相干布局数囚禁原子钟微型化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子钟是精确的计时工具,在天文、航空航天、卫星导航和物理科学等方面扮演重要角色,但由于其体积较大,在很大程度上限制了其应用的范围。实现原子钟的微型化能够拓展原子钟在不同行业的应用,扩大原子钟的应用领域,将会带来积极的社会效益和经济效益。因此,微型化原子钟成为近几年各国研究的一个热点。本文围绕微型原子钟,开展了对微型原子钟物理机理、设计方法和制作工艺的研究。
     在相干布局数囚禁(CPT:Coherent Population Trapping)物理机理的基础上,研究CPT原子钟的频率控制系统。从物理机理上建立原子钟的频率控制系统模型可以实现对原子钟计时性能更深入的认识,对于指导原子钟的设计实践具有重要的意义,基于物理机理建模的难点是建立原子钟物理系统的数学模型。本文首先在CPT共振方程的基础上,研究激光调制方式下的CPT共振机理,可以得到用调制频率(即计时输出频率)描述的CPT共振方程;进而研究根据CPT谱线实现原子钟锁频的数学过程,并通过对激光调制过程中物理鉴频系统的信号流分析得到物理系统的鉴频模型。最后根据原子钟的系统组成到出原子钟系统的频率控制系统模型。在此基础上进一步研究频率控制系统的不同设计和实现方案,以及用频率控制模型研究原子钟长期稳定度和短期稳定度的方法。
     原子钟微型化的关键是其中物理部件——碱金属蒸汽腔——的微型化,本文在介绍芯片级原子钟的基础上,进一步讨论原子钟微型化制作工艺方面的共性基础问题,包括材料选择、加工工艺、封装方法等。研究了实现物理系统微型化的各种工艺方法的特点和可行性。最后,基于MEMS技术的工艺方法,设计制作小型化原子钟物理系统。
     为了提高碱金属蒸汽腔的制作水平,深入研究了实现基于玻璃—硅—玻璃结构的碱金属蒸汽腔封装制作的MEMS键合工艺——阳极键合。根据玻璃的导电性质,研究键合过程电流特性,得到了不同键合条件下的电流分析和比较的数学模型。基于价键理论,建立了阳极键合的机理模型,进一步得到键合过程的外电路电学特性与键合质量的内在关系。基于上述两点,建立了不同键合条件下键合质量比较的分析模型。结合成键理论,详细讨论了阳极键合新型操作方法——两电极法多层阳极键合——的键合机理,并解释了键合过程中特殊现象——电流脉冲——的产生机制。开展了相关实验研究。
     最后介绍了微型原子钟物理系统制作实践过程中涉及的一些问题,并提供了相应解决策略;简要介绍了基于MEMS技术制作的小型CPT原子钟的原理样机。
As precise timekeeper, atomic clock can play an important role in defferent fields such as astonomy, aerospace, navigation and physics. But it is not used widely until now for its big volume. The miniaturization of atomic clock will helpful to enlarge the application fields of atomic clock, and then will bring deep influence on the world in both society and economy. So the miniature atomic clock is becoming the research direction of atomic clock in recent years. In this dissertation the author has studied the principle, design and manufacture about miniature atomic clock.
     The control model of atomic clock is deduced on the base of coherence population trapping (CPT). Control model base on physical principle would be much useful in the realization of atomic clock, but be difficult in modeling of physical package. Base on the resonance equation of CPT, the equivalent equation as a function of modulating frequency is deduced from the modulation process. The method for locking frequency according to CPT line is studied. The model of frequency detection for physical package is attained according to analysis the course of detection. Then base on the construction of atomic clock the frequency control model is obtained and then different design methods are studied. The methods for studying long term stability and short term stability of atomic clock on the base of control model are studied simultaneously.
     The concept of chip-scale atomic clock is introduced, the common foundations of miniature atomic clock such as material, manufacture and package are discussed. The technologies for realization of miniature physical package are studied. Base on MEMS technologies some relevant practical works for miniature physical package are performed.
     Anodic bonding, the MEMS technology for realization of alkali vapor cell with a structure of glass-silicon-glass is studied deeply. The source of current during anodic bonding is explained and the theoretical model for forecasting bonding result is presented. According to the electric character of glass, the character during anodic bonding is studied and the model for analyzing and comparison of currents under different conditions such as temperature and applied voltage is obtained. The physical model for anodic bonding is constructed base on valence bond theory, and the essence relationship between bond result and circuit character is obtained. Base on the above two results, analytical model for bond result under different conditions is obtained. The bonding course of innovation operation of anodic bonding, multi-stick anodic bonding using two electrodes is studied on the base of valence bond theory, the reason for current spike during bonding is given. Relevant experimental studies are performed.
     Some relevant problems in the course of experiment are discussed. Prototype of miniature atomic clock made by MEMS technology is introduced chiefly.
引文
[1]黄秉英.新一代原子钟.武汉:武汉大学出版社,2006
    [2]G.Alzetta,A.Gozzini,L.Moi,G.Orriols.An experimental method for the observation of RF transitions and laser beat resonance in oriented Na vapour.Nuovo Cimento,197636 B:5-20
    [3]S.Brandt,A.Nagel,R.Wynands,D.Meschede.Buffer gas induced linewidth reduction of coherent dark resonances to below 50 Hz.Physical review A,1997 56:56-59
    [4]J.Vanier.Atomic clocks based on coherent population trapping:a review.Applied physics B,2005 81:421-442
    [5]J.Vanier.Coherent population trapping for the realization of a small,stable,atomic clock.2002 IEEE international frequency control symposium and PDA exhibition.2002:424-434
    [6]J.Kitching,L.Hollberg,S.Knappe,R.Wynands.Compact atomic clock based on coherent population trapping.Electronics letters,2001 37:1449-1451
    [7]S.Knappe,P.D.D.Schwindt,V.Shah,L.Hollberg,J.Kitching.A chip-scale atomic clock based on 87Rb with improved frequency stability.Optics Express,2005 13:1249-1253
    [8]S.Knappe,P.Schwindt,V.Gerginov,V.Shah etc.Chip-scale atomic devices at NIST.14~(th) international school on quantum electronics:laser physics and applications,Proc.Of SPIE 2007 6604:660403-1-8
    [9]J.Kitching,S.Knappe,L.Hollberg.Miniature vapour-cell atomic-frequency references.Applied physics letters,2002 81:553-555
    [10]S.Knappe,V.Shah,P.D.D.Schwindt,L.Hollberg etc.A microfabricated atomic clock.Applied physics letters,2004 85:1460-1462
    [11]L.A.Liew,S.Knappe,J.Moreland,H.Robinson etc.Microfabricated alkali atom vapor cells.Applied physics letters,2004 84:2694-2696
    [12] S Knappe, V Gerginov, V Shah, A Brannon, L Hollberg, J Kitching. Long term stability of the NIST chip scale atomic clock physics packages. Pro. Of SPIE, 2007 6466: 646600-1-9
    [13] D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak etc. VCSELs for atomic clocks. Proc. Of SPIE 2006 6132: 613208-1-11
    [14] R. Lutwak, D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, G M. Peake. The Chip-Scale Atomic Clock - Recent Development Progress. in Proceedings of the 35th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, San Diego, California, USA, 2003: 467-478.
    [15] R. Lutwak, J. Deng, W. Riley, M. Varghese, J. LeBlanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, G. M. Peake. The Chip-Scale Atomic Clock - Low-Power Physics Package, in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Washington, D.C., USA 2004: 339-354.
    [16] R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake. The MAC - A Miniature Atomic Clock. in Proceedings of the 2005 Joint IEEE International Frequency Control Symposium and Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Vancouver, Canada, 2005: 752-757.
    [17] R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Gerb, G. M. Peake, S. Romisch. The chip-scale atomic clock-prototype evaluation, in Proceedings 39th Annual Precise Time and Time Interval (PTTI) Meeting, Long Beach, CA,2007: 269- 290
    [18] J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, etc. Observation of Ramsey fringes using a stimulated resonance raman transition in a sodium atomic beam. Phys. Rev. Lett. 1982 48:867
    [19] J. Vanier, M. Levine, S. Kendig, D. Janssen, etc. Practical realization of a passive coherent population trapping frequency standard. 2004 IEEE international ultrasonics, ferroelectric and frequency control joint 50~(th) anniversary conference, 2004: 92-99
    [20]M.Zhu,L.S.Cutler,J.E.Berberian,J.E Denatale,P.A.Stupar,C.Tsai.Narrow linewidth CPT signal in small vapor cells for chip scale atomic clocks,in Proceedings of the IEEE International Ultrasonics,Ferroelectrics,and Frequency Control Joint 50th Anniversary Conference,Montr'eal,2004:100-103
    [21]S.Knappe,P.Schwindt,L.Hollberg,J.Kitching,etc.The performance of chip scale atomic clocks.2005 quantum electronics and laser science conference,2005:479-481
    [22]C.P.Slichter.Principles of magnetic resonance.Harper and row,New York,1963
    [23]G.Orriols.Nonabsorption resonances by nonlinear coherent effects in a three-level system.Nuovo Cimento,1979 53B:1-24
    [24]J Vanier,A Godone,F Levi.Coherent population trapping in cesium:dark lines and coherent microwave emission.Physical review A,1989,58:2345-2358
    [25]J Vanier,A Godone,F Levi.Coherent population trapping in cesium:dark lines and coherent microwave emission[J].Physical review A,1989,58:2345-2358
    [26]J.Vanier,M.W.Levine,D.Janssen,M.J.Delaney.The coherent population trapping passive frequency standard.IEEE transactions on instrumentation and measurement,2003 52:258-262
    [27]J.Vanier,M.W.Levine,D.Janssen,M.J.Delaney.On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards.IEEE transactions on instrumentation and measurement,2003 52:822-831
    [28]J.Vanier,A.Godeone,E Levi,S.Micalizio.Atomic clocks based on coherent population trapping:basic theoretical models and frequency stability.Proceedings of the 2003 IEEE international frequency control symposium and PDA exhibition jointly with the 17~(th) European frequency and time forum,2003:2-15
    [29]Clark T.-C.Nguyen.MEMS technology for timing and frequency control.IEEE transactions on ultrasonics,ferroelectrics,and frequency control,2007 54:251-270
    [30]范琦,郭文阁,杜志静等。相干布局囚禁现象用于原子频标.时间频率学报,2006 29:107-115
    [31]郭文阁,范琦,王鑫等.相干布局囚禁原子钟技术及其进展.时间频率学报,200730:45-52
    [32]蔡惟泉.相干布局陷俘原子钟的发展概况.激光与光电子学进展,2006 43:9-13
    [33]杜润昌,刘国宾,陈杰华等。相干布局数囚禁原子钟频标的实现及相关实验参数研究.光谱学与光谱分析,2008 28:1697-1700
    [34]R.P.Kenschaft.Response of quantum mechanical resonances to modulated radio frequency signals.Ph.D.dissertation,University of Pennsylvania,1969
    [35]R.P.Kenschaft.Mixed modulation signal and noise analysis and simulation of the rubidium gas cell atomic frequency standard.1996 IEEE internantional frequency control symposium,1996:1041-1050
    [36]K.D.Lyon,W.J.Riley.Application of the kenschaft model to the analysis of the rubidium gas cell frequency standard.1996 IEEE intemantional frequency control symposium,1996:1032-1040
    [37]王勇,吕善伟,冯克明,王亮.Kenschaft模型参数对铷原子频标长期稳定度的影响。系统工程与电子技术.2006 28:985-987
    [38]M.Erhard,H.Helm.Buffer gas effects on dark resonances:theory and experiment.2001 63:043813-1-13
    [39]Guo Ruimin,Xiao Feng,Liu Cheng,Zhang Yu,etc.Dependence ofelectromagnetically induced transparency on laser linewidth.China.Physic.Lett.2003 20:1507-1510
    [40]F.Renzoni,A Lindner,E Afimondo.Coherent population trapping in open systems:a coupled/niocoupled-state analysis.Physical Review A,1999 60:450-455
    [41]J.Vanier,C.Audoin.The quantum physics of atomic frequency standards.Adam Hilger,Bristol,UK,1989
    [42]J.Vanier,LG Bemier.On the Signal-to-Noise Ratio and Short-Term Stability of Passive Rubidium Frequency Standards.IEEE Transactions on Instrumentation and Measurement,1981 IM-30(4):277-282
    [43] J. Vanier, M. W. Levine, D. Janssen, M. Delaney. The coherent population trapping passive frequency standard. IEEE transactions on instrumentation and measurement.2003 52: 258-262
    [44] J. C. Camparo, WF Buell. Laser PM to AM conversion in atomic vapors and short term clock stability. In proceedings of the 51st IEEE international frequency control symposium, 1997: 253-258
    [45] J C. Coffer, M. Anderson, J C. Camparo. Collisional dephasing and the reduction of laser phase-noise to amplitude-noise conversion in a resonant atomic vapor. Phys. Rev.A, 2002 65: 033807-1-9
    [46] J C. Camparo, J G Coffer, JJ. Townsend. Reducing PM to AM conversion and the light shift in laser pumped vapor cell atomic clocks. 2004 IEEE international ultrasonics ferroelectrics and frequency control joint 50th anniversary conference. 2004: 134-136
    [47] J. Vanier, M. W. Levine, D. Janssen, M. Delaney. Contrast and linewidth of the coherent population transimission hyperfine resonance line in Rb87: effect of optical pumping.Physical review A. 2003 67: 065801-1—4
    [48] YY. Jau, E. Miron, AB. Post, NNKuzma, etc. Push-pull optical pumping of pure superposition states. Phys. Rev. Lett. 2004 93:160802-1-4
    [49] AV. Taichenachev, VI. Yudin, VL. Velichanshy, SV. Kargapoltsev. High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves.JETP Lett. 2004 80:236-240
    [50] S. V. Kargapoltsev 1 2, J. Kitching 2, L. Hollberg 2, A. V. Taichenachev. High contrast dark reaonance in σ +-σ - optical field. Laser physics letters. 2004 1: 495-499
    [51] T. Zanon, S. Tremine, S. guerandel, E. De Clercq, D. Holleville, etc. IEEE trans.Instrum. Meas. 2005 54: 776-779
    [52] J. Vanier, R. Kunski. N, Cyr, JY. Savard, etc. On hyperfine frequency shifts caused by buffer gases: application to the optically pumped passive rubidium frequency standard. Journal of applied physica. 1982 53: 5387-5391
    [53]J.Vanier,A.Godone,E Levi.Coherent microwave emission in coherent population trapping:origin of the energy and of the quadratic light shift.In proceedings of the annual IEEE international frequency control symposium,1999:96-99
    [54]E Levi,A.Godone,J.Vanier.The light shift effect in the coherent population trapping cesium maser.IEEE Trans.Ultrason.Ferroelectr.Freq.Control.2000 47:466-470
    [55]M.Zhu,LS.Culter.Theoretical and experimental study of light shift in a CPT-based Rb vapor cell frequency standard.In Proceedings of the 32nd annual conference on precise time and time interval systems and applications meeting,Reston,VA,2000:311-324
    [56]E Levi,A.Godone,J.Vanier.Line shape of dark line and maser emission on profile in CPT.Euro.Phys.J.D.2000:53-59
    [57]A Nagel,S Knappe,C Affolderbach,R Wynands.Line shapes of coherent population trapping resonances.15~(th) ICSLS.2001:257-259
    [58]王义遒等.量子频标原理.北京:科学出版社,1986
    [59]Roland E Best著,李永明等译.锁相环-设计仿真与应用(第五版).北京:清华大学出版社,2007
    [60]张世箕.高稳定频率源输出频率的短期稳定度的定义和测量.电讯技术。1976 6:40-87
    [61]D.W.Allan.Statistics of atomic frequency standards.Proceedings of the IEEE.1966 54:221-230
    [62]James A.Barnes.Atomic timekeeping and the statistics of precision signal generators.Proceedings of the IEEE.1966 54:207-220
    [63]J A Barnes,D W Allan.A statistical model of flicker noise.Proceedings of the IEEE.1966 54:176-178
    [64]Paul Lesage,Claude Audoin.Effect of dead time on the estimation of the two sample variance.IEEE transaction on instrumentation and measurement,1979 28:6-10
    [65]F L Walls,D W Allan.Measurement of frequency stability.Proceedings of the IEEE.1986 74:162-168
    [66] X. Huikai, G. K. Fedder. A DRIE CMOS-MEMS gyroscope. 2002 12: 1413-1418
    
    [67] W. K.D. C. S.K., Diaphragm formation and pressure sensitivity in batch-fabricated silicon pressure sensors. in Electron Devices Meeting, 1978: 96-99
    [68] V. Kaajakari, J. Kiihamaki, A. Oja, H. Seppa, etc. Stability of wafer level vacuum encapsulated single-crystal silicon resonators. 2005 11: 916-919
    [69] S. Yun, C. F. Graetzel, S. N. Fry, B. J. Nelson. A MEMS micro force sensor for drosophila flight characterization. 2005: 505-510
    [70] T. J. Kaiser, M. G. Allen. A pendulous oscillating gyroscopic accelerometer fabricated using deep-reactive ion etching. Journal of Microelectromechanical Systems, 2003 12:21-28
    [71] W.F.Liu, Z.Jiang, Z.B.Gong. Biaxial tilt meter & application based on MEMS accelerator. Journal of Transducer Technology, 2005 24: 86-88
    [72] M.Chen, X.L.Zeng, J.T.Bian, J.Y.Feng. Design of a micro-capacitive acceleration sensors based on MEMS. Journal of Transducer Technology, 2003 22: 75-77
    [73] P.F.Huo, W.Z.Fan, B.H.Ma. A method for system-level modeling of micromachined inertial sensors. Journal of Northwestern Polytechnical University, 2004 22: 403-407
    [74] S. E. Alper, T. Akin. A Single-Crystal Silicon Symmetrical and Decoupled MEMS Gyroscope on an Insulating Substrate. Microelectromechanical Systems, Journal of,2005 14: 707-717
    [75] C. Hong, L. Xiaowei, H. Mingxue, C. Weiping. A Low Noise Bulk Micromachined Gyroscope with Symmetrical and Decoupled Structure. 2006: 306-309
    [76] J. Soderkkvist. Micromachined gyroscopes. Sensors and Actuators, 1994 43: 65-71
    [77] M. A. Northrop. DNA amplification in a micro-fabricated reaction chamber. in 7th Int. Conf. Solid-State Sensor and actuators, Yokohama, Japan, 1993: 924-928
    [78] A. T. Woolley, R. A. Mathies. Ultra-high-speed DNA fragment separations using microfabricated capillary arrays electrophoresis chips. Preceedings of national academy of science, 1994 91: 11348-11353
    [79]R.E Guan,S.L.Liu,B.Hou,Z.Y.Gan.Design and analysis on a new type MEMS optical switch,in The 3rd International Symposium on Instrumentation Science and Technology,Xi'an,China,2004:486-490
    [80]A.Jain,X.Huikai.A tunable microlens scanner with large-vertical-displacement actuation.2005:92-95
    [81]J.B.Sampesll.The digital micro-mirror device and its application to project displays.in 7th Int.Conf.Solid-State Sensors & Actuators,Yokohama,Japan,1993:24-30
    [82]C.L.Goldsmith,Z.Yao,S.Eshelman,D.Denniston.Performance of low-loss RF MEMS capacitive switches.IEEE Microwave Guided Wave Lett.,1998 8:269-271
    [83]A.Malczewski,S.Eshelman,B.Pillans.X-band RF MEMS phase shifters for phase array applications.IEEE Microwave Guided Wave Lett.,1999 9:517-519
    [84]Y.M.Shin,G.S.Park,S.T.Han,J.I.Kim,etc.Design of W-band coupled-cavity TWT by LIGA fabrication.2002:50-51
    [85]K.Varian and D.Walton.2-Bit RF MEMS phase shifter in a thick-film BGA ceramic package.IEEE microwave and wireless components letters,2002 12:321-323
    [86]J.Welter,J.Booske,H.Jiang,S.Bhattacharjee,etc.MEMS-microfabricated components for millimeter-wave and THz TWTs.2004:258
    [87]K.Persson and K.Boustedt.Fundamental requirements on MEMS packaging and reliability,in 8th.International Symposium on Advanced Packaging Materials,Atlanta,2002:1-7
    [88]R.Ramesham.Challenges in interconnection and packaging of microelectro -mechanical systems,in 50th ECTC,Las Vegas,USA,2000:666-675
    [89]Joseph H Abeles,Alan M Braun,Winston Kong Chan,Martin H Kwakemaak,Steven A Lipp,Alfred Joseph Ulmer.Chip scale atomic clock and method for making same[patent].US20060022761A1
    [90]范伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社,2000
    [91]Evien Chen,Ya Ling Po,Tings Wang.Using effecting wet etching technology to improve deep trench shape.2004 IEEE/SEMI advanced semiconductor manufacturing conference.2004:244-246
    [92]Rodica Iosub,Carmen Moldoban,M Modreanu.Silicon membranes fabrication by wet anisotropic etching.Sensors and actuators A physical.2002 99:104-111
    [93]J T sheu,K S You,C H Wu,K M Chang.Optimization of KOH wet etching process in silicon nanofabrication.IEEE NANO 2001:213-317
    [94]Janet Hopkins.DRIE of silicon for MEMS inkjet heads.Semiconductor international 2004:83-84
    [95]M A Rosa,S Dimitrijev,H B Harrison.KOH wet etching techniques for the micromachining of(100)SOI wafers,in IEEE COMMAD Conf.1996:454-457
    [96]E Vijayan Nair,Amitabha Ghosh.A fundamental approach to the study of the mechanics of ultrasonic machining.International journal of production research.198523:731-753
    [97]Z Y Wang,K P Rajurkar.Dynamic analysis of the ultrasonic machining process.Journal of manufacturing science and engineering.1996 118:376-381
    [98]Xi Qing Sun,T Masuzawa,M Fujino.Micro ultrasonic machining and its applications in MEMS.Sensors and actuators A physical.1996 57:159-164
    [99]T B Thoe,D K Aspinwall,M L H Wise.Review on ultrasonic machining.International journal of machine tools and manufacturing.1998 38:239-255
    [100]George E Miller.Special theory of ultrasonic machining.Journal of applied physics.1957 28:149-156
    [101]George Wallis,Daniel I.Pomerantz.Field assisted glass-metal sealing.Journal of Applied Physics.1969.40(10):3946-3949
    [102]Tai-Ran Hsu主编,姚军译.微机电系统封装。北京:清华大学出版社,2006
    [103]S.Knappe,V.Gerginov,P.D.D.Schwindt et al.Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability.OPTICS LETTERS,2005,30(18):2351-2353
    [104]L.A.Liew,J.Moreland,V.Gerginov.Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide.Applied physics letters.2007 90:114106-114108
    [105]Gong,Y.-Y.Jau,K.Jensen et al.Electrolytic fabrication of atomic clock cells.REVIEW OF SCIENTIFIC INSTRUMENTS,2006,77:076101-3
    [106]Shankar Radhakrishnan,Amit Lal.Alkali metal-wax micropackets for chip-scale atomic clocks,in:The 13th international conference on solid-state sensors,actuators and microsystems,Seoul,Korea,IEEE.2005,23-26
    [107]刘鑫.原子钟碱金属蒸汽腔制作设备研制与工艺研究[硕士学位论文],华中科技大学,2008
    [108]马颖,张方辉,牟强.ITO膜透明导电玻璃的特性、制备和应用。陕西科技大学学报。2003 21:106-109
    [109]王刚,刘宏宇,赵超.低阻高透过率ITO薄膜的制备与性能.液晶与显示.1999 14:23-28
    [110]赵玉涛,何维凤,李素敏等.柔性透明导电薄膜的研究现状、应用及趋势。江苏大学学报,2005 26:62-66
    [111]Michael Harz.Anodic bonding for the third dimension.J.Micromech.Microeng.19922:161-163
    [112]华东工学院,北京建筑工业学院合编。硅酸盐工学-玻璃工学。中国工业出版社,1961
    [113]浙江大学武汉建筑材料工业学院上海化工学院华南工学院.硅酸盐物理化学。中国建筑工业出版社。1980
    [114]罗鸣,赵新安,张熙等。静电封接过程与机理研究。半导体学报,1992 13:508-510
    [115]A Cozrna,B Puers.Characterization of the electrostatic bonding of silicon and pyrex galss.J.Micromech.Microeng.1995 598-102
    [116]Thomas R.Anthony.Anodic bonding of imperfect surfaces.J.Appl.Phys.1983 54:2419-2428
    [117]Kevin B.Albaugh.Paul E.Cade.Mechanisms of anodic bonding of silicon to pyrex glass.IEEE solid-state sensor and actuator workshop.1988:109-110
    [118]包振远,张文标.静电封接技术概述。仪表技术与传感器。1992 2:21-23
    [119]孟庆森,俞萍,张丽娜等。金属与硼硅玻璃场致扩散连接形成机理。焊接学报,200122:63-65
    [120]张丽娜,俞萍,周彤,米运卿,孟庆森,薛锦。钠硼硅酸玻璃与铝的阳极焊工艺及结合机理。中国有色金属学报.2001 11:160-163
    [121]杨频,高孝恢。结构-性能-化学建。北京:高等教育出版社,1987
    [122]J.Wei.Z.P.Wang.H.Xie.Ng Ferm Lan.Role of bonding temperature and voltage in silicon to glass anodic bonding.2002 electronics packaging technology conference.2002:85-90
    [123]Jeung Sang Go.Young Ho Cho.Experimental evaluation of anodic bonding process based on the taguchi analysis of interfacial fracture toughness.Sensors and actuators A physical.1999 73:52-57
    [124]Thomas M H Lee.I Ming Hsing.Connie Y N Liaw.An improved anodie bonding process using pulsed voltage technique.Journal of mieroelectromechanical systems.2000 9:469-473
    [125]Gabriel Blasquez,Patrick Favaro.Silicon pyrex electrostatic bonding:applicability to industrial mierodevices production.The 11th international conference on solid state sensors and actuators,munich,Germany.2001
    [126]A Richard,J Kohler,K Jonsson.Weibull fracture probability for characterization of the anodicn bond process.Sensors and actuators A physical.2002 99:304-311
    [127]M M Visser,J A Plaza,D T Wang,A B Hanneborg.Chemical analysis of bonded and debonded silicon-glass interfaces.J.Micromech.Microeng.2001 11:N1-N6
    [128]沈维道,蒋智敏,童均耕.工程热力学(第三版)。北京:高等教育出版社。2001:203-206
    [129]姚雅红,吕苗,赵彦军,崔战东。微传感器制造中的硅.玻璃静电键合技术。半导体 技术.1999 24:19-23
    [130]唐有祺.相平衡、化学平衡和热力学.北京:科学出版社,1984。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700