Jia J (2005) Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48: 585-590
    Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J. 40: 633-646
    Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boiler T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700