基于功率量的电力变压器保护新原理及高速算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大容量及超大容量变压器的广泛使用,变压器主保护性能的重要性也更加凸现出来。因此,研究性能更优良的变压器保护新原理和新算法具有重要的理论价值和实际意义。论文着重基于提升电力变压器电流纵联差动保护的整体性能水平及研究与变压器差动保护无关的主保护新原理展开工作,论文研究的主要内容和成果有:
     (1)基于瞬时无功功率理论,提出了基于差有功及差无功直流分量绝对值比值的变压器涌流辨识新方法。该方法基于变压器不同状态时有功和无功的内在关系,摆脱了传统的基于差流波形特征的涌流识别方法的种种限制,揭示了变压器励磁涌流和故障状态的本质不同。
     (2)变压器处于励磁涌流状态时,其铁芯随励磁电压的变化周期性地在饱和状态及非饱和状态之间摆动,相应地其瞬时励磁电感值也周期性地变化(铁芯饱和时较小,退出饱和时很大),此时其励磁电感或电抗值含有较丰富的基频分量值;基于励磁电感或电抗的涌流辨识方法把握了涌流与内部故障的本质差异,但其缺陷是需要测量变压器绕组的电流值,因而对现场TA(电流互感器)配置有特殊要求,要求能测各侧各相绕组电流。本文提出了基于零序过滤的变压器励磁电感计算方法及涌流识别方法,适合于TA按典型方案配置的Y/△接线变压器,使得励磁电感涌流辨识方法的应用范围得以扩展。
     (3)提出了三种高速功率方向保护算法或原理并应用于变压器保护。方法一是基于瞬时值对称分量变换的变压器快速方向保护算法。方法二是基波正序突变量高速方向保护新算法。方法三是滤除高频暂态量的突变量高速方向保护原理。方法一采用了特殊设计的滤波器及快速滤序算法,并根据新型方向判据来快速判别故障方向。相比于方法一,方法二、三无需特殊设计的滤波器,只需采用十分成熟的低通滤波器来滤除高频暂态分量,方法二再采用差分滤波来抑制电流非周期分量,然后采用基于帕克变换的新方法来快速计算基波正序故障分量相量,以实现快速的故障方向判别。不同于方法二的快速相量算法,方法三是时域的高速算法,且无需对短路电流非周期分量进行额外处理,并采用了新型相序变换方法以使保护原理能适应不同的故障类型。
     这三种新型快速方向保护算法或原理,对于一般内部故障可在故障后极短时间内出口跳闸,可极大提高切除各种情况下变压器内部故障的速度。当选用P级电流互感器时,保护可在互感器进入饱和前可靠出口跳闸。
     (4)提出了电力变压器故障分量无功功率方向保护原理。该方案基于故障分量保护原理,只需采集变压器端口电压、电流数据,无需任何先验参数,摆脱了传统变压器差动保护中励磁涌流识别的束缚,体现了变压器主保护原理新的研究思路,可应用于不同接线组别的变压器保护,可有效区分外部近区故障切除电压恢复产生涌流、带载合闸等各种变压器状态。
     (5)提出一种有效区分空投涌流与空投于故障的变压器保护新原理。该原理利用帕克变换或瞬时有功、无功电流分量法,可计算变压器在各种暂态过程中的基波正序有功、视在电流比值或基波正序功率因数,并根据这些计算结果的大小来判断变压器是否发生内部故障。该原理与前述的功率方向保护算法相结合,可构成较为完善的变压器保护方案。
With the wide use of the large capacity transformer, the importance of transformer primary protection performance is more apparent. So it is a thing with very vital significance to study the new transformer protection principle and algorithm with more excellent performance. The dissertation focuses on improving power transformer current longitudinal differential protection performance and researching the new transformer primary protection principle having nothing to do with the differential protection, the main content and the research results of the dissertation are as follows:
     (1) Based on the instantaneous reactive power theory, the dissertation proposes a new algorithm for discrimination between inrush current and internal fault current based on the ratio of real and reactive power of differential power. From the angle of energy conservation and the relationship between real and reactive power,the essential difference between transformer inrush current and fault status is revealed.
     (2) A computational method of excitation inductance of power transformer to identify inrush current has good effect. However the excitation inductance of power transformer with Y-Delta connection cannot be calculated directly using existed method because the winding currents on the Delta side cannot be measured based on existed TA configuration.An algorithm based on filtering zero sequence component to calculate the excitation inductance of power transformer with Y-Delta connection is proposed in the paper.The algorithm can calculate the excitation inductance representing the combined effects of both positive and negative components by using the delta side line currents directly.The results of the excitation inductance calculated using the algorithm proposed have distinct character in inrush current and fault condition,so the algorithm can identify inrush current effectively.
     (3) The dissertation proposes three high speed power directional protection algorithms and uses them in transformer protection.The proposed algorithm1is based on transformation of the instantaneous value symmetry component. The proposed algorithm2is based on the fundamental frequency positive sequence superimposed components. The proposed algorithm3is based on fault components with high-frequency transient quantities filtered out. The algorithm1uses the specially designed filters and fast filtering squence algorithms, and determines the fault direction by a novel fault direction criterion. Compared to algorithm1, the algorithm2and3need not the specially designed filters, and only use the conventional low-pass filter to filter the high-frequency transient quantities. The algorithm2presents a high speed algorithm for the extraction of fundamental frequency positive sequence voltages and currents superimposed components based on Park transformation. Be different to the high speed phasor algorithm of algorithm2,the algorithm3is a time domain high speed algorithm, and the current DC decaying component need not to be processed with additional method. In addition, a novel phase-sequence transformation matrix is constructed to identify faults for three-phase systems in the algorithm3, and sequence1quantity transformed by using this matrix is suitable for all fault types.
     The proposed high speed directional protection algorithms or principle can determinate the fault direction in short data window. With using the P level TA, the protection can reliably send out the clearing order before the TA saturation.
     (4) A transformer protection principle based on fault component reactive power directional element is proposed. The protection principle is based on fault component protection principle. Only collecting voltage and current data of the transformer port and without any transformer internal parameter, the principle is simple and highly reliable, independent of inrush current, suitable for the differently connected transformers,and can distinguish any operation state including inrush current produced by energizing with load and external fault clearing,and has good project application prospect.
     (5) The dissertation proposes a novel transformer protection principle using fundamental frequency positive sequence power factor to effectively distinguish between switching the transformer with an internal fault and inrush current. By using the Park transformation,the fundamental frequency positive sequence power factors of transformer in various transient process are obtained.According to the fundamental frequency positive sequence power factor of transformer, magnetizing inrush and internal fault can be distinguished. The principle has clear physics significance, easy engineering realization,and need not any transformer internal parameters,and is free from the impact of transformer wind connection mode,has sufficient sensitivity for energizing into light turn-to-turn fault.
引文
[1]王维俭.电气主设备继电保护原理与应用[M].北京:中国电力出版社,2002.
    [2]王维俭,侯炳蕴.大型机组继电保护理论基础[M].北京:水利电力出版社,1982.
    [3]王维俭.变压器保护运行不良的反思[J].电力自动化设备,2001,21(10):1-5.
    [4]沈晓凡,舒治淮,刘宇.2007年国家电网公司继电保护装置运行情况[J].电网技术,2008,32(16): 5-10.
    [5]林湘宁,徐雨舟,刘沛.相电流比例差动判据与线电流比例差动判据的比较[J].电力系统自动化,2005,29(3):21-25.
    [6]袁宇波,周栋骥,陆于平等.基于不同转角方式的变压器差动保护灵敏度分析[J].电力系统自动化,2006,30(24):27-32.
    [7]袁宇波,陆于平,陈久林等.变压器三角形侧零序环流助增对差动保护的影响[J].电力系统自动化,2006,30(3):44-48.
    [8]Sonnemonn W K.江少生译.变压器中的励磁涌流现象[J].自动保护装置,1974,4.
    [9]王维俭.再谈220kv及以上大型变压器装设零序差动保护的必要性[J].电力自动化设备,2003,23(4):1-5.
    [10]朱声石.变压器绕组短路接地故障的保护[J].电力自动化设备,2002,22(8):1-3.
    [11]丁网林,骆健,刘强.零序电流对数字变压器差动保护Y,d矢量变换的影响及对策[J].电力系统自动化,2004,28(5):56-58.
    [12]王增平,马静.关于变压器主保护的若干问题[J].电力系统保护与控制,2008,36(14):4-12.
    [13]韩正庆.变压器仿真计算模型与保护原理研究.博士学位论文,成都:西南交通大学,2006.
    [14]徐岩.电力变压器内部故障数字仿真及其保护新原理的研究.博士学位论文,保定:华北电力大学,2004.
    [15]袁宇波.自适应数字变压器差动保护原理与方法.博士学位论文,南京:东南大学,2003.
    [16]吴大立,尹项根,张哲,等.基于负序电流判别的变压器差动保护零序电流自动补偿方法[J].电力自动化设备,2007,27(2):28-31.
    [17]刘志超.三相变压器励磁涌流及保护方案[J].电力系统自动2006,30(10):58-60.
    [18]承文新,刘志超.变压器差动保护涌流制动原理分析[J].电力系统自动化,2006,30(11):90-92.
    [19]毕大强,王祥珩,杨恢宏,等.变压器差动保护中电流相位补偿方式的分析[J].电力系统自动化,2006,30(18):33-37.
    [20]许正亚.几个励磁涌流新判据的分析[J].电力自动化设备,2002,22(1):23-28.
    [21]褚云龙,张保会,郝治国.新技术手段在变压器差动保护励磁涌流识别中应用研究的现状[J].电力自动化设备,2004,24(8):87-91.
    [22]戴丽君.适用于超高压变压器的快速保护的研究.硕士学位论文,保定:华北电力大学,2006.
    [23]董洁,于莉萍,焦志先等.变压器差动保护涌流制动原理的研究[J].电力系统自动化,1997,21(12):30-33.
    [24]林湘宁,刘沛,刘世明,等.变压器有载合闸的超饱和现象及对变压器差动保护的影响[J].中国电机工程学报,2002,22(3):6-11.
    [25]林湘宁,刘沛.变压器外部故障切除后差动保护误动的机理分析[J].电力系统自动化,2003,27(19):57-60.
    [26]Ernesto Vazquez, Ivan I. MijaresL. Transformer Differential Protection Using Principal Component Analysis[J]. IEEE Transactions On Power Delivery,2008,23(1):67-72.
    [27]翁汉琍,林湘宁,刘沛.变压器有载合闸时纵联差动保护误动的分析[J].中国电机工程学报,2006,26(20):27-32.
    [28]王祖光,任杰,仇新宏等.变压器谐波闭锁差动保护新判据[J].电力系统自动化,2006,30(14):50-54.
    [29]尹项根,陈德树,张哲.故障分量差动保护[J].电力系统自动化,1999,23(11):13-17
    [30]戴学安.继电保护原理的重大突破一综论工频变化量继电器[J].电力系统自动化,1995,19(1):41-47.
    [31]安艳秋,高厚磊.正序故障分量及其在继电保护中的应用[J].电力系统及其自动化学报,2003,15(4):76-78.
    [32]赵永彬,卢毅.主设备变压器保护谐波制动改进[J].电力自动化设备,2002,22(7):1-5.
    [33]贺家李,宋从矩.电力系统继电保护原理(增订版)[M].北京:中国电力出版社,2004.
    [34]许正亚.变压器及中低压数字式保护[M].北京:水利水电出版社,2003.
    [35]傅翔华,贾长朱.微机变压器保护装置现状分析及改进建议[J].电力系统自动化,1997,21(8):54-56.
    [36]Guzman A, Zocholl S, Benmouyal G. A current based solution for transformer differential protection—PartⅠ:problem statement[J]. IEEE Trans Power Delivery,2001,16(4):485-491.
    [37]Guzman A, Zocholl S, Benmouyal G. A current based solution for transformer differential protection—Part Ⅱ:Relay Description and Evaluation[J]. IEEE Trans Power Delivery,2002,14(4): 886-892.
    [38]Liu P, Malik O P, Chen D S, et al. Improved operation of differential protection of power transformer for internal faults[J]. IEEE Trans on Power Delivery,1992,7(4):1912-1919.
    [39]Lin C E, Cheng C L, et al. Investigation of magnetizing inrush current in transformers, Ⅰ:Numerical simulation[J]. IEEE Trans on Power Delivery,1993,8(1):246-254.
    [40]Lin C E, Cheng C L, et al. Investigation of magnetizing inrush current in transformers,Ⅱ:Harmonic analysis[J]. IEEE Trans on Power Delivery,1993,8(1):255-263.
    [41]Hermanto I, Murty Y V, Rahman M A. A stand-alone digital protective relay for power transformers[J]. IEEE Trans on Power Delivery,1991,6(1):85-92.
    [42]王祖光.间断角原理的变压器差动保护[J].电力系统自动化,1979,3(1):18-30.
    [43]朱亚明,郑玉平,叶锋,等.间断角原理的变压器差动保护的性能特点及微机实现[J].电力 系统自动化,1996,20(11):36-40.
    [44]唐跃中,刘勇,郭勇等.几种变压器励磁涌流判别方法的特点及其内在联系的分析[J].电力系统自动化,1995,19(9):53-59.
    [45]徐习东,何奔腾.变压器差动保护中CT饱和后间断角的测量[J].电力系统自动化,1998,22(5):22-25.
    [46]孙志杰,陈云仑.波形对称原理的变压器差动保护[J].电力系统自动化,1996,20(4):42-46.
    [47]苗友忠,贺家李,孙雅明.变压器波形对称原理差动保护不对称度K的分析和整定[J].电力系统自动化,2001,25(16):26-29.
    [48]林湘宁,刘世明,杨春明.几种波形对称法变压器差动保护原理的比较研究[J].电工技术学报,2001,16(4):44-49.
    [49]陈德树,尹项根,张哲,等.虚拟三次谐波制动式变压器差动保护[J].中国电机工程学报,2001,21(8):19-23.
    [50]胡玉峰, 陈德树,尹项根等.虚拟三次谐波制动式变压器差动保护的仿真研究[J].电力系统自动化,2002,26(2):38-43.
    [51]Phadke A G, Thorp J S. A new computer—based flux-restrained current-differential relay for power transformer protection[J]. IEEE Transactions on Power Apparatus and Systems,1983,102(11): 3624-3629.
    [52]宗洪良,金华烽,朱振飞.基于励磁阻抗变化的变压器励磁涌流判别方法[J].中国电机工程学报,2001,21(7):91-94.
    [53]葛宝明,苏鹏声,王祥珩.基于瞬时励磁电感频率特性判别变压器励磁涌流[J].电力系统自动化,2002,26(17):35-39.
    [54]葛宝明,于学海,王祥珩等.基于等效瞬时电感判别变压器励磁涌流的新方法[J].电力系统自动化,2004,28(7):44-48.
    [55]Ge B M, Anibal T, Zheng Q L, et al. An equivalent instantaneous inductance-based technique for discrimination between inrush current and internal faults in power transformers[J]. IEEE Trans on Power Delivery,2005,20(4):2473-2482.
    [56]郑涛,刘万顺,庄恒建等.用归一化等效瞬时电感分布特性识别识别励磁涌流的新算法[J].中国电机工程学报,2005,25(23):47-53.
    [57]索南加乐,焦在滨,宋国兵等.一种适用于Y/△接线变压器的励磁电感计算方法[J].电力系统自动化,2007,31(9):32-36.
    [58]毕大强,王祥珩,梁武星等.基于不同区域平均等效瞬时电感比值的励磁涌流鉴别方法[J].电力系统自动化,2005,29(17):49-58.
    [59]毕大强,王祥珩,王剑等.基于非饱和区等效瞬时电感的变压器励磁涌流鉴别方法[J].电力自动化设备,2005,25(10):1-6.
    [60]葛宝明,王祥珩,苏鹏声等.电力变压器的励磁涌流判据及其发展方向[J].电力系统自动化,2003,27(22):1-5.
    [61]Inagaki K, Higaki M, Yoshiaki M, et al. Digital protection method for power transformer based on and equivalent circuit composed of inverse inductance[J]. IEEE Trans on Power Delivery,1988, 3(4):1354-1360.
    [62]陈晓东,柳亦钢,李天云.利用二次小波变换区分变压器励磁涌流和短路电流的符号法[J].电力自动化设备,2006,26(6):48-52.
    [63]林湘宁,刘沛,程时杰.基于小波包变换的变压器励磁涌流识别新方法[J].中国电机工程学报,1999,19(8):14-19.
    [64]Mao P L, Aggarwal R K. A wavelet transform based decision making logic method for discrimination between internal faults and inrush currents in power transformers [J]. International Journal of Electrical Power and Energy Systems,2000,22(6):389-395.
    [65]焦邵华,刘万顺,刘建飞等.用小波理论区分变压器的励磁涌流与短路电流的新原理[J].中国电机工程学报,1999,19(7):1-5.
    [66]Morante M G, Nicolett D W. A wavelet-based differential transformer protection [J]. IEEE Transactions on Power Delivery,14(4).1999:1351-1358.
    [67]吴青华,张东江.形态滤波技术及其在继电保护中的应用[J].电力系统及其自动化,2004,27(7):45-49.
    [68]郑涛,刘万顺,刘建飞等.采用数学形态学防止变压器差动保护误动的新方法[J].中国电机工程学报,2005,25(20):6-11.
    [69]郑涛,刘万顺,肖仕武等.一种基于数学形态学提取电流波形特征的变压器保护新原理[J].中国电机工程学报,2004,24(7):18-24.
    [70]袁曾任.人工神经元网络及其应用[M].北京:清华出版社,1993.
    [71]Tripathy M, Maheshwari R P. Probabilistic neural-network-based protection of power transformer[J]. IETElectr. Power Appl,2007,1(5):793-798.
    [72]Zaman M R, Rahman M A. Experimental testing of the artificial neural network based protection of power rransformers[J]. IEEE Trans on Power Delivery,1998,13(2):510-517.
    [73]Tripathy M, Maheshwari R P. Radial basis probabilistic neural network for differential protection of power transformer [J]. IET Gener. Transm. Distrib.,2008,2,(1):43-52.
    [74]李海峰,王钢,李晓华等.电力变压器励磁涌流判别的自适应小波神经网络方法[J].中国电机工程学报,2005,25(7):144-150.
    [75]曾鑫.基于最小二乘法的变压器三相漏感辨识算法.硕士学位论文,重庆:重庆大学,2009.
    [76]黄家嘉.基于模糊多判据的变压器保护研究.硕士学位论文,北京:华北电力大学,2010.
    [77]梁国坚,梁冠安.复合判据模糊逻辑的电力变压器微机差动保护[J].变压器,2000,37(9):40-45.
    [78]王听,朱成柱等.模糊理论在识别变压器励磁涌流中的探讨[J].继电器,2000,28(8):46-48.
    [79]张雪松,何本腾.变压器励磁涌流的相移比较鉴别方法[J].中国电机工程学报,2005,25(19):43-47.
    [80]李贵存,刘万顺,刘建飞等.用波形拟合法识别变压器励磁涌流和短路电流的新原理[J].电力系统自动化,2001,25(14):15-18.
    [81]李贵存,刘万顺,腾林.基于波形相关性分析的变压器励磁涌流识别算法[J].电力系统自动化,2001,25(9):25-28.
    [82]吕志娟,刘万顺,龚延萍.利用电流波形特性识别变压器励磁涌流和故障电流[J].电力系统自动化,2006,30(19):53-56.
    [83]毕大强,张项安,杨恢宏等.基于非饱和区域波形相关分析的励磁涌流鉴别方法[J].电力系统自动化,2006,30(6):16-20.
    [84]韩正庆,高仕斌,李群湛.基于半波傅立叶算法的励磁涌流识别方法[J].电力系统自动化,2005,29(14):60-63.
    [85]袁宇波,陆于平,李澄等.基于附加相位判别的自适应二次谐波励磁涌流制动方案[J].中国电机工程学报,2006,26(18):19-24.
    [86]袁宇波,陆于平,李澄等.三相涌流波形特征分析及差动保护中采用二次谐波相位制动的原理[J].中国电机工程学报,2006,26(19):23-30.
    [87]Sidhu T S. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions[J]. IEEE Trans on Power Deliver,1999,14(3):798-804.
    [88]郑涛,刘万顺,庄恒建等.基于改进型序阻抗原理的变压器保护方案[J].电力系统自动化,2004,28(14):67-71.
    [89]索南加乐,焦在滨,宋国兵等.基于故障分量综合阻抗的变压器保护新原理[J].中国电机工程学报,2008,28(34):94-100.
    [90]韩正庆,刘淑萍.基于模型的变压器保护判据分析与改进[J]电力自动化设备,2007,27(2):31-34.
    [91]王增平,徐岩,王雪等,基于变压器模型的新型变压器保护原理的研究[J].中国电机工程学报,2003,23(12):54-58.
    [92]徐岩,王增平,杨奇逊.基于电压电流微分波形特性的变压器保护新原理的研究[J].中国电机工程学报,2004,24(2):61-65.
    [93]熊小伏,邓祥力,游波.基于参数辨识的变压器微机保护[J].电力系统自动化,1999,23(11):18-21.
    [94]马静,王增平,吴劫.基于广义瞬时功率的新型变压器保护原理[J].中国电机工程学报,2008,28(13):78-83.
    [95]马静.变压器主保护新原理和新算法的研究.博士学位论文,保定:华北电力大学,2007.
    [96]Darwish H A, Taalab A M, Ahmed E S. Investigation of power differential concept for line protection[J]. IEEE Transactions on Power Delivery,2005,20(2):617-624.
    [97]Darwish H A, Lehtonen M. Current differential relay with a power-current spectrum blocking for transformer protection[C]. in:Proc. IEEE Bucharest PowerTech Conf.,2009:1-7.
    [98]郑涛,刘万顺,吴春华等.基于瞬时功率的变压器励磁涌流和内部故障电流识别新方法[J].电力系统自动,27(23):51-55.
    [99]孙鸣.大型电力变压器快速主保护新原理及其应用问题的研究.博士学位论文,合肥:合肥工业大学,2008.
    [100]孙鸣,粱俊滔,冯小英.基于功率差动原理的变压器保护实现方法的分析[J].继电器,2001,29(12):13-15.
    [101]Kuniaki Y. Power differential method for discrimination between fault and magnetizing inrush current in transformer[J]. IEEE Trans on Power Delivery,1997,12(3):1109-1118.
    [102]孙鸣,江海峰,丁明.变压器差动保护的新原理研究[J].煤炭学报,2003,28(3):311-314.
    [103]孙鸣.正序有功功率差作为变压器励磁涌流判据的研究[J].中国电力,2004,37(12):5-8.
    [104]葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学出版社,2007.
    [105]Johns A T, Walker E P. Co-operative research into the engineering and design of a new digital directional comparison scheme[J]. IEE PROCEEDINGS, July,1988,135(4):334-368.
    [106]朱声石.高压电网继电保护原理与技术[M].北京:中国电力出版社,1995.
    [107]毛鹏,杨立,杜肖功.基于零序分量的距离继电器[J].电力系统自动化,2003,27(10):60-65.
    [108]贺家李,李永丽,李斌等.特高压输电线继电保护配置方案(二)保护配置方案[J].电力系统自动化,2002,26(24):1-6.
    [109]袁荣湘,陈德树,张哲.高压线路方向保护新原理的研究[J].中国电机工程学报,2000,20(3):20-25.
    [110]何奔腾,金华烽,李菊.能量方向保护的实现和试验[J].中国电机工程学报,1997,17(3):171-174.
    [111]何奔腾,金华烽,李菊.能量方向保护原理和特性研究[J].中国电机工程学报,1997,17(3):166-170.
    [112]Bo Z Q. Adaptive non-communication protection for power lines, BO scheme 3—The accelerated operation approach[J]. IEEE Transactions on Power Delivery,2002,17(1):97-104.
    [113]李永丽,梅云,刘长胜等.一种基于序功率方向的变压器保护方案[J].电力系统自动化.2002,26(4):28-31.
    [114]王学伟,高朝.畸变波形下功率定义问题的探讨[J].电网技术,2004,28(23):17-22.
    [115]王兆安,李民,卓放.三相电路瞬时无功功率理论的研究[J].电工技术学报,1992,7(3):55-59.
    [116]王兆安,杨君,刘进军等.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2006.
    [117]刘进军,王兆安.基于旋转空间矢量分析瞬时无功功率理论及应用[J].电工技术学报,1999,14(1):49-54.
    [118]刘进军,王兆安.瞬时无功功率与传统功率理论的统一数学描述及物理意义[J].电工技术学报,1998,13(6):6-12.
    [119]殷波,陈允平,邓恒.α-β坐标系下瞬时无功功率理论与传统功率理论的统一数学描述及物理意义[J].电工技术学报,2003,18(5):42-46.
    [120]王茂海,刘会金.通用瞬时功率定义及广义谐波理论[J].中国电机工程学报,2001,21(9):68-73.
    [121]王茂海,刘会金.瞬时功率理论的广义变压器模型及其与传统功率理论的统一数学描述[J].电工技术学报,2001,16(6):55-60.
    [122]王茂海,孙元章.通用瞬时功率理论在三相不平衡负荷补偿中的应用[J].中国电机工程学报,2003,23(11):56-59.
    [123]Akagi H. Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Trans.IndAppl,1984,20(3):625-630.
    [124]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three-phase circuits[C]. in Proc. IPEC'83, Tokyo, Japan,1983:1375-1386.
    [125]Akagi H, Ogasawara S, Kim H. The theory of instantaneous power in three-phase four-wire systems:A comprehensive approach[C]. in Conf. Rec. IEEE-IAS Annu. Meeting,1999:431-439.
    [126]Watanabe E H. New concepts of instantaneous active and reactive powers in electrical systems with generic Loads[J]. IEEE Transactions on Power Delivery,1993,8(2):697-703.
    [127]Willems J L. A new interpretation of the Akagi-Nabae power component for nonsinusoidal three-phase situation[J]. IEEE Transactions on Instrumentation and Measurement,1992,41(4): 523-527.
    [128]Willems J L. Mathematical foundations of the instantaneous power concepts:A geometrical approach[J]. Eur. Trans, on Elect. Power,1996,6(4):299-304.
    [129]Peng F Z, Lai J S. Generalized instantaneous reactive power theory for three-phase power systems[J]. IEEE Transactions on Instrumentation and Measurement,1996,45(1):293-297.
    [130]Ferrero A, Furga G S. A new approach to the definition of power components in three-phase systems under nonsinusoidal conditions[J]. IEEE Trans. Instrum. Meas,1991,40(3):568-577.
    [131]Willems J L. Critical analysis of the concepts of instantaneous power current and of active current[J]. Eur. Trans. Elect. Power,1998,8(4):271-274.
    [132]Depenbrock M. The FBD-method, a generally applicable tool for analyzing power relations[J]. IEEE Transactions on Power Systems,1993,8(2):381-387.
    [133]Salmeron P, Montano J C, Vazquez J R. Compensation in nonsinusoidal unbalanced three-phase four-wire systems with active power-line conditioner[J]. IEEE Trans. Power Del.,2004,19(4): 1968-1974.
    [134]Depenbrock M, Staudt V, Wrede H. A theoretical investigation of original and modified instantaneous reactive power theory applied to four-wire systems[J]. IEEE Trans. Ind. Appl.,2003, 39(4):1160-1167.
    [135]Depenbrock M. Variation power, variation currents:physical background and compensation rules[J]. Eur. Trans. Elect. Power,2001,11(5):309-315.
    [136]Depenbrock M. Quantities of a multiterminal circuit determined on the basis of kirchhoffs laws[J]. Eur.Trans. on Elect. Power,1998,8(4):249-257.
    [137]Depenbrock M, Staudt V. Hyper space vectors:a new four-quantity extension of space-vector theory[J]. Eur. Trans. Elect. Power,1998,6(4):219-226.
    [138]Ferrero A. Definitions of electrical quantities commonly used in nonsinusoidal conditions[J]. Eur. Trans. Elect. Power,1998,8(4):235-240.
    [139]Crisfirti L, Frriuir A. Mathematical foundations of the instantaneous power concepts::an algebraic appnmch[J]. Eur. Trans. on Elect. Power,1996,6(4):198-204.
    [140]Salmeron P, Herrera R. Distorted and unbalanced systems compensation within instantaneous reactive power framework[J]. IEEE Trans. Power Delivery,2006,21(3):1655-1662.
    [141]Furuhashi T. A study on the theory of instantaneous reactive power[J]. IEEE Transactions on Industrial Electronics,1990,37(1):86-90.
    [142]Jeon S J. Considerations on a reactive power concept in a multiline system[J]. IEEE Trans. Power Delivery,2006,21(2):551-559.
    [143]Salmeron P, Montano J C. Instantaneous power components in polyhase systems under nonsiousoidalconditions[J]. Proc. Inst. Elect.Eng., Sci. Meas. Techno,1996,143(2):151-155.
    [144]戴先中,唐统一,孙树勤.非正弦三相电路中瞬时无功量的普遍化定义[J].中国电机工程学报,1999,18(6):388-394.
    [145]丁洪发,段献忠.基于四维复数概念的瞬时功率定义[J].中国电机工程学报,2003,23(11):45-50.
    [146]王茂海,刘会金.非正弦及不对称电路中功率现象的探讨[J].电工技术学报,2002,17(3):93-96.
    [147]胡文彪,马伟明.基于周期函数空间的通用功率定义[J]中国电机工程学报,2005,25(19):64-70.
    [148]Seong J J. Unification and evaluation of the instantaneous reactive power theories[J]. IEEE Transactions on Power Electronics,2008,23(3):1502-1510.
    [149]Czarnecki L S. Power related phenomena in three-phase unbalanced systems[J]. IEEE Transactions on Power Delivery,1995,10(3):1168-1176.
    [150]Michel M C, Gaunt C T. Decomposition of currents in three-and four-wire systems[J]. IEEE Transactions on Instrumentation and Measurement,2008,57(5):963-972.
    [151]Volker S. Fryze-Buchholz-Depenbrock:A time-domain power theory. International School on Nonsinusoidal Currents and Compensation.2008, Lagow, Poland.
    [152]Watanabe E H. Instantaneous p-q power theory for compensating nonsinusoidal systems. International School on Nonsinusoidal Currents and Compensation.2008, Lagow, Poland.
    [153]Willems J L. Critical analysis of different current decomposition and compensation schemes. International School on Nonsinusoidal Currents and Compensation.2008, Lagow, Poland.
    [154]陈东华,谢少军,周波.用于有源电力滤波器谐波和无功电流检测的一种改进同步参考坐标法[J].中国电机工程学报,2005,25(20):62-67.
    [155]杨欢,赵荣祥,程方斌.无锁相环同步坐标变换检测法的硬件延时补偿[J].中国电机工程学报,2007,27(4):54-59.
    [156]李民,王兆安,卓放.基于瞬时无功功率理论的高次谐波和无功功率检侧[J].电力电子技术,1992(2):14-18.
    [157]杨君,王兆安.三相电路谐波电流两种检测方法的对比研究[J].电工技术学报,1996,11(2):43-48.
    [158]杨万开,肖湘宁,杨以涵.基于瞬时无功功率理论高次谐波及基波无功电流的精确检测[J].电 工电能新技术,1998(2):60-65.
    [159]Bhattacharya S, Divan D. Synchronous frame based controller implementation for a hybrid series active filter system, in Conf Record 30th IEEE Ind. Applicat. Soc. Annu. Meeting,1995, vol.3: 2531-2540.
    [160]Soares V, Verdelho P, Marque G D. An instantaneous active and reactive current component method for active filters[J]. IEEE Transactions On Power Electronics,2000,15(4):660-669.
    [161]Verdelho P, Soares V. A unity power factor PWM voltage rectifier based on the instantaneous active and reactive current id-iq method. Proceedings of the IEEE International Symposium on ISIE,1997, vol.2:411-416.
    [162]Soares V, Verdelho P. DSP implementation of a neutral current compensator[C].10th International Conference on Harmonics and Quality of Power,2002, vol.1:256-261.
    [163]孙驰,魏光辉,毕增军.基于同步坐标变换的三相不对称系统的无功与谐波电流的检测[J].中国电机工程学报,2003,23(12):43-48.
    [164]马大铭,朱东起,高景德.三相电压不对称时谐波和无功电流的准确检测[J].清华大学学报,1997,37(4):7-10.
    [165]戴列峰,蒋平.无锁相环d-q谐波电流检测法的实现[J].电网技术,2003,27(8):46-49.
    [166]马莉,周景海,吕征宇等.一种基于d-q变换的改进型谐波检测方案的研究[J].中国电机工程学报,2000,20(10):55-58.
    [167]Aredes M, Watanabe H. New control algorithms for series and shunt three-phase four-wire active power filters[J]. IEEE Transactions On Industry Applications,1995,10(3):1649-1656.
    [168]Aredes M, Hafner J, Heumann K. Three-phase four-wire shunt active* filter control strategies[J]. IEEE Trans. Power Electron.,1997, vol.12:311-318.
    [169]Toshihiko T, Akagi H. Anew method of harmonic power detection based on the instantaneous active power in three-phase circuits[J]. IEEE Transactions on Power Delivery,1995,10(4):1737-1742.
    [170]Gabrio S F. Discussion on instantaneous p-q strategies for control of active filters [J]. IEEE Trans. Power Electron.,2008, vol.23:1945-1952.
    [171]郭志忠.交流电网相序变换的数学原理[J].中国电机工程学报,2007,27(4):5-8.
    [172]陈菊明,刘峰,卢强.多相电路坐标变换的一般理论[J].电工电能新技术,2006,25(1):44-48.
    [173]Willerns J L. Generalized clarke components for poly -phase networks[J]. IEEE Trans. Edu.,1969, E-12(1):69-71-
    [174]刘浩芳,王增平,刘汉青.改进能量方向保护及其在特高压输电线路上的应用[J].电网技术,2010,34(10):185-191.
    [175]Apostolov A. Implementation of a transient energy method for directional detection in numerical distance relays[C]. Transmission and Distribution Conference,1999, vol.1:382-387.
    [176]Apostolov A. Superimposed components based sub-cycle protection of transmission lines[C]. Power Systems Conference and Exposition,2004. IEEE PES, vol.1:592-597.
    [177]Apostolov A. High-speed directional comparison protection of transmission lines[C].2005 IEEE Power Engineering Society General Meeting:1-6.
    [178]Apostolov A. Which one is Better-line differential or directional comparison?[C].2008, IET 9th International Conference on DPSP:86-91.
    [179]袁荣湘,陈德树,张哲.能量方向保护新原理分析[J].电力系统自动化,1999,23(14):17-22.
    [180]Rommel A, Fabian P, Eduardo O, et at. The directional feature of current transients, application in high-speed transmission-line protection [J]. IEEE Trans on Power Delivery,2013,28(2) 1175-1182.
    [181]Aguilera C, Orduna E, Ratta G. Directional traveling-wave protection based on slope change analysis[J]. IEEE Trans on Power Delivery,2007,22(4):2025-2033
    [182]Jafarian P, Pasand M S-High-speed superimposed-based protection of series-compensated transmission lines [J]. IET Generation, Transmission & Distribution,2011,5(12):1290-1300.
    [183]Hashemi S M, Hagh M T. Transmission-line protection:a directional comparison scheme using the average of superimposed components [J], IEEE Trans on Power Delivery,2013,28(2):955-964.
    [184]沈国荣,郑玉平.高压电网超高速继电保护技术的最新成就[J].中国电力,1996,29(11):85-90.
    [185]Eissa M M, Mahfouz M M A. New high-voltage directional and phase selection protection technique based on real power system data [J]. IET Generation, Transmission & Distribution, 2012,6(11):1075-1085.
    [186]Emanuel A.. Summary of IEEE standard 1459:definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced or unbalanced conditions [J]. IEEE Trans on Industry Application,2004,40(3):869-875.
    [187]Gao H L,Crossley P A. Design and evaluation of a directional algorithm for transmission-line protection based on positive sequence fault components[J].IEE Proceedings-Generation, Transmission & Distribution,2006,153(6):711-718.
    [188]吴麒.自动控制原理[M].北京:清华大学出版社,1999:39-40.
    [189]赵庆明,贺家李,李永丽.基于希尔伯特-黄变换的超高速方向保护研究[J].电网技术,2007,31(10):79-83.
    [190]沈国荣.工频变化量方向继电器原理的研究[J].电力系统自动化,1983,(1):28-38.
    [191]沈国荣.超高速方向保护—JK11[J].电力系统自动化,1987,(3):12-17.
    [192]沈国荣.LF P-901型超高压线路成套快速保护装置[J].电力系统自动化,1993,(6):52-58.
    [193]Benmouyal G, Chano S. Characterization of phase and amplitude comparators in uhs directional relays [J]. IEEE Trans on Power Delivery,1997,12(2):646-653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700