高压下ZnX(S、Se、Te)和TiO_2的电学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过薄膜技术和光刻技术的结合,在DAC装置中一个砧面上沉积薄膜并光刻出单电极形状,利用压腔T301钢垫片的导电性能,将垫片作为另外一个电极,应用两点法实现高压下在位阻抗谱的精确测量。采用在位测量技术,对ZnX(S、Se、Te)半导体材料电学性质进行了研究。研究结果表明:材料电输运性质的变化、结构相变都可以通过直流和交流测量得到。不同的是直流法不适用高阻的测量,而交流法不适用低阻的测量。在应用阻抗谱测量纳米ZnS材料的结果中得知,界面电阻在压力作用下的变化能够通过阻抗谱的测量直接获得,在15GPa相变发生后,纳米ZnS的晶界电阻增加,晶粒电阻减小。ZnS的介电性质在相变点处也有个大的突变。
     在对不同氧化钛材料(初始结构)的测量结果表明,通过阻抗谱的测量,得到了晶粒与晶界电阻、晶粒与晶界弛豫频率、晶界空间电荷势等一系列参数,这些参数存在着一些不连续变化点,分析表明这些不连续的变化点与材料的结构,结构相变有着紧密的联系。其中,金红石氧化钛在12GPa和25GPa出现两个不连续的变化点,锐钛矿氧化钛在5GPa,12GPa和23GPa有三个不连续变化点。本文的阻抗谱的测量结果对深入了解II-VI族半导体材料的导电机制提供了实验规律和研究参考。
The combination of thin film technology, lithography technology and high pressure technology were used as a new generation high pressure intergration technology. It had been overcame the the defects of electrode which were consisting of fracture and deformation in DAC. The use of high pressure intergration technology can be accurated measurement the electrical signal in DAC. The AC impedance spectrum can obtain more information than DC measurement which can distinguish the grain inter and grainboundary resistance. However, the measurement of AC impedance spectrum in DAC is still a difficult technique due to the strict measurement enviorment (such as the sample chamber must be insulation, the additional capacitor and inductance in system should be minimized and so on). Furthermore, AC impedance spectroscopy method can get more enrich contents than DC resistivity measurements under pressure, for example the resistance from grain and grain boundary, the dielectric properties and so on. Thus, it is important and significant to develope a suitable method to solve the problems in DAC.
     To resolve this problem, the T301 gasket was used as an electrode (for its exellent conductivity) and the other electrode is one of the DAC which was sputting thin film. Then the two-point method was used to measure the impedance under pressure. The problems which were brought in high pressure measurements can be resolved by such electrode configuration. The following is the advantages of this configuration: first the deformation of electrode was small; second the insulation of sample chamber was resolved; and third the additional captiance and inductance in system were minimized. In summary, the AC impedance can be measured accuraly in DAC. Using this system the electrical properties of ZnX(S、Se、Te) and TiO2 under pressure were investigated.
     Application the new elcrode mode, the high pressure electrical properties of ZnX (S,Se,Te) and TiO2 were investigated. The results indicted that both the DC electrical resistivity method and AC impedance method can well measurement the electrical properties under pressure. In ZnS, the DC resistivity dropped several orders of magnitude at 14GPa which corresponding to structure phase transition from zinc-blende to rock salt structure. After transition, the resistivity became small due to the narrow gap in rock-salt phase ZnS. In ZnSe, there is a step-like drop in resistivity at 11-12GPa following a smooth trend under pressure which is ascribed to the structure phase transition from zinc-blende to cinnabar, then to rocksalt phase. Under high pressure, the rockalt phase is a metal phase which has a small resistivity value. In ZnTe, the discontinue change-points occur at 5GPa, 8GPa and 12GPa, respectively. The latter two points are corresponding to the structure phase transition from zinc-blende to cinnabar to Cmcm phase. Because the Cmcm phase in ZnTe is metal phase, so the resistivity value under pressure is small. The discontinue point at 5GPa may be due to the new structure phase or electronic phase transition. In contrast with the structure phase transition in ZnS, ZnSe and ZnTe, the unbalance size in anion and cation in ZnTe lead to the high pressure phase is Cmcm structure phase instead of rocksalt structure.
     In the ZnS AC impedance spectrum results, both semicircles which sepetately represent the grain and grain boundary resistance reduced as the pressure increasing while the shape maintained. This indicated that the conductive mechanism was stable under pressure and the reduced resistance is due to the shrink of band gap. At 14GPa, the impedance turn from two semicircles to a 1/4 arc. This pressure point is the same with the structure phase transition point in ZnS. In ZnSe, the size of impedance spectrum increased with increasing pressure which is ascribed to the enlargement of the band gap. The shape of impedance spectrums were changed two times between 11-12GPa which is due to the structure phase transition in ZnSe from zinc-blende to cinabber-rocksalt structure. The changed of impedance spectrum at the phase transition point can reflect the occurrence of structure phase transition, the interior conductive mechanism of material can be also reflected by the shape changed of impedance under pressure.
     Recently, people pay more attention to the interface charaterisic of nanomaterials. Due to the advantages of impedance which can divide the resistance into grain and grain boundary,it is used in DAC for high pressure measurement which is a direct method to reaserch the interface characteristics of nanoparticles. In this paper, the impedance of ZnS nanoparticles was measured between 0-30GPa. Through the shape change of impedance spectrum, we can know the phase transition points. The pressure dependence of muludus spectrum curves indicated that the grain boundary played an important role under pressure. At the same time, the pressure dependence of grain and grain boundary resistance further proved the structure phase transition points at 8GPa and 15GPa. The dielectric constant also can be getting from the high pressure impedance measurements. The enlargement of dielectric constant at 15GPa is due to structure phase transition.
     The study of different structures TiO2 under pressure discovered that the impedance has close relation with structure. The high pressure impedance spectrum in TiO2 is different with different structures. For the rutile structure, only one semicircle can be observed at low pressure which was due to small or no acculation of electron in space charge region. With the pressure increasing, the arcs of impedance distorted indicate the conductive mechanism changed. The electron occurred in space charge region. This distortion has direct relation with structure phase transition. The pressure dependence of grain and grain boundary resistance curve indicated that the structure phase transion occurred in 12GPa, and the baddeleyite phase is stable at 25GPa. The space charge potential is stable at high pressure and the value is about 30 mV.
     In anatase TiO2, the pressure dependent of resistance curve indicated that the discontinue change points at 5GPa and 12GPa which corresponding to the structure phase transition from anatase to columibite, then to baddeleyie. And baddeleyite structure is a stable phase above 23GPa. There is no change in impedance spectrum from 5GPa to 23GPa which indicated that the conductive mechanism is unchanged. This is ascribed to the same structure (columibite phase) in that range. The varation of relaxation frequency and space charge potential have discontinued changes at the phase change points also have relation with phase transition.
     In summary, both the DC method and AC impedance spectrum are used to research the electrical properties of semiconductor materials under pressure. However, the AC impedance measurements can give more physical informations than DC method, such as the varied shape in impedance spectrum corresponding to the conductive mechanism has been changed. The relaxation frequency, space electron potential, dielectric constant can also obtain from impedance results. However, the impedance spectrum measurement has large error when applied on the solid state material with low resistance.
引文
[1]郑伟涛,薄膜材料与薄膜技术,化学工业出版社, 2004.
    [2]唐伟忠,薄膜材料制备原理技术及应用,冶金工业出版社,1998, 49.
    [3] John L. Vossen and Werner Kern,“Thin Film Process”, Academic Press,(1991)134.
    [4] H. K. Mao and P. M. Bell, in Carnegie Institution of Washington Year Book 1976,75: 824.
    [5] S. Block, R. A. Forman and G. J. Piermarini, in High Pressure Research: Applications in Geophysics, edited by M. H. Manghnani and S. Akimoto (Academic, New York), p. 503 (1977)
    [6] H. K. Mao and P. M. Bell, Electrical resistivity measurements of conductors in the diamond-window, high-pressure cell, Rev. Sci. Instrum. ,1981, 52, 615.
    [7] T. A. Grzybowski and A. L. Ruoff, Band-overlap metallization of BaTe, Phys. Rev. Lett. 1984,53, 489.
    [8] A. Lacam, Pressure and composition dependence of the electrical conductivity of ironrich synthetic olivines to 200 kbar, Phys. Chem. Minerals 1983, 9:127.
    [9] Y. S. Xu, C. McCammon, and B. T. Poe, The effect of alumina on the electrical conductivity of silicate perovsikite, Science ,1998,282: 922.
    [10] N. Sakai, T. Kajiwara, K. Tsuji and S. Minomura, Electrical resistance measurements at high pressure and low temperature using a diamond-anvil cell, Rev. Sci. Instrum, 1982,53: 499.
    [11] K. Shimizu, K. Suhara, M. Ikumo, M. I. Eremets and K. Amaya, Superconductivity in oxygen, Nature ,1998, 393: 767.
    [12] H. Hemmés, A. Driessen, J. Kos, F. A. Mul, and R. Griessen, Synthesis of metal hydrides and in situ resistance measurements in a high-pressure diamond anvil cell, Rev. Sci. Instrum. 1989, 60, 474.
    [13] Mikhail I. Eremets, Viktor V. Struzhkin, Ho-kwang Mao, Russell J. Hemley, Superconductivity in Boron, Science ,2001,293: 272.
    [14] M. I. Eremets, K. Shimizu, T. C. Kobayashi, K. Amaya, Metallic CsI at Pressures of up to 220 Gigapascals, Science ,1998,281: 1333.
    [15] Katsuya Shimizu, Hiroto Ishikawa, Daigoroh Takao, Takehiko Yagi and Kiichi Amaya, Superconductivity in compressed lithium at 20 K, Nature, 2002,419:597.
    [16] B. T. Matthias, Empirical Relation between Superconductivity and the Number of Valence Electrons per Atom,Phys. Rev. 1955,97: 74-76.
    [17] N. W. Ashcroft, Putting the squeeze on lithium, Nature, 2002,419:569.
    [18] S. T. Weir, J. Akella, C. Aracne-Ruddle, Y. K. Vohra, and S. A. Catledge, Electrical measurements on praseodymium metal to 179 GPa using designer diamond anvils,Appl. Phys. Lett. ,2000,77: 3400.
    [19] J. R. Patterson, S. A. Catledge, Y. K. Vohra, J. Akella, and S. T. Weir, Electrical and Mechanical Properties of C70 Fullerene and Graphite under High Pressures Studied Using Designer Diamond Anvils, Phys. Rev. Lett.,2000,85:5364.
    [20] D. D. Jackson, C. Aracne-Ruddle, V. Malba, S. T. Weir, S. A. Catledge, and Y. K. Vohra, Magnetic susceptibility measurements at high pressure using designer diamond anvils, Rev. Sci. Instrum. 2003, 74: 2467.
    [21] N. Velisavljevic and Y. K. Vohra, Electrical measurements on praseodymium metal to 179 GPa using designer diamond anvils, Appl. Phy. Lett. 2004 82: 927.
    [22] D. A. Polvani, J. F. Meng, M. Hasegawa and J. V. Badding, Measurement of the thermoelectric power of very small samples at ambientand high pressures, Rev. Sci. Instrum., 1999, 70: 3586.
    [23] J. Gonzalez, J. M. Besson and G. Weill, Electrical transport measurements in a gasketed diamond anvil cell up to 18 GPa, Rev. Sci. Instrum., 1986, 57, 106 .
    [24] A. M. Zaitsev, M. Burchard, J. Meijer, A. Stephan, B. Burchard, W. R. Fahrner and W. Maresch, Diamond pressure and temperature sensors for high-pressure high-temperature applications, Phys. Stat. Sol. (a) 2001,185:59.
    [25] Yonghao Han,Chunxiao Gao,Yanzhang Ma,Hongwu Liu, Yuewu Pan, Jifeng Luo, Ming Li, Chunyuan He,Xiaowei Huang, Guangtian Zou,Yanchun Li, Xiaodong Li, and Jing Liu, Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement. Appl. Phys.lett. 2005, 86, 064104.
    [26] van der Pauw, L. J., Philips Res. Repts. 1958,13, 1.
    [27] van der Pauw L. J., Philips Tech. Rev. 1958,20, 220.
    [28]贺春元.高压下II-VI族化合物CdX(X=S、Se、Te)的电输运性质.吉林:吉林大学超硬材料国家重点实验室,2007.
    [29] Macdonald, J. R. Impedance Spectroscopy. John Wiley & Sons, New York 1987.
    [30] Randles, J. E. B.. Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 19471:11–19.
    [31] Lloyd Armstrong, Jr., Constantine E. Theodosiou, and M. J. Wall,Interferencebetween radiative emission and autoionization in the decay of excited states of atoms,Phys. Rev. A ,1978,18: 2538–2549.
    [32] J.Ross Macdonald, J.Schiinman, A.P.Lehnen, Three dimensional perspective plotting and fitting of immittance data ,solid state ionics ,1981,5:137-140.
    [33] Janek R P, Fawcett w R,Ulman A, Impedance Spectroscopy of Self2assembledMonolayers on Au(111) : Sodium Ferrocecyanide Charge Transfer atModified Electrodes[J ]. L angmuir, 1998, 14: 301123018. [34 ] Conwa Y B E, J. Ombockr IS, Ral Phewhite, and Rzej L S , Modern A spects of Electrochem istry, Electrochemical Impedance Spectroscopy and Its App lications [M ]. Kluw er A cadem ic?P lenum Publishers, New York, 1999, 1432248..
    [35] Amemiya T, H S Imotok, F I IMA, Faradaic Charge T ransfer w ith Double2layer Charging and?o r A dsorp tion2related Charging at Polmer2modified Electrodes as Observed by Color Impedance Spec2troscopy[J ]. J Phys Chem, 1993, 97 (38) : 973629740. [36 ] Hans G L C, Terry C C, Adell E C F C., Impedance Spectroscopy of Interfaces, M embranes and U ltra2structures[J ]. B ioelectrochem. B ioenerg. 1996, 20: 7929
    [37] Janek R P, Fawcett W R, Ulman A., Impedance Spectroscopy of Self2assembledMonolayers on A u(111) : Sodium Ferrocecyanide Charge T ransfer atModified Electrodes[J ]. L angmuir, 1998, 14: 301123018.
    [38] Bandyopadhya Y K, Vljamohanank K, Venka Taramananm, PRADEEP T. Self2 assembled Monolayers of SmallA romaticD isulfide and D iselenideMolecules on Polycrystalline Gold F ilm s: a Compar2ative Study of the Geometrical Constraint U sing Temperature2dependent Surface2enhanced Raman Spec2troscopy, X2ray Photoelectron Spectroscopy, and Electrochem istry[J ]. L angmuir, 1999, 15: 531425322.
    [39] Rub I Ste Ini, Saba Tani E, R Ishpon, J. Electrochem ical Impedance A nalysis of Polyaniline F ilm s on Electrodes[J ]. J Electrochem Soc, 1987, 134 (12) : 307823083.
    [40]曹楚南,张鉴清著电化学阻抗谱导论,北京:科学出版社2002.
    [41] Luciana F. Maia, Ana C. M. Rodrigues, Electrical conductivity and relaxation frequency of lithium borosilicate glasses,Solid State Ionics, 2004, 168: 87.
    [42] J. S. Hubener and R. G. Dillenburg, Impedance spectra of dry silicate minerals and rock: qualitative interpretation of spectra, American Mineralogist, 1995, 80: 46-64 .
    [43] R. Hinrichs and J. A. H. da Jornada, Piston–cylinder apparatus for high-pressure impedance spectroscopy, Rev. Sci. Instrum. ,1997,68: 193.
    [44] Y. S. Xu, B. T. Poe and T. S. Shankland, Electrical conductivity of olivine, Wadsleyite, and Ringwoodite under upper-mantle conditions, Science, 1998, 280: 1415-1418.
    [45] D.Sakamoto, A.Yoshiasa , T Yamanaka, O. Ohtaka, and K. Ota. Electric conductivity of olivine under pressure investigated using impedance spectroscopy. J. Phys. Condens. Matter,2002, 14: 11375-11379.
    [46] Chunyuan He and Chunxiao Gao, Yanzhang Ma, Ming Li, Aimin Hao, Xiaowei Huang, Bingguo Liu, Dongmei Zhang,Cuiling Yu, and Guangtian Zou, Yanchun Li, Hui Li, Xiaodong Li, and Jing Liu, In situ electrical impedance spectrum under high pressure on diamond anvil cell, 2007, Appl. Phys.Lett. 91, 092124.
    [47] J. Fleig and Joachim Maier,Microcontact impedance measurements of individual highly conductive grain boundaries: General aspects and application to AgCl, Phys. Chem. Chem. Phys.1999, 1: 3315-3320.
    [48] R. J. Hemley, H. K. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland and D. Hauserman,Science,1997, 276: 1242.
    [49] R. S. Hixson, D. A. Boness, J. W. Shaner and J. A. Moriarty, Phys. Rev. Lett. 1989, 62: 637.
    [50] A. P. Japhcoat, R. J. Hemley and H. K. Mao, Physica B,1988,150: 115.
    [51] Smith, P. L., and J. E. Martin, Phys. Lett.,1965, 19: 541.
    [52] Nelmes, R. J., and M. I. McMahon, Semicond. Semimetals, 1998,54: 145.
    [53] Uchino, M., T. Mashimo, M. Kodama, T. Kobayashi, E. Takasawa, T. Sekine, Y. Noguchi, H. Hikosaka, K. Fukuoka, Y. Syono, T. Kondo, and T. Yagi, Phase transition and EOS of zinc sulfide under shock and static compressions up to 135 GPa, J. Phys. Chem. Solids ,1999, 60: 827-837.
    [54] Ves, S., U. Schwarz, N. E. Christensen, K. Syassen, and M. Cardona, Cubic ZnS under pressure: Optical-absorption edge, phase transition, and calculated equation of state, Phys. Rev. B,1990, 42: 9113-9118.
    [55] Zhou, Y. H., A. J. Campbell, and D. L. Heinz, Equations of state and optical properties of the high pressure phase of zinc sulfide, J. Phys. Chem. Solids ,1991, 52:821-825.
    [56] Jaffe, J. E., R. Pandey, and M. J. Seel, Ab initio high-pressure structural and electronic properties of ZnS , Phys. Rev. B ,1993, 47: 6299-6303.
    [57] Jiang, J. Z., L. Gerward, D. Frost, R. Secco, J. Peyronneau, and J. S. Olsen, Grain-size effect on pressure-induced semiconductor-to-metal transition in ZnS,J. Appl. Phys. ,1999, 86: 6608-6610
    [58] Qadri, S. B., E. F. Skelton, A. D. Dinsmore, J. Z. Hu, W. J. Kim, C. Nelson, and B. R. Ratna, The effect of particle size on the structural transitions in zinc sulfide,J. Appl. Phys., 2001,89: 115 -119.
    [59] Desgreniers, S., L. Beaulieu, and I. Lepage, Pressure-induced structural changes in ZnS,Phys. Rev. B, 2000, 61: 8726-8733.
    [60] Qteish, A., M. Abu-Jafar, and A. Nazzal, The instability of the cinnabar phase of ZnS under high pressure, J. Phys.: Condens. Matter, 1998, 10: 5069-5080.
    [61] López-Solano, J., A. Mujica, P. Rodríguez-Hernández, and A. Mu?oz, Theoretical study of ZnS under high pressure, Phys. Status Solidi B ,2003,235: 452-455.
    [62] Nazzal, A., and A. Qteish, Ab initio pseudopotential study of the structural phase transformations of ZnS under high pressure, Phys. Rev. B,1996, 53: 8262-8266.
    [63] Karzel, H., W. Potzel, M. K?fferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,Phys. Rev. B ,1996,53: 11425-11438.
    [64] Lin, Ch.-M., D.-S. Chuu, T.-J. Yang, W.-Ch. Chou, J.-A. Xu, and E. Huang, Raman spectroscopy study of ZnSe and Zn0.84Fe0.16Se at high pressures, Phys. Rev. B, 1997, 55: 13 641-13646.
    [65] McMahon, M. I., and R. J. Nelmes, Phys. Status Solidi B, 1996, 198: 389.
    [66] Smelyansky, V. I., and J. S. Tse, Theoretical study on the high-pressure phase transformation in ZnSe, Phys. Rev. B, 1995, 52: 4658-4661.
    [67] C?té, M., O. Zakharov, A. Rubio, and M. L. Cohen, Ab initio calculations of the pressure-induced structural phase transitionsfor four II-VI compounds, Phys. Rev. B ,1997,55: 13 025-13031.
    [68] Pellicer-Porres, J., A. Segura, V. Mu?oz, J. Zú?iga, J. P. Itié, A. Polian, and P. Munsch, Cinnabar phase in ZnSe at high pressure, Phys. Rev. B,2002, 65: 012109-012113.
    [69] Valeri I. Smelyansky and John S. Tse,Theoretical study on the high-pressure phase transformation in ZnSe, Phys. Rev. B.1995, 52: 4658–4661.
    [70] Galit Itkin, Giovanni R. Hearne, Eran Sterer, and Moshe P. Pasternak, Pressure-induced metallization of ZnSe, Phys. Rev. B,1995, 51: 3195–3197.
    [71]Shouxin Cui, Haiquan Hu, Wenxia Feng, Xiaoshuang Chen and Zhenbao Feng, Pressure-induced phase transition and metallization of solid ZnSe, Journal of Alloys and Compounds,2009,472: 294-298.
    [72] Ohtani, A., M. Motobayashi, and A. Onodera, Polymorphism of ZnTe at elevated pressure,Phys. Lett. A, 1980, 75: 435-437.
    [73] Str?ssner, K., S. Ves, C. K. Kim, and M. Cardona, Pressure dependence of the lowest direct absorption edge of ZnTe,Solid State Commun.,1987, 61: 275-278.
    [74] Shimomura, O., W. Utsumi, T. Urakawa, T. Kikegawa, K. Kusaba, and A. Onodera, The Review of High Pressure Science and Technology, 1997, edited by Masoru Nakahara, Vol. 6, p. 207
    [75] Lee, G. D., and J. Ihm, Microscopic study of the pressure-induced structural phase transition of ZnTe, Phys. Rev. B, 1996,53: R7622–R7625.
    [76] Lee, I.-H., and R. M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids, Phys. Rev. B ,1997,56: 7197-7205.
    [77] Cuiling Yu, Qingjiang Yu, Chunxiao Gao,_ Haibin Yang, Bao Liu, Gang Peng,Yonghao Han, Dongmei Zhang, Xiaoyan Cui, Cailong Liu, Yue Wang, Baojia Wu,Chunyuan He, Xiaowei Huang, and Guangtian Zou , Phase transformation and resistivity of dumbbell-like ZnO microcrystals under high pressure, J. Appl. Phys. 2008,103: 114901.
    [78] Yonghao Han and Chunxiao Gao, Yanzhang Ma, Hongwu Liu, Yuewu Pan, Jifeng Luo, Ming Li, Chunyuan He,Xiaowei Huang, Guangtian Zou, Yanchun Li, Xiaodong Li, and Jing Liu, Integrated microcircuit on a diamond anvil for igh-pressure electrical resistivity measurement, APPLIED PHYSICS LETTERS ,2005,86: 064104.
    [79] Ding Zhifeng.; Quinn Bernadette M.; Haram Santosh K. ; PMll Lindsay E.; KorgeL Brian A. and Bard Allen J., Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots, Science, 2002, 296: 1293-1297.
    [80] Toma Stoica, Eli Sutter, Ralph J. Meijers, Ratan K. Debnath, Raffaella Calarco, Hans Lüth, Detlev Grützmacher, Interface and Wetting Layer Effect on the Catalyst-Free Nucleation and Growth of GaN Nanowires, Small, 2008, 4: 751-754.
    [81] Sytlem. antao, Ishmael Hassan,Wilsona Crichton and Johnb.parise, Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa , American Mineralogist, 2005, 90: 1500–1505.
    [82] G. Kh. Rozenberg, Y. Amiel, W. M. Xu, M. P. Pasternak, R. Jeanloz, M. Hanfland, and R. D. Taylor, Structural characterization of temperature- and pressure-induced inverse normal spinel transformation in magnetite , Phys. Rev. B, 2007, 75: 020102.
    [83] Timothy B. Adams, Derek C. Sinclair, and Anthony R. West, Electronic density response of liquid water using time-dependent density functional theory , Phys. Rev. B, 2006, 73: 094124.
    [84] G. Conte, M. C. Feliciangeli, and M. C. Rossi, Impedance of nanometer sizedsilicon structures , Appl.phys.lett. 2006,89: 022118.
    [85] P. Balaya, J. Jamnik, J. Fleig, and J. Maier, Mesoscopic electrical conduction in nanocrystalline SrTiO3, Appl.phys.lett. 2006, 88: 062109 .
    [86] W. Puin and P. Heitjans, Frequency dependent ionic conductivity in nanocrystalline CaF2 studied by impedance spectroscopy , Nanostruct. Mater, 1995, 6: 885-888.
    [87] G. Vitale, G. Conte , P. Aloe and F. Somma , An impedance spectroscopy investigation of nanocrystalline CsPbBr3 films, Materials Science and Engineering C,2005, 25: 766– 770.
    [88] A. Chandra Bose, P. Thangadurai, S. Ramasamya, B. Purniah, Impedance spectroscopy and DSC studies on nanostructured SnO2, Vacuum,2005, 77: 293–300.
    [89] Yuewu Pan, Shengchun Qu, Shushan Dong, Qiliang Cui, Weiwei Zhang, Xizhe Liu, Jing Liu, Bingbing Liu, Chunxiao Gao and Guangtian Zou, An investigation on the pressure-induced phase transition of nanocrystalline ZnS, J. Phys.: Condens. Matter, 2002,14: 10487–10490.
    [90] Harry L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics,2000, 131:143-157.
    [91] A.K.Jonscher,J.M.Reau, Analysis of the alternating current properties of ionic conductors , J.Mater.Res,1978,13: 553-562.
    [92] Jo?o C. C. Abrantes, Jo?o A. Labrincha, and J. R. Frade, An alternative representation of impedance spectra of ceramics , Mater. Res. Bull., 2000, 35: 727-740.
    [93] Han, Y. H.; Gao, C. X.; Ma, Y. Z.; Liu, H. W.; Pan, Y. W.; Luo, J. F.; Li, M.; He, C. Y. Huang,W. X.; Zou, G. T. , Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement, Appl. Phys. Lett, 2005,86: 064104.
    [94] Tolbert,S.H.;Alivisatos, A.P. ibid. 1994, 265, 373
    [95] Tolbert , S. H.; Alivisatos, A. P. , The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure, J.Chem.Phys, 1995,102: 4642-4656.
    [96]Tolbert.,S.H.; Herhold, A.B.; Brus, L.E.;,A.P. Alivisatos. Pressure-Induced Structural Transformations in Si Nanocrystals: Surface and Shape Effects, Phys.Rev.Lett, 1996, 76: 4384-4387.
    [97] Alfonso San-Miguel,Nanomaterials under high-pressure, Chem. Soc. Rev., 2006, 35: 876–889.
    [98] Chen, C.-C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Size Dependence of Structural Metastability in Semiconductor Nanocrystals, Science, 1997,276: 398-401.
    [99] Kodiyalam, S.; Rajiv, K. K.; Hideaki, K.; Aiichiro,N.; Fuyuki, S.; Vashishta, P., Grain Boundaries in Gallium Arsenide Nanocrystals Under Pressure: A Parallel Molecular-Dynamics Study, Phy. Rev.Lett, 2001, 86: 55-58.
    [100]Kodiyalam, S.; Rajiv, K. K.; Aiichiro, N.; Priya, V. ,Multiple Grains in Nanocrystals: Effect of Initial Shape and Size on Transformed Structures Under Pressure, Phy. Rev.Lett, 2004,93: 203401.
    [101] Ye, X.; Sun, D.Y.; Gong, X.G.., Pressure-induced structural transformation of CdSe nanocrystals studied with molecular dynamics, Phys, Rev.B, 2008,77: 094108.
    [102] Rainer Schmidt,, J. Wu, C. Leighton,, and I. Terry, Dielectric response to the low-temperature magnetic defect structure and spin state transition in polycrystalline LaCoO3, Phy.Rev.B. 2009,79:125105.
    [103] Sergey V. Ovsyannikov, Vladimir V. Shchennikov , Andrzej Misiuk, Ivan A. Komarovsky,Electronic properties and phase transitions in Si, ZnSe, and GaAs under pressure cycling up to 20-30 GPa in a high-pressure cell, Phys. Status Solidi B 2009,246: 604–611.
    [104] Murat Durandurdu ,The structural phase transition of ZnSe under hydrostatic and nonhydrostatic compressions: an ab initio molecular dynamics study Journal of Physics Condensed Matter ,2009,21: 125403.
    [105] S. Ves, K. Str?ssner, N. E. Christensen, Chul Koo Kim and M. Cardona, Pressure dependence of the lowest direct absorption edge of ZnSe, Solid State Communications, 1985,56: 479-483.
    [106] J.Fleig, The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data, Solid State Ionics, 2002, 150: 181-193.
    [107]M. Langlet, M. Burgos, C. Coutier, C. Jimenez, C. Morant, M. Manso, Functionality of Aerosol-Gel Deposited TiO2 Thin Films Processed at Low Temperature , J. Sol-Gel Sci. Technol., 2001, 22: 139.
    [108] L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N.M. Harrison, R. Ahuja, B. Holm, B. Johansson, Materials science: The hardest known oxide,Nature, 2001 410: 653-654.
    [109] Haines, J.; ,Leger, J. M. X-ray diffraction study of TiO2 up to 49 GPa, Physica B. 1993,192: 233-237.
    [110] Arlt, T.; Bermejo, M.; Blanco, M. A.; Gerward, L.; Jiang, J. Z.;Olsen, J. S.; Recio, J. M.. High-pressure polymorphs of anatase TiO2, Phys.Rev.B, 2000, 61: 14414. [111 ] Dubrovinskaia, N. A.; Dubrovinsky, L. S.; Ahuja, R.; Prokopenko, V. B.; Dmitriev,V.; Weber, H.P.; Osorio-Guillen, J. M.; Johansson, B. Experimental and Theoretical Identification of a New High-Pressure TiO2 Polymorph, Phys. Rev. Let,t 2001,87: 275501.
    [112] Muscat, J.; Swamy, V.; Harrison, N. M.,First-principles calculations of the phase stability of TiO2, Phys. Rev. B,2002, 65: 224112.
    [113] R. G. McQueen, J. C. Jamieson, S. P. Marsh, Science , 1967,155:1401.
    [114] H. Sato, S. Endo, M. Sugiyama, T. Kikegawa, O. Shimomura, K. Kusaba, Baddeleyite-Type High-Pressure Phase of TiO2 , Science,1991,251: 786-788.
    [115] L. Gerward , J. S. Olsen, Post-Rutile High-Pressure Phases in TiO2, J. Appl. Crystallogr. 1997, 30: 259-264.
    [116] Y.J Wang, Y.S Zhao, J.Z.Zhang, H.W. Xu, L.P.Wang, S.N. Luo, L.L.Daemen, In situ phase transition study of nano- and coarse-grained TiO2 under high pressure/temperature conditions, J. Phys.: Condens. Matter, 2008,20: 125224.
    [117] T.Ohsaka, S.Yamaoka, O.Shimomura, Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2),,Solid State Commun., 1979, 30: 345-347.
    [118] K. Lagarec, S. Desgreniers, Raman study of single crystal anatase TiO2 up to 70 GPa, Solid State Commun.,1995, 94: 519-524.
    [119] J. S. Olsen, L.Gerward, J Jiang, On the rutile/α-PbO2-type phase boundary of TiO2, J. Phys. Chem. Solids,1999, 60: 229-233.
    [120] V.Swamy, L.S.Dubrovinsky, N.A.Dubrovinskaia, A.S.Simionovici, M.Drakopoulos, V.Dmitriev , H. P.Weber, Compression behavior of nanocrystalline anatase TiO2 , Solid State Commun., 2003,125: 111-115.
    [121] F.Dachille, R.Roy , A New High-Pressure Form of Titanium Dioxide, Am. Ceram. Soc. Bull., 1962, 41: 225.
    [122] V.Swamy, A.Kuznetsov, L.S.Dubrovinsky, R.A.Caruso, D.G.Shchukin, B.C.Muddle Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2, Phys. Rev. B,2005, 71: 184302.
    [123] A. Navrotsky, Energetics of nanoparticle oxides: interplay between surface energy and polymorphism, Geochem Trans, 2003,4 :34–37.
    [124] J.M.McHale, A.Auroux, A.J.Perrotta, A Navrotsky, Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas , ,science, 1997,277: 788-791.
    [125] L. H. Edelson and A. M. Glaeser., Role of Particle Substructure in the Sintering of Monosized TitaniaJ. J. Am. Ceram. Soc. 1988, 71: 225.
    [126] K.P.Kumar, K.Keizer, A.J.Burggraaf,Textural stability of titania–alumina composite membranes, J. Mater. Chem,1993, 3: 917-922.
    [127] G.R.Hearne, J.Zhao, A.M.Dawe, V.Pischedda, M.Maaza, M.K.Nieuwoudt, P. Kibasomba, O.Nemraoui, J.D.Comins , M.J. Witcomb. Effect of grain size on structural transitions in anatase TiO2: A Raman spectroscopy study at high pressure, Phys. Rev. B,2004, 70 :134102.
    [128] S.Varghese, B.C. Muddle, Ultrastiff Cubic TiO2 Identified via First-Principles Calculations, Phys. Rev. L,2007, 98: 035502.
    [129] Y.S Xu, C. McCammon ,B. T. Poe, The Effect of Alumina on the Electrical Conductivity of Silicate Perovskite, Science; 1998, 282:.922-924.
    [130] Q.L. Wang, O.Varghese, C.A. Grimes, E.C. Dickey, Grain boundary blocking and segregation effects in yttrium-doped polycrystalline titanium, Solid State Ionics, 2007,178: 187-194.
    [131] Q. Wang, G..D. Lian, E.C. Dickey, Grain Boundary Segregation in Yttrium-doped Polycrystalline TiO2, Acta Materialia,2004, 52 : 809-820.
    [132]苏根利,谢鸿森,李和平等,高温高压下流体中电解质活度系数的确定[J]。矿物岩石地球化学通报,2000,19(2):25-29。
    [133] E. Barsoukov and J. R. MacDonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley Interscience, New York, 2005).
    [134] A. K. Jonscher, Analysis of the alternating current properties of ionic conductors, J. Mater. Sci., 1978,13: 553 -562.
    [135] M. M. Ahmad and K. Yamada, Superionic PbSnF4: A giant dielectric constant material, Appl. Phys. Lett., 2007, 91: 052912 .
    [136] Y.Al-Khatatbeh, K.M. Lee, and B.Kiefer, High-pressure behavior of TiO2 as determined by experiment and theory, Phys. Rev. B, 2009,79: 134114.
    [137] K. Kliewer,J. Koehler, Space Charge in Ionic Crystals. I. General Approach with Application to NaCl, Phys. Rev. A ,1965, 140:1226.
    [138] M.F. Yan, R.M. Cannon ,H.K. Bowen, charge, elastic field, and dipole contributions to equilibrium solute segregation at interfaces, J. Appl. Phys., 1983, 54: 764.
    [139] J.A. S. Ikeda , Y.M. Chiang, Space Charge Segregation at Grain Boundaries in Titanium Dioxide: I, Relationship between Lattice Defect Chemistry and Space Charge Potential, J.Am.Ceram.Soc. ,1993,76 :2437-2446.
    [140] J. Fleig, S. Rodewald, .J. Maier, Microcontact impedance measurements of individual highly resistive grain boundaries: General aspects and application to acceptor-doped SrTiO3, J. Appl. Phys. ,2000,87: 2372.
    [141] J.A. S. Ikeda, Y.M. Chiang, A. J. Garratt-Reed, J.B. V. Sande, Space Charge Segregation at Grain Boundaries in Titanium Dioxide: II, Model Experiments, J.Am.Ceram.Soc. ,1993,76: 2447-2459.
    [142] Bendeliny, N. A.; Popova, S. V.; Vereschagin, L. F.;Geokhimiya ,1966, 1966: 499.
    [143] Dachille, F.; Simons, P. Y. Roy, , Pressure-temperature studies of anatase, brookite, rutile and TiO2-II., R. Am. Mineral.,1968, 53: 1929.
    [144] Liu, L. G.; Mernagh, T. P. Eur. J. Mineral., 1992, 4: 45.
    [145]Tang, J and Endo, S., P–T Boundary ofα-PbO2 Type and Baddeleyite Type High-Pressure Phases of Titanium Dioxide, J. Am. Chem. Soc., 1993, 76: 796-798.
    [146] J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Applicability of the Brick Layer Model to Describe the Grain Boundary Properties of Strontium Titanate Ceramics, J. Eur. Ceram. Soc., 2002,10[20] :1603-1609.
    [147] Macdonald, J.R.; Schiinman, J.;.Lehnen, A.P, Three dimensional perspective plotting and fitting of immittance data, solid state ionics, 1981,5: 137-140.
    [148] MacDonald,J.R.,Impedance Spectroscopy: Emphasizing Solid Materials and Systems1987 chap 4 p 40.
    [149] Fleig, J., The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data,Solid State Ionics 2002,150: 181-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700