盐碱胁迫下两个菊芋品种生理特征及钙的调控效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是影响农业生产以及生态环境的一个全球性问题。因此,如何改良和利用盐渍化土壤已成为各国政府和人民关注的热点问题。大量研究证明,生物学措施,特别是引种经济型耐盐植物,是解决土壤盐渍化问题最有效的措施之一。目前世界淡水资源日渐枯竭,尤其是我国已被列入全球12个严重贫水的国家之一,但是我国是一个海洋大国,海水资源丰富。因此,开发利用海水资源可以有效缓解水资源危机。本文选择了‘南芋1号'和‘南芋2号'(以下简称为‘1号'和‘2号')两个菊芋品种,首先利用不同浓度NaCl(0、50、100、150 mmol L~(-1))和Na_2CO_3(0、25、50、75 mmol L~(-1))对其进行胁迫处理,研究了NaCl和Na_2CO_3胁迫对‘1号'和‘2号'的形态结构、微观结构以及生物量、根系活力、活性氧含量、抗氧化酶活性、叶绿素含量、光合作用参数、叶绿素荧光参数等生理生化指标的影响,去筛选抗盐品种,从而为充分合理的利用盐碱土壤提供理论依据。其次利用不同浓度海水(0、10%、20%、30%)对其进行浇灌,研究海水对‘1号'和‘2号'的胁迫作用。然后以‘2号'为材料,进一步研究了Ca~(2+)对Nacl胁迫下菊芋生物量、离子分布、抗氧化酶活性、丙二醛(MDA)含量、净光合速率(Pn)、气孔导度(Gs)和荧光参数的影响,以探索外源Ca~(2+)对缓解植物盐胁迫下光合作用下降的作用机制。最后以‘2号'为材料,利用不同浓度Ca~(2+)对30%海水处理下的菊芋幼苗进行调控,研究其对海水的利用程度。主要结果如下:
     1.通过砂培试验比较了‘1号'和‘2号'两个菊芋品种苗期对盐碱的忍耐程度。结果表明,‘1号'在低浓度的NaCl胁迫下,对其生长无显著性影响,具体表现为,与对照相比,生物量无显著性变化,相对生长速率和根系活力增大,根冠比增加,根、茎和叶片中离子浓度不变。当NaCl浓度达100 mmol L~(-1)以上时,随着浓度的增加生物量显著降低,其原因主要是随着盐浓度的增加,活性氧含量增加,抗氧化酶不能及时清除活性氧,从而导致叶绿体遭到破坏,MDA含量和相对电导增加,进而影响光合作用的进行。对于‘2号'而言,在低浓度NaCl胁迫下,其生物量显著降低,活性氧含量、MDA含量和相对电导显著增加,叶绿体受到严重损伤,抗氧化酶活性和光合作用急剧下降。且随着NaCl浓度的增加,胁迫程度加剧。因此,‘1号'的耐盐性大于‘2号'。
     在Na_2CO_3胁迫下,无论是‘1号',还是‘2号',随着浓度的增加,其生物量、离子分布、活性氧含量、抗氧化酶活性以及光合机构与对照相比均受到显著的影响;但在相同浓度Na_2CO_3胁迫下,‘2号'受到的影响小于‘1号',说明‘2号'具有一定耐碱性。在相同Na~+条件下,进行对比,发现这两个品种的耐盐性均大于耐碱性。
     2.在0%-20%海水处理下,‘1号'的生物量、抗氧化酶活性、叶绿素含量、光合作用参数、叶绿素荧光参数等生理生化指标随着海水浓度的增加而增加,根系活力并没有受到明显的影响,叶绿体结构没有发生明显改变,活性氧含量虽然有所增加,但被增加的抗氧化酶及时清除,从而保护了细胞膜。随着海水浓度的继续增加,‘1号'的生物量、抗氧化酶活性等显著降低,活性氧含量、脯氨酸含量显著增加,而叶绿素含量、光合作用参数、叶绿素荧光参数等生理生化指标并没有发生显著的变化。而‘2号'仅能在低浓度10%海水处理下正常生长,随着海水浓度的继续增加,各个指标均发生显著的改变。‘1号'和‘2号'相比较,在相同浓度的海水胁迫下,‘1号'受到的伤害要小于‘2号',由此说明‘1号'对盐的忍耐程度高于‘2号',能够利用较高浓度的海水。
     3.在150 mmol L~(-1) NaCl胁迫条件下,外施10 mmol L~(-1)的Ca~(2+)可有效防护胁迫所致的氧化损伤,通过维持较高的抗氧化酶活性,抑制脂质过氧化作用,使叶片在盐胁迫条件下,维持较高的PSⅡ的电子传递强度(Fm/Fo)、PSⅡ光化学效率(Fv/Fm)、PsⅡ量子效率(φPSⅡ)、光化学淬灭系数(qP)、Pn和较低的非光化学淬灭系数(NPQ),有利于物质积累从而使生物量增加。这主要归因于Ca~(2+)可以在一定程度上弥补盐胁迫导致Ca~(2+)亏缺造成的离子失衡,使植物体维持较正常的生理活动,稳定细胞膜结构,维持体内离子吸收平衡,保护光合机构。
     4.在30%海水处理下,‘2号'菊芋的正常生理代谢明显受到抑制;当施入钙离子后,盐对菊芋幼苗的胁迫不同程度降低,其中以10 mmol L~(-1)的Ca~(2+)效果最好,可有效防护胁迫所致的氧化损伤,从而维持较高的抗氧化酶活性,抑制脂质过氧化作用,使叶片在盐胁迫条件下,维持较高的Fm/Fo、Fv/Fm、φPSⅡ、qP、Pn、Gs和较低的NPQ。从而证明,外源Ca~(2+)能够增加不耐盐品种菊芋对海水的利用程度。
Soil salinization is a global problem which influences agricultural production and ecological circumstance.Therefore,improvement and utilization of the saline soil becomes a new hotspot to many countries.A lot of studies showed that biological measure, especially economic and salt-tolerant plant introduction is one of the most effective resolvement.Now fresh water resource is becoming exhausted.Our country appeared one of the twelve countries which are in defect of fresh water seriously all over the world.There are abundant seawater resources in our country,so exploitation and utilization of seawater could effectively alleviate fresh water deficency.So two Jerusalem artichoke cultivars 'Nanyu No.1' and 'Nanyu No.2' were selected.Jerusalem artichoke seedlings(7-day-old) were treated with NaCl(0,50,100 and 150 mmol L~(-1)) and Na_2CO_3(0,25,50 and 75 mmol L~(-1)) in the plastic pots with sand.Then physiological indexes of different Jerusalem artichoke cultivars such as morphological structure,chloroplast ultrastructure,biomass,root activity,reactive oxygen species contents,antioxidative enzymes activity,chlorophyll content,photosynthesis and parameters of chlorophyll fluorescence were studied in order to screen salt-tolerant cultivar and offer the theory for sufficient and reasonable using the saline soil.Then Jerusalem artichoke seedlings were treated with different concentrations of seawater(0,10%,20%and 30%) to study whether they could grow in seawater.Thirdly,a regulation of Ca~(2+) on 'Nanyu No.2' seedlings under NaCl stress was studied with different Ca~(2+) concentrations.The effects of Ca~(2+) on biomass,ion distribution,antioxidative enzymes activity,malondialdehyde(MDA) content,relative conductivity,net photosynthetic rate(Pn),stomatal conductivity(Gs) and fluorescent parameters were studied to explore the effect of exogenous Ca~(2+) on alleviation of decreased photosynthetic ability of Jerusalem artichoke leaves under NaCl stress.Lastly,different Ca~(2+) concentrations were used to study the regulation of Ca~(2+) on 'Nanyu No.2' seedlings under 30%seawater stress to explore whether exogenous Ca~(2+) could increase salt-tolerance and seawater utilization of 'Nanyu No.2'.The main results obtained were as follows.
     1.Two Jerusalem artichoke cultivars,'Nanyu No.1' and 'Nanyu No.2' were used to explore which was more saline-alkali tolerant in the plastic pots with sand.The results showed that low concentration of NaCl(50 mmol L~(-1)) had no significant impact on 'Nanyu No.1' growth,such as biomass and ion contents of root,stem and leaves had no significant difference,relative growth rate,root activity and root/shoot ratio increased compared with the control..But high concentration of NaCl(≥100 mmol L~(-1)) significantly influenced the growth and physiological indexes of the Jerusalem artichoke.The reasons were that with the concentration of NaCl increased,reactive oxygen species contents increased,and antioxidative enzymes could not scavenged reactive oxygen species in time,which led to the damage of the chloroplast,MDA content and relative conductivity increased,and influenced net photosynthesis rate markedly.However,'Nanyu No.2' growth was inhibited significantly in low NaCl concentration(50 mmol L~(-1)),such as reactive oxygen species contents,MDA content and relative conductivity increased markedly,chloroplast was damaged seriously,and antioxidative enzymes activity and net photosynthesis rate decreased significantly.Furthermore,the stress degree increased with the increase of NaCl concentration.All the results proved 'Nanyu No.1' to be more salt-tolerant than 'Nanyu No.2'
     The changes in growth and physiology of 'Nanyu No.1' and 'Nanyu No.2' under Na_2CO_3 stress were different from those under NaCl stress.The growth,ion distribution, reactive oxygen species contents,antioxidative enzymes activity and photosynthesis apparatus of two cultivars were influenced significantly with the increase of Na_2CO_3 concentration compared with control.Under the same Na_2CO_3 concentration treatment, 'Nanyu No.2' was more alkali-resisted than 'Nanyu No.1'.However,at the same concentrations of Na~+ all the physiological indexes were markedly influenced under Na_2CO_3 stress than NaCl stress.So we concluded that the degree of saline-tolerance was higher than the alkali-tolerance of the two Jerusalem artichoke cultivars.
     2.The physiological indexes of 'Nanyu No.1' such as biomass,antioxidative enzymes activity,chlorophyll content,photosynthesis indexes and parameters of chlorophyll fluorescence significantly increased with the increase of seawater concentration among 0%—20%.However,root activity was not influenced markedly,and the structure of chloroplast was not changed evidently.Although reactive oxygen species contents increased, they were scavenged by antioxidative enzymes immediately.So the cell membrane was intact and protected.When 'Nanyu No.1' was treated by 30%seawater,the biomass and antioxidative enzymes activity decreased significantly,while reactive oxygen species contents and proline content increased markedly.But chlorophyll content,photosynthesis indexes and parameters of chlorophyll fluorescence were not influenced significantly. However,'Nanyu No.2' could only grow normally in the 10%seawater.All the indexes were influenced significantly with the increase of seawater concentration.'Nanyu No.2' was damaged more seriously than 'Nanyu No.1' at the same concentration of seawater.All the results proved 'Nanyu No.1' to be more saline-tolerant and it could utilize higher concentration seawater than 'Nanyu No.2'.
     3.Addition of Ca~(2+) significantly protected Jerusalem artichoke from oxidative damage caused under 150mmol L~(-1) NaCl stress by maintaining high antioxidative enzymes activity, which could effectively decrease content of MDA and relative activity in Jerusalem artichoke leaves.As a result,the increases in status of electron transport by PSII(Fm/Fo), primary photochemical efficiency of PSII(Fv/Fm),quantum efficiency of photosystemⅡ(ΦPSII),photochemical quenching coefficient(qP),net photosynthetic rate(Pn) and the decrease in non-photochemical quenching coefficient(NPQ) were observed under salt stress.All these were propitious to the dry matter accumulation so that the fresh weight increased significantly.In conclusion,addition of Ca~(2+) compensated the deficient Ca~(2+) induced by salt stress,maintained the normal metabolism and intact cell membrane, balanced the ions absorbed and protected the photosynthetic system.
     4.Normal metabolism of 'Nanyu No.2' was significantly inhibited by 30%seawater stress.However,addition of Ca~(2+) could alleviate the seawater stresses on Jerusalem artichoke in different degrees,especially for the 10 mmol L~(-1) Ca~(2+).The addition of exogenous Ca~(2+) markedly protected Jerusalem artichoke leaves from oxidative damage by maintaining high antioxidative enzymes activity,which could effectively decrease content of MDA and relative activity in Jerusalem artichoke leaves.As a result,the increases in Fm/Fo,Fv/Fm,ΦPSII,qP,Pn and the decrease in NPQ were observed under salt stress.All the results suggested that addition of Ca~(2+) could significantly increase the seawater utilization of 'Nanyu No.2' which was saline-intolerant Jerusalem artichoke cultivar.
引文
Allen R. Dissection of oxidative stress tolerance using transgenic plants[J]. Plant Physiology, 1995, 107:1049-1054.
    Amy S V, Williams W A, Demmig-Adams B, et al. Xanthophyll cycle pigments localization and dynamics during exposure to low temperature and light stress in Vinca major[J]. Plant physiol, 1999,120(3): 727-739.
    Asish K P, Anath B D, Prasanna M. Defense potentials to NaCl in a mangrove, Bruguiera parviflora:Differential changes of isoforms of some antioxidative enzymes[J]. Plant Physiol, 2004,161: 531-542.
    Baldini M, Danuso F, Turi M, et al. Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers[J]. Industrial Crops and Products, 2004,19: 25-40.
    Barbara L, Andrea S, Enrico B, et al. Antioxidative defense system pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought[J]. Plant physiol, 1999, 119(3):1091-1099.
    Bates L S, Waldren R P, Teare I D. Rapid determination of free praline for water stress studies[J]. Plant Soil, 1973,39: 205-207.
    Benavides M P, Marconi P L, Gallego S M. Relationship between antioxidant defence systems and salt tolerance in Solatium Tuberosum[J]. J Plant Physiol, 2000, 27: 273-278.
    Bhaskaram S , Smith R H , Newton R J . Physiological changes in cultured sorghum cell in response to induced water stress 1. Free proline[J]. Plant Physiol., 1985, 79: 266-269.
    Binzel M L, Reuveni M. Cellular mechanisms of salt tolerance in plant cell[J]. Hort Rev, 1994, 16:33-69.
    Blatt M R, Grabov A. Signalling gates in abscisic acid-mediated control of guard cell ion channels[J].Physiol Plant, 1997,100: 481-490.
    Bohnert H J, Sheveleva E. Plant stress adaptations-making metabolism move[J]. Curr Opin Biol, 1998,1:267-274.
    Bohnert H J, Ayoubi P, Borchert C, et al. A genomics approach towards salt stress tolerance[J]. Plant Physiol Biochem, 2001,39: 295-311.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254.
    Buege J A, Aust S D. Microsomal lipid peroxidation[J]. Method Enzymol, 1978, 52: 302-310.
    Carter D R, Cheeseman J M. The effect of external NaCl on thylakoid stacking in plants[J]. Plant Cell Environ, 1993,16: 215-223.
    Chen K, Hu G Q, Keutgen N, et al. Effects of NaCl salinity and CO_2 enrichment on pepino (Solanum muricatum Ait.) Leaf photosynthetic properties and gas exchange[J]. Sci Hortic, 1999, 81:43-56
    Chen L Z, Wang W Q, Lin P. Photosynthetic and physiological responses of Kandelia candel L. durce seedlings to duration of tidal immersion in artificial seawater[J]. Environ Exp Bot, 2005, 54(3):256-266.
    Chen M, Fry I V. Genetic transformation of wheat mediated by Agrobacterium tumefaciens[J]. Plant Physiol, 1997,115:971-980.
    Chen Q, Zhang W H, Liu Y L. Effect of NaCl, and glutathione and ascorbic acid on function of tonoplast vesicles isolated from barely leaves[J]. J Plant Physiol, 1999,155: 685-690.
    Chinta S, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity[J]. Plant Sci, 2001,161: 613-619.
    Christopher J S, Mition J, Williams J M. 1994. Induction of phytoalexin synthesis in Medicage sativa (Lucerne) Verticillium alboatruminteraction. In: Daniel M, Purkayastha R P eds. Handbook of Phytoalexin and Action. Marcel Dekker, Inc. pp. 405-444.
    Colmer T D, Fan T W M, Higashi R M, et al. Interactive effects of Ca~(2+) and NaCl salinity on the ionic relations and praline accumulation in the primary root tip of sorghum bicolor[J]. Physiol Plant, 1996,97:421-424.
    Cramer G R. Displacement of Ca~(2+) and Na~+ form the plasmalemma of rottcells[J]. Plant Physiol, 1985,79:207-211.
    Cramer G R, Abdel B R, Seemann J R. Salinity calcium interactions on root growth and osmotic adjustment of two corn cultivars differing in salt tolerance[J]. J Plant Nutri, 1990,13:1453-1462.
    Davenport R J, Reid R J, Smith F A. Sodium-calcium interactions in two wheat species differing in salinity tolerance[J]. Physiol. Plant., 1997, 99: 323-327.
    Dieter P. Calmodulin and calmodulin-mediated progress in plants[J]. Plant, Cell and Environment, 1984,7: 371-380.
    
    Epstein E, Rains D W. Advance in salt tolerance[J]. Plant Soil, 1987,99: 17-29.
    Fisher M P, Zamir U A. A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance of the alga Dunaliella[J]. Plant Physiol, 1994,106: 1359-1365.
    Flowers T J. Will there over be salt tolerant crops[A]? Munns R. Univ Sussex Professional Lecture[C].New Jersey: Univ Sussex, 1994,18-40.
    
    Foyer C H. Free radical processes in plants[J]. Biochem. Soc. Trans., 1996,24:427-433.
    Francois L E, Donovan T J, Maas E V. Calcium deficiency of artichoke buds in relation to salinity[J].Hortscience, 1991,26: 549-553.
    Fukushima E, Arata Y, Endo T, et al. Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase[J]. Plant Cell Physiol, 2001,42:245-249.
    Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta, 1989, 990:87-92.
    Ghazi H B, Yasuo Y, Emi S, et al. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts[J]. Plant Sci, 2004,166: 919-928.
    Giannopolitis C N, Ries S K. Superoxide dismutase I. Occurrence in higher plants[J]. Plant Physiol,1977,59:309-314.
    
    Goadijn O J M, van Dun K. Trehalose metabolism in plants[J]. Trends Plant Sci, 1999,4: 315-319.
    Gong M, Arnold H, Knight M R, et al. Heat-shock-induced changes in intracellular Ca~(2+) level in tobacco seedlings in relation to thermotolerance[J]. Plant Physiol, 1998,116:429-437.
    Gong M, Chen S N, Song Y Q, et al. Effects of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings[J]. Australian Journal of Plant Physiology, 1997, 24:371-379.
    Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl in salt-tolerance and salt-sensitive cultivars of cotton[J]. Crop Sci, 1994, 34: 706-714.
    Grant I, Beversdorf W D, Peterson R L. A comparative light and electron microscopic study of microspore and tapetal development in male fertile and cytoplasmic male sterile oilseed rape (Brassica napus)[J]. Can J Bot, 1980, 64: 1055-1068.
    Grieve C M, Francois L E. Salinity affects the timing of phasic development in spring wheat[J]. Crop Sci,1994, 34:1544-1549.
    Hall J L, Harvey D M R, Flowers T J. Evidence for the cytoplasmic locating of betaine in leaf cells of Suaeda maritime[J]. Planta, 1978, 140: 59-62.
    Hanson A D, Nelsen C E, Everson E H. Evalution of free Proline accumulation as an index of drought resistance using two contrasting barley cultivars[J]. Crop Sci, 1977,17: 720-734.
    Hayakawa T, Kanematsu S, Asada K. Purification and characterization of thylakoid-bound Mn-superoxide dismutase in spinach chloroplasts[J]. Planta, 1985,166:111-116.
    Hodge M, Andrew C J, Johnson D A, et al. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines[J]. Physiol Plant, 1996,98: 685-692.
    Hua X J, Van de Cotte B, Van Montagu M, et al. The 5' untranslated region of the At-P5CR gene is involved in both transctiptional and post-transctiptional regulation[J]. Plant J, 2001, 26:157-169.
    Hunt J. Dilute hydrochloric acid extraction of plant material for routine cation analysis[J]. Commun Soil Sci Plant Anal, 1982,13:49-55.
    
    Hunt R. 1978. Plant growth analysis[M]. Edward Arnold Ltd., London. Studies in biology No 96. pp. 67.
    Inze D, Montaga M V. Oxidative stress in plants[J]. Curr Opin Biotech, 1995, (6): 153-158.
    Iturbe-Ormaetxe I, Escuredo P R, Arrese-Igor C. Oxidative damage in pea plants exposed to water deficit or paraquat[J]. J Plant Physiol, 1998,116:173-181.
    Judy D T, John J, Burke J. Effect of water stress on the Organic acid and carbohydrate compositions of Cotton plants[J]. Plant Physiol, 1986, 82: 724 -728.
    Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001,13: 889-905.
    Lahaye P A. Epstein E. Salt toleration byplant: enhancement with calium[J]. Science, 1969, 166:395-407.
    Li J, Lee Y R J, Assmann S M. Guard cells possess a calcium-dependent protein kinase that phospholates the KAT: a potassium channel[J]. Plant Physiol, 1998,166: 785-795.
    Liu T, Staden J V. Growth rate, water relations and ion accumulation of soybean callus lines differing in salinity tolerance under salinity stress and its subsequent relief[J]. Plant Growth Regul, 2001, 34: 277-285.
    Lutts S, Kiner J M, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance[J]. Ann Bot, 1996,78: 389-398.
    Lynch J A. Salinity stress increase cytoplasmic activity in maixe root protoplasts[J]. Plant Physiol, 1989,90:127-180.
    Lynch J, Politc V S, Lauchli A. Salinity stress increases Ca activity in maize root protoplasts[J]. PlantPhysiol, 1989, 90:1271-1274.
    Mac Nevin W M, Uron P F. Separation of hydrogen peroxide from organic hydroperoxides[J]. Anal Chem, 1953,25:1760-1761.
    Mac Robbie E A C. Signalling in guard cell and regulation of ion channel activity[J]. J Exp Bot, 1997,48: 515-528.
    Maijer W J M, Mathijssen E W J M. The relation between flower initiation and sink strength of stems and tubers of Jerusalem artichoke[J]. Neth J Agric Sci, 1991, 39:123-135.
    Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000,51:659-668.
    Mc Ainsh P R, Brownlee A M, Hetherington A M. Calcium ions as second messengers in guard cell signal transduction[J]. Physiol Plant, 1997,100:16-29.
    Melis A. Photosystem II damage and repair of chloroplasts: What modulates the rate of photodamage in vivo[J]? Trends Plant Sci, 1999, 4:130-135.
    Monti A, Amaducci M T, Venturi G Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes[J]. Europ J Agronomy, 2005,23:136-145.
    Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses[J].Plant Cell Environ., 1993,16: 1107-1114.
    Muns R, Gardner A, Tonnet M L, et al. Growth and development in NaCl-treated plants. II. Do Na~+ or Cl~- concentrations in dividing or expanding tissues determine growth in barley[J]. Aust J Plant Physiol,1998,15:529-540.
    Navari-lzzo F, Quartacci M F, Pinzino C, et al. Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper[J]. Physiol Plant, 1998,104: 630-638.
    Noctor G, Arisi A M, Jonanin L, et al. Glutayhione:biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants[J]. J Exp Bot, 1998, 321: 623-647.
    Nublat A, Desplans J, Casse F, et al. Sas1, an Arabidopsis mutant over accumulating sodium in the shoot,shows deficiency in the control of root radial transport of sodium[J]. Plant Cell, 2001,13: 125-137.
    Ono H, Sawads K, Khunajakr N, et al. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata[J]. J Bacteriol, 1999,181:91-99.
    Patterson B D, Mackae E A, Ferguscn I B. Estimation of hydrogen peroxide in plant extracts using Titanium (IV)[J]. Anal Biochem, 1984,139:487-492.
    Poovaiah B W, Reddy A S N, Mofadden J J. Calcium messenger system: role of protein phosphorylation and inositol phospholipids[J]. Physiol Plant, 1987, 69: 569-573.
    Powles S B. Photoinhibition of photosynthesis induced by visible light[J]. Ann Rev plant physiol, 1984,35:15-44.
    Ral G G, Rao G R. Pigment composition and chlorophyase activity in pigment pea and gingelley under NaCl saliniry[J]. Indian J Exp Biol, 1986, 19: 768-770.
    Rontein D, Basset G, Hanson A D. Metabolic engineering of osmoprotectant accumulation in plants[J].Metab Eng, 2002,4: 49-56.
    Roosens N H, Willem R, Li Y, et al. Proline metabolism in the wild-type and in a salt-tolerant mutant of Nicotiana plumbaginfolia studied by ~(13)C-nuclear magnetic resonance imaging[J]. Plant Physiol, 1999,121: 1281-1290.
    Rout N P, Shaw B P. Salinity tolerance in aquatic macrophytes: probable role of proline, the enzymes involved in its synthesis and C_4 type of metabolism[J].Plant Sci.,1998,136:121-130.
    Rout N P,Shaw B P.Salt tolerance in aquatic macrophytes:ionic relation and interaction[J].Bio Planta,2001,44(1):95-99.
    Sayed O H.Chlorophyll fluorescence as a tool in cereal research[J].Photosynthetica,2003,41:321-330.
    Schreiber U,Schliwa U,Bilger W.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J].Photosynth Res,1986,10:51-62.
    Seki M,Narusaka M,Abe H et al.Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA rnicroarray[J].Plant Cell,2001,13:61-72.
    Sgherri C L M,Maffei M,Navari-lzzo F.Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering[J].J Plant Physiol,2000,157:273-279.
    Shi D C,Sheng Y M.Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors[J].Environ Exp Bot,2005,54:8-21.
    Shinozaki K,Yamaguchi K.Gene expression and signal transduction in water-stress response[J].Plant Physiol,1997,115:327-334.
    Simon P M,Bonzon H G,Marine D.Subchloroplastic localization of NAN kinase activity:evidence for a Ca~(2+),calmodulin-dependent activity at the envelope and for a Ca~(2+),calmodulin-dependent activity in the stroma of pea chloroplasts[J].FEBS Letters,1984,159:332-338.
    Smimoff N.The function and metabolism of ascorbic acid in plants[J].Ann Bot,1996,78:661-669.
    Sridharan G,aneau E,Fragata M.Relationship between chlorophyll a fluorescence induction and oxygen evolution in barley(Hordeum vulgate) thylakoids treated with alpha-,beta-,and gamma-cyclodextrins[J].Can J Bon,2002,80(7):741-751.
    Stockinger E J,Gilmour S J,Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2domain-containing transcriptional activator that binds to the C-repeat/DRE,acis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J].Proc Nat Acad Sci USA,1997,94:1035-1040.
    Sultana N,Ikeda T,Itoh R.Effect of NaC1 salinity on photosynthesis and dry matter accumulation in developing rice grains[J].Environ Exp Bot,1999,42:211-220.
    Sun G R,Guan Y,Yan X F.Effect of Na_2CO_3 stress on defensive enzyme system of Puccinellia tenuiflora seedlings[J].Acta Agrestia Sinica,2001,9(1):34-38.
    Takable T.Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J].Plant Cell Physiol,1989,30:85-90.
    Takahashi M A,Asada K.Superoxide anion permeability of phospholipids membranes and chloroplast thylakoids[J].Arch.Biochem.Biophys.,1983,226:558-566.
    Tigen D,Ismail T.Comparative lipid peroxidation,antioxidant defense systems and praline content in roots of two rice cultivars differing in salt tolerance[J].Environmental and Experimental Botany,2004,3(17):1-11.
    Valentina M.Activities of SOD and the ascorbate-glutathion cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii[J].Plant Physiol,2000,33:65-77.
    Van Kooten O,Snel J F H.The use of chlorophyll fluorescence nomenclature in plant stress physiology[J].Photosynthesis Research,1990,25:147-150.
    Vestergaard O,Sand-Jensen K.Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes[J].Aquat Bot,2000,67:85-107.
    Vogeli U R,Vogeli L,Chappell J.Inhibition of phytoalexin diosynthesis in elicitor treated tobacco cell suspension cultures by Calcium/Calmodulin antagonists[J].Plant Physiol,1992,100:1369-1376.
    Walker R R,Blackmore D H,Sun Q.Carbon dioxide assimilation and foliar ion concentration in leaves of lemon(Citrus limon L.) trees irrigated with NaCI or Na_2SO_4[J].Aust J Plant Physiol,1993,20:173-185.
    Wang S M,Zheng W J,Ren J Z,et al.Selectivity of various types of salt-resistant plant for K~+ over Na~+[J].J Arid Environ,2002,52(4):457-472.
    Webb A A R,Mcainsh M R,Taylor J E,et al.Calcium ions as intracellular second messengers in higher plants[J].Adv Bot Res,1996,22:45-96.
    Wellbum A R.The spectral determination of chlorophylls a and b,as well as total carotenoids using various solvents with spectrophotometers of different resolution[J].J Plant Physiol,1994,144:307-313.
    Willekens H,Van Camp W,Van Montagu M,et al.Ozone,sulfur dioxide,and ozone ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L.[J].Plant Physiol,1994,106:1007-1014.
    Yamaguchi-Shinozaki K,Shinozaki K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-saltstress[J].Plant Cell,1994,6:251-264.
    Ye Y,Tam N F Y,Wong Y S,et al.Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging[J].Environ Exp Bot,2003,49:209-221.
    Yin S J,Shi D C,Yan H.Main sWain responses in the plants of Puccinellia tenuiflora(Griseb.)scribnetmerr to alkaline(Na_2CO_3) stress[J].Acta Prataculturae Sinica,2003,12(4):51-57.
    Zhang Q F,Li Y Y,Pang C H,et al.NaCl enhances thylakoid-bound SOD activity in the leaves of C_3halophyte Suaeda salsa L.[J].Plant Science,2005,168:423-430.
    Zhang W H,Chen Q,Liu Y L.Relationship between H~+-ATPase and fluidity of tonoplast in barely roots under NaCl stress[J].Acta Botanica Sinica,2001,44(3):292-296.
    Zhang Z S,Li R Q,Wang J B.Effect of Ca~(2+) pretreatrnent on the Ca~(2+)-ATPase activity in the mesophyll cells of pepper seedling under heat stress[J].Acta Phytaphysiologica Sinica,2001,27(6):451-454.
    Zhao H J,Tan J F.Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves[J].Photosynthetica,2005,43:473-476.
    Zhao H J,Zou Q.Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaf under high irradiance and oxidative stress[J].Photosynthetica,2002,40(4):523-527.
    Zhu J K.Plant salt tolerance[J].Trends Plant Sci,2001,6(2):66-71.
    白宝璋,徐克章,赵景阳等.1996.植物生理学[M].北京:中国农业科技出版社,pp.250-253.
    蔡长瑞.海水灌溉——农业的新希望[J].当代矿工,2002,1:24.
    陈华,李银心.耐海水蔬菜新成员蒲公英[J].植物杂志,2003,6:9-10.
    陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版),2003,21(2):177-182.
    陈京,吴应言.钙对甘薯种苗盐胁迫的缓解效应[J].西南师范大学学报,1996,21(1):78-83.
    陈少裕.膜质过氧化与植物逆境胁迫[J].植物生理学通讯,1989,6(4):211-217.
    陈小凤,李杨瑞,叶燕萍等.利用叶绿素荧光参数和净光合速率评价引进禾本科牧草的抗旱性[J].草业科学,2007,24(5):53-57.
    丁印龙,廖启蚪,谢潮添等.低温胁迫下夏威夷椰子幼苗叶肉细胞Ca~(2+)水平及细胞超微结构变化的研究[J].厦门大学学报(自然科学版),2002,41(5):679-682.
    段咏新,宋松泉,傅家瑞.钙对杂交水稻叶片中活性氧防御酶的影响[J].生物学杂志,1999,16(1):18-19.
    Edward P G.用海水浇灌农作物[J].农学,2002,1:14-16.
    龚明,李英,曹宗巽.植物体内的钙信使系统[J].植物学通报,1990,7(3):19-29.
    龚明,刘兴富.钙对玉米幼苗抗盐性的效应[J].植物生理学通讯,1994,30(6):429-432.
    郭房庆,黄昊,汤章城.NaCl胁迫下小麦突变体和野生型叶片中一些有机溶质累积和基因表达差异[J].植物生理学报,1999,25(4):395-400.
    郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理[J].植物生理学报,2001,27(6):461-466.
    贺志理,王洪春.NaCl预处理对盐胁迫下苜蓿中Na~+、Cl~-和脯氨酸积累分布的影响[J].植物生理学 通讯1992,28(5):330-333.
    黄健,唐学玺,付萌.盐胁迫对海滨香豌豆叶片三种物质含量的影响[J].青岛海洋大学学报,1997,27(4):509-514.
    季本华,焦德茂.不同光温条件下籼粳稻叶片的光抑制和光氧化表现[J].植物学报,2001,43(7):714-720.
    贾恢先,赵曼容.盐性细胞原生质体的超微结构和生理特性[J].甘肃农业大学学报,1990,25(1):36-42.
    姜义宝,崔国文,李红.干旱胁迫下外源钙对苜蓿抗旱相关生理指标的影响[J].草业学报,2005,14(5):32-36.
    柯玉琴,潘延国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3):229-233.
    李德明,朱祝军,刘永华等.镉对小白菜光合作用特性影响的研究[J].浙江大学学报(农业与生命科学版),2005,31(4):459-464.
    李合生.2000.植物生理生化实验原理及技术[M].北京:高等教育出版社,pp.260-261.
    李玲玲.海水的新用途——灌溉农作物[J].国外农业,2001,1:39.
    李明,王根轩.干早胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503-507.
    李晓燕,宋占午,董志贤.植物的盐胁迫生理[J].西北师范大学学报(自然科学版),2004,40(3):106-111.
    梁慧敏,夏阳,王太明.植物抗寒冻、耐旱、耐盐基因工程研究进展[J].草业学报,2003,12(3):1-7.
    梁洁,严重玲,李裕红等.Ca(NO_3)_2对NaCl胁迫下木麻黄扦插苗生理特征的调控[J].生态学报,2004,24(5):1073-1077.
    梁新华,许兴,徐兆桢等.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响[J].干旱地区农业研究,2001,19(3):72-77.
    廖建雄,王根轩.谷子叶片光合速率日变化及水分利用效率[J].植物生理学报,1999,25(4):362-368.
    刘峰,张军,张文吉.氧化钙对水稻的生理作用研究[J].植物学通报,2001,18(4):490-495.
    刘海龙,郑桂珍,关军锋等.干旱胁迫下玉米根系活力和膜透性的变化[J].2002,17(2):20-22.
    刘建福,汤青林,倪书邦等.水分胁迫对澳洲坚果叶绿素a荧光参数的影响[J].华侨大学学报(自然科学版),2003,24(3):305-309.
    刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987,4:1-7.
    刘友良,汪良驹.1998.植物对盐胁迫的反应和耐盐性.见:余叔文,汤章城主编.植物生理与分子生物学(第二版)[M].北京:科学出版社,pp.752-754.
    刘兆普,刘玲,陈铭达等.利用海水资源直接农业灌溉的研究[J].自然资源学报,2003,18(4):423-429.
    刘兆普,沈其荣,尹金来.1998.滨海盐土农业[M].北京:中国农业科技出版社,pp.1-3.
    陆静梅,朱俊义,李建东等.松嫩平原4种盐生植物根的结构研究[J].生态学报,1998,18:335-337.
    吕芝香,许斌,毕晨光.在NaCl、MgCl_2和CaCl_2沙基培养液中小麦幼苗游离脯氨酸的积累[J].南京大学学报(自然科学版),1986,22(1):100-106.
    吕芝香,王正刚.盐胁迫下Ca~(2+)对玉米无机离子分布和膜脂脂肪酸的影响[J].植物生理学报,1993,19(4):325-332.
    马翠兰,刘星辉,杜志坚.盐胁迫对柚、福橘种子萌发和幼苗生长的影响[J].福建农林大学学报(自然科学版),2003,32(3):320-324.
    马文月.植物抗盐性研究进展[J].农业与技术,2004,24(4):95-99.
    毛桂莲,许兴,杨涓.NaCl和Na_2CO_3对枸杞的胁迫效应[J].干旱地区农业研究,2004,22(2):100-104.
    苗海霞,孙明高,夏阳等.盐胁迫对苦楝根系活力的影响.山东农业大学学报(自然科学版),2005,36(1):9-12
    缪颖,叶钢,毛节琦.缺钙玉米叶片的膜脂过氧化伤害[J].浙江大学学报(农业与生命科学版),1997,23(2):163-167.
    宁建凤,刘兆普,刘玲等.NaCl对库拉索芦荟的胁迫效应研究[J].华北农学报,2005,20(5):70-75.
    宁顺斌,宋运淳,王玲.胁迫诱导的植物细胞凋亡-植物抗盐的可能生理机制[J].实验生物学报,2000,33:245-251.
    彭志红,彭克勤,胡家金等.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报,2002,18(4):80-83.
    曲元刚,赵可夫.NaCl和Na_2CO_3对玉米生长和生理胁迫效应的比较研究[J].作物学报,2004,30(4):334-341.
    全先庆,高文.盐生植物活性氧的非酶促清除机制[J].安徽农业科学,2003,31(3):499-501.
    任红旭,陈雄.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化[J].植物生态学报,2001,25(6):709-715.
    盛彦敏,石德成,肖洪兴等.不同程度中碱性复合盐对向日葵生长的影响[J].东北师大学报,1999,4:65-69.
    史庆华,朱祝军,Al-aghabary K等.等渗Ca(NO_3)_2和NaCl胁迫对番茄光合作用的影响[J].植物营养与肥料学报,2004,10(2):188-191.
    石德成.磷酸中和缓解Na_2CO_3对星星草的胁迫作用[J].草业学报,1995,4(4):34-38.
    石德成,盛彦敏.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报,1998,40(12):1136-1142.
    石德成,盛彦敏,赵可夫.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,2002,28(4):461-467.
    石德成,殷力娟.盐(NaCl)与碱(Na_2CO_3)对星星草胁迫作用的差异[J].植物学报,1993,35(2):144-149.
    苏慧,刘玉平,张继星等.Na_2CO_3胁迫对牧草苗期生长的影响[J].中国草地,2005,27(1):22-25.
    苏梦云,范铭庆.渗透胁迫和钙处理对杉木幼苗膜脂过氧化及保护酶活性的影响[J].林业科学研究,2000,13(4):391-396.
    孙大业.钙调素及其在植物上的作用[J].植物生理通讯,1984,6:13-19.
    谭征,沈建平.海水能直接灌溉农田吗?[J]百科知识(下),2005,5:32.
    汤章城.环己亚胺对盐诱导游离脯氨酸积累的影响[J].植物生理学报,1990,16(2):109-114.
    万育生,张继群.开发利用海水资源保障沿海地区水资源安全[J].中国水利,2004,11:14-15.
    王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理通讯,1990,6:55-57.
    王宝山.Na~+、K~+、ABA对盐胁迫下大麦液泡膜ATPase活性的影响[J].植物学报,1991,17(4):403-406.
    王宝山,李明亮,张宝泽等.盐胁迫下外源脯氨酸和丙二醛对冰叶松叶菊愈伤组织中离子和脯氨酸含量的影响[J].植物生理学通讯,1993,29(3):182-184.
    王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997,14(增刊):25-30.
    王海英,孙建设,王旭静等.果树耐盐性研究进展[J].河北农业大学学报,2000,23(2):54-59.
    王恒彬,王学臣,陈珈等.蚕豆保卫细胞原生质体ABA结合蛋白的理化特性[J].植物学报,1997,28:22-29.
    汪洪,周卫,林葆.钙对镉胁迫下玉米生长及生理特性的影响[J].植物营养与肥料学报,2001,7(1):78-87.
    王可玢,许春辉,赵福洪等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报,1997,13(2):273-278.
    王丽燕,赵可夫.玉米幼苗对盐胁迫的生理响应[J].作物学报,2005,31(2):264-266.
    汪良驹,刘友良,马凯.钙在无花果细胞盐诱导脯氨酸积累中的作用[J].植物生理学报,1999,25(1):38-42.
    王希江.海水灌溉农业发展趋势[J].天津农林科技,2003,3:16-17.
    吴家梅,刘兆普,陈铭达等.不同浓度的海水处理对库拉索芦荟叶绿素含量及其超微结构的影响[J].南京农业大学学报,2003,26(3):113-116.
    吴荣生,焦德茂,童红玉.水稻叶片超氧自由基的检测与应用[J].江苏农业科学,1994,1:16-17.
    吴旭红,高玉芝,常志敏.盐胁迫对作物形态和生理过程的影响[J].高师理科学刊,2002,22(4): 51-53.
    吴以平,董树刚.钙对高盐胁迫下缘管浒苔和孔石莼生理生化过程的影响[J].海洋科学,2000,24(8):11-14.
    徐秋曼,陈宏,程景胜.外源Ca~(2+)对水稻幼苗生长的影响[J].天津师大学报(自然科学版),1999,19(4):49-58.
    许祥明,叶和春,李国风.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387.
    徐质斌.海水灌溉农业的展望与对策[J].农业现代化研究,2002,23(2):89-92.
    徐志防,罗广华,王爱国等.强光及活性氧对大豆光合作用的影响[J].植物学报,1999,41(8):862-866.
    薛延丰,刘兆普.钙离子对海盐和NaCl胁迫下菊芋幼苗生理特征的响应[J]-水土保持学报,2006,20(3):177-181.
    薛延丰,刘兆普.外源钙离子缓解海水胁迫下菊芋光合能力下降的研究[J].草业学报.2007,12:74-80.
    薛延丰,刘兆普.叶绿素荧光参数在菊芋抗盐品种筛选上的运用[J].高技术通讯[J],2008(待刊).
    薛延丰,刘兆普,郑青松等.钙离子对菊芋海水胁迫的缓解效应研究[J].西北植物学报.2006,26(6):1267-1271.
    阎国华,王玉国,陈云昭等.Ca(NO_3)_2对盐胁迫下大豆离体胚再生植株保护系统的影响[J].山西农业大学学报,1996,16(3):222-225.
    杨根平,高向阳,荆家海.水分胁迫下钙对大豆叶片光合作用的改善效应[J].作物学报,1995,21(6):711-716.
    杨敏生,李艳华,梁海永等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-277.
    杨晓慧,蒋卫杰,魏珉等.盐胁迫下硒对生菜生长发育的影响[J].中国农学通报,2006,22(2):271-274.
    杨晓英,章文华,王庆亚等.江苏野生大豆的耐盐性和离子在体内的分布及选择性运输[J].应用生态学报,2003,14(12):2237-2240.
    杨月红,孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学,2002,27(11):1-2.
    殷立娟,石德成.东北碱化草地的主要盐分Na_2CO_3对羊草危害因素分析[J].草业学报,1993,3:1-5.
    尹尚军.NaCl与Na_2CO_3对水培小麦幼苗胁迫作用的比较[J].浙江万里学院学报,2002,15(1):54-57.
    尹尚军,石德成,颜红.Na_2CO_3胁迫下星星草胁变反应部位的差异[J].草业学报,2001,10(4):101-106.
    於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长及其离子分布的影响[J].作物学报,2001,27(6):776-780.
    张邦定.菊芋的开发与栽培[J].四川农业科技,1997,6(5):35-37.
    张宝译.盐胁迫下不同的钙盐对小麦幼苗耐盐性的影响[J].植物学通报,1997,14(4):48-50.
    张芬琴,沈振国,刘友良.铝和铝+钙对小麦根尖质膜、液泡膜微囊ATP酶和膜流动性的影响[J].植物生理学报,2000,26(2):105-110.
    张海燕.NaCl胁迫对耐早性不同的小麦生长及溶质含量的影响[J].植物研究,2002,22(1):37-1.
    张乃华,高辉远,邹琦.Ca~(2+)缓解NaCl胁迫引起的玉米光合能力下降的作用[J].植物生态学报,2005,29(2):324-330.
    张其德.盐胁迫对植物及其光合作用的影响(中)[J].植物杂志,2001,1:28-29.
    张士功,高吉寅,宋景芝等.硝酸钙对小麦幼苗生长过程中盐害的缓解作用[J].麦类作物,1998,18(5):60-64.
    章文华,陈亚华,刘友良.钙在植物细胞盐胁迫信号转导中的作用[J].植物生理学通讯,2000,36(2):146-153.
    张新春,庄炳昌,李白超.植物耐盐性研究进展[J].玉米科学,2002,10(1):50-56.
    张宪政,陈凤玉,王荣富等.1994.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,pp.51-75.
    张雄.用(红四氮唑)法测定小麦根和花粉活力及其应用[J].植物生理学通讯,1982,3:48-50.
    张宗申,利荣千,王建波.Ca~(2+)预处理对热胁迫下辣椒叶肉细胞中Ca~(2+).ATPase活性的影响[J].植物生理学报,2001,27(6):451-454.
    赵晨阳,郑荣梁.DNA氧化损伤与端粒缩短[J].生物化学与生物物理进展,2000,27(4):351-354.
    赵可夫.利用盐生植物改良盐碱地[J].植物生理学通讯,1997a,6:501-502.
    赵可夫.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997b,14(增刊):235-240.
    赵曼容,贾恢先.几种典型盐地植物茎叶表面的扫描电镜观察[J].甘肃农业大学学报,1990,25(2):146-151.
    赵惠明.盐生植物盐角草的资源特点及开发利用[J].科技通报,2004,20(4):167-171.
    赵世杰,许长成,孟庆伟.田间小麦叶片光合作用的光抑制[J].西北植物学报,1998,18(4):531-526.
    郑青松,刘玲,刘友良等.盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响[J].植物生理与分子生物学学报,2003,29(6):585-588.
    郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,2001,27(4):325-330.
    郑世英,陈吉美.植物的抗盐生理[J].德州高专学报,2000,16(4):39-40.
    周芬,曾长立,王建波.外源钙降低拟南芥幼苗盐害效应[J].武汉植物学研究,2004,22(2):179-182.
    周卫,林葆.植物钙素营养机理研究进展[J].土壤学进展,1995,23(2):12-16.
    周蕴薇,刘艳萍,戴思兰.用叶绿素荧光分析技术鉴定植物抗寒性的剖析[J].植物生理学通讯,2006,42(5):945-950.
    朱新广,王强,张其德等.在盐胁迫下光抑制及其恢复进程对小麦光合功能的影响[J].植物学报,2001,43(12):1250-1254.
    朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    朱新广,张其德,匡廷云.NaCl胁迫对PSⅡ光能利用和耗散的影响[J].生物物理学报,1999,15(4):788-791.
    朱新广,张其德,匡廷云.NaCl对小麦光合功能的伤害主要是由离子效应造成的[J].植物学通报,2000,17(4):360-365.
    邹琦.2000.植物生理学试验指导[M].北京:中国农业出版社,pp.62-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700