硝基富勒烯衍生物的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要包括三部分:富勒烯原材料制备研究,新型硝基富勒烯吡咯烷衍生物的理论设计与合成研究,富勒烯及其衍生物在高能炸药和硝胺改性双基推进剂(RDX-CMDB)中的应用研究。
     以石墨为原料,采用自制电弧炉制备富勒烯烟炱,研究并获得了电弧法制备富勒烯的最佳工艺条件:氦气压力0.05 MPa,直流电流强度100A,进棒速度6 rad/min,此时富勒烯产率达9.0%;探讨并获得了采用柱色谱法分离C_(60)的适宜工艺条件:以质量比2:1:1的活性炭、三氧化二铝和硅胶混合物为固定相,甲苯为流动相分离,C_(60)提取率达60%,并探讨了其制备机理。
     以TNT、硝基苯甲醛、C_(60)、氨基酸以及硝基卤苯等为主要原料,根据Prato反应原理设计、采用间接法合成并分离得到了三类九种新型稳定的硝基富勒烯衍生物,对其中六种的详细工艺条件进行了研究,获得了产物合成的最佳工艺条件,①产物1:C_(60),2-硝基苯甲醛和N-甲基甘氨酸的物质的量比为1:3:6、温度为55℃、反应时间为12h、溶剂甲苯体积为40ml,产率53.5%;②产物2:C_(60),3-硝基苯甲醛和N-甲基甘氨酸的物质的量比为1:1:2、温度为100℃、反应时间为16 h、产率94.8%;③产物3:C_(60),2,4-二硝基苯甲醛和N-甲基甘氨酸的物质的量比为1:2:6、温度为95℃、反应时间为40 h,产率65.8%;④产物5:C_(60),2-硝基苯甲醛和甘氨酸的物质的量比为1:4:6、温度为80℃、反应时间为48 h、溶剂甲苯体积为70 ml,产率81.2%;⑤产物6:C_(60),3-硝基苯甲醛和甘氨酸的物质的量比为1:4:6、温度为100℃、溶剂甲苯体积为80 ml、反应时间为24 h,产率82.1%;⑥产物7:C_(60),4-硝基苯甲醛和甘氨酸的物质的量比为1:2:4、温度为90℃、溶剂甲苯体积为80 ml、反应时间为48 h,产率79.6%;同时,针对微波固相法和油浴加热固相法合成产物8时的立体选择性不同,提出了可能的反应机理,并从理论上进行了解释。
     利用UV-Vis、IR、~1H NMR、~(13)C NMR以及MS等结构表征手段对产物的结构进行了确认,证明所合成的九种产物结构与所设计分子相符,为目标化合物。
     利用差热分析仪和DSC-TG综合热分析仪对C_(60)及其硝基衍生物的热稳定性进行了研究,结果表明,环境气氛对C_(60)热稳定性影响很大,C_(60)在空气中423.5℃开始分解,放热峰值温度为668.5℃,在氦气中很稳定,仅表现为升华,C_(60)的晶型对其热稳定性也有一定的影响;合成得到的九种硝基富勒烯衍生物都具有较好的热稳定性,分解峰值温度均高于350℃;产物4的5秒爆发点测试结果为253℃。富勒烯[60]硝基衍生物种类、硝基数目、硝基位置对其热稳定性均有影响,同类衍生物,硝基数目越多,热稳定性越差;硝基数量相同时,苯环上硝基不同位置热稳定性顺序为:对位>邻位>间位。
     首次实验探讨了四种硝基富勒烯衍生物作为HMX的钝感剂的可行性,结果表明,富勒烯的结晶方式对HMX的钝感作用有很大影响,通过CS_2/石油醚快速结晶得到的C_(60)在同等实验条件下对HMX撞击感度降感作用可与石墨相当,摩擦感度也降低到70%;产物2对HMX的钝感作用与石墨相当,产物4对HMX有明显增感作用,促进HMX从燃烧转爆轰;同时,采用DFT/BLYB方法从理论上计算了产物4的气相标准摩尔生成焓、标准摩尔燃烧焓、爆热、爆压和爆速,并通过理论计算探讨了其热分解机理,表明产物4在分解时能释放出较大的能量,具备了新型含能材料的特征。
     首次将硝基富勒烯衍生物2引入固体推进剂配方中,进行了实验室模拟研究,运用火焰温度分布实验,研究推进剂燃烧表面温度和催化剂的相关性;通过燃速测试,得出推进剂燃速随压强变化等关系。实验结果表明,相对于单组分催化剂Φ-Pb,CB或2-FS添加剂都能明显增加RDX-CMDB推进剂的燃速,2-FS的效果显著优于CB;相对于双组元催化剂Φ-Pb/β-Cu,CB、产物2、CF和FS添加剂均能使RDX-CMDB推进剂的燃速明显增加,产物2、CF和2-FS的催化效果明显高于CB;在Φ-Pb/β-Cu/C三组元催化体系中,CB、产物2、CF和FS添加剂的催化效果是FS>产物2>CF>CB。产物2与邻苯二甲酸铅(Φ-Pb)具有较好的协同催化作用,能够加剧双基体系凝聚相的分解过程,催化分解产物之间反应,使推进剂的表面温度有所增加,提高推进剂的燃速,降低压强指数,燃烧平台范围增宽且向高压方向移动。
This paper includes three parts:preparation of fullerene,the theoretical design and synthesis of novel pyrrolidine nitro-derivatives,the investigation of the application of fullerene and its derivatives in high energetic explosives and nitramine modified double base propellant(RDX-CMDB).
     The fullerence soot is preparated with graphite by arc discharge method.The yield of fullerene is 9.0%under the optimum conditions:0.05MPa Helium pressure,100A direct current intensity,6 rad/min advancing velocity of graphite rod.
     The optimum conditions for the column chromatography separation condition of fullerence are:activated carbon,alumina and silica gel mixed in mass ratio of 2:1:1 as stationary phases,toluene as a mobile phase.Under the optimum conditions,the C_(60) extraction rate of 60%is given and the mechanism of preparation is also discussed.
     The nine nitro stable fullerene derivatives have been designed,prepared and separated in accordance with the principle of Prato Reaction using TNT,fullerene,amino acids and nitrobenzaldehyde as raw materials.The reaction conditions affecting the yields of the six products of those are investigated in full detail,and the optimum synthetic technology conditions of the products are:①product 1:the molar ratio of C_(60),2-nitrobenzaldehyde and N-methyl-glycine 1:3:6,the temperature 55℃,the reaction time 12h,the volume of toluene 40ml,with the yield of 53.5%;②product 2:the molar ratio of C_(60),3-nitrobenzaldehyde and N-methyl-glycine 1:1:2,the temperature 100℃,the reaction time 16 h,with the yield of 94.8%;③product 3:the molar ratio of C_(60),2,4-2-nitrobenzaldehyde and N-methyl-glycine 1:2:6,the temperature 95℃,the reaction time 40 h,with the yield of 65.8%;④product 5: the molar ratio of C_(60),2-nitrobenzaldehyde and glycine 1:4:6,the temperature 80℃,the reaction time 48 h,the volume of toluene 70ml,with the yield of 81.2%;⑤product 6:the molar ratio of C_(60),3-nitrobenzaldehyde and glycine 1:4:6,the temperature 100℃,the volume of toluene 80 ml,the reaction time 24 h,with the yield of 82.1%;⑥product 7:the molar ratio of C_(60),4-nitrobenzaldehyde and glycine 1:2:4,the temperature 90℃,volume of toluene 80 ml,the reaction time 48 h,with the yield of 79.6%.For the different stereoselectiveity of the product 8 synthesized by microwave-assisted solid-phase reaction and oil bath heating solid-phase reaction,a possible reaction mechanism is put forward and explained in theory.
     The structures of the products are characterized by UV-vis,FT-IR,~(13)C NMR,~1H NMR and MS.It proves the molecular structure of the products are the aim compounds.
     The thermal stability of C_(60) and its nitro-fullerene derivatives are studied by DTA and DSC-TG.The results show that the atmosphere has a big influence on the thermal stability of C_(60).C_(60) begins to decompose at 423.5℃in the air,the deomposed peak temperature is 668.5℃,but very stable in the helium atmosphere,only sublimate,the crystal shape of C_(60) has a certain influence to its thermal stability.The synthesized nine kinds of nitro-fullerene derivatives all have good thermal stability and their decomposed peak temperatures all exceed 350℃.The thermal explosion temperature for 5 seconds delay of product 4 is 253℃.The category,number and position of nitryl group in nitro-fullerene derivatives all have influence on their thermal stability.To the analogous derivatives,the bigger the number of nitro group is,the worse thermal stability is.The sequence on the thermal stability of nitro group position is:para site>ortho site>meta site when the number of nitro group is equal.
     The insensitive action of the four products on HMX is studied preliminarily.The results show that the crystal forms of fullerene have some effect to the desensitization of HMX.C_(60) obtained through the rapid crystallization of CS_2/petroleum has the same effect on the impact sensitivity of HMX as well as Graphite,friction sensitivity is also reduced to 70%.Insensitive action of the product 2 on HMX is equivalent to that of graphite,the product 4 has a sensitization to HMX,promoting change of HMX from combustion to detonation.At the same time,the gas standard molar enthalpy of formation,standard molar enthalpy of combustion,explosion heat,detonation pressure and detonation velocity are calculated theoretically using DFT/BLYB method.The theoretical analysis has carried on to reaction mechanism of thermal decomposition of the product 4 which indicate product 4 will release larger energy in the decomposition and has the properties of new type of energetic material.
     The nitro fullerene derivative 2 are introduced into solid propellant firstly in simulation test,the relevance of the temperature of propellant burning surface and the catalyst is studied by flame temperature distribution experiment,and the relations of propellant burning rate with the pressure changing are obtained.The experimental result indicate that,compared toΦ-Pb for the single-component catalyst,CB and 2-FS additives could increase the burning rate of RDX-CMDB propellant obviously,and 2-FS is significantly superior to the effect of CB;compared toΦ-Pb/β-Cu for the bicomponent catalyst,CB,product 2,CF and 2-FS additives could increase the burning rate of RDX-CMDB propellant obviously,and product 2,CF and 2-FS are significantly superior to the effect of CB;for tripropellant catalyst system,the catalytic effect of FS,product 2,CF and CB increase in succession. nitro-fullerenes and p-phthalic acid lead(Φ-Pb) had better coordination catalysis,which can intensify the decomposition of condensed phase of double-base system,catalyze the reaction between the decomposition products,increase the surface temperature of catalysis,increase the propellant burning rate,reduce the pressure exponent,widen the scope of the burning platform and make it move in the direction of high pressure.
引文
[1] Kroto H W, Heath J R, O'Brien S C, et al. C_(60): Buckminsterfullerene[J]. Nature, 1985, 318: 162-163.
    [2] Kratschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Solid C60: A New Form of Carbon[J]. Nature, 1990, 347: 354-358.
    [3] Shigematsu K, Abe K, Mitani M, et al. Catalytic hydrogenation of fullerene C_(60)[J]. Chem Express, 1992, 7: 37-40.
    [4] Kniaz K, Fischer J E, Selig H, et al. Fluorinated fullerenes: synthesis, structure, and properties[J]. J. Am. Chem. Soc, 1993, 115(14): 6060-6064.
    [5] Olah G A, Bucsi I, Lambet C, et al. Chlorination and bromination of fullerenes: Nucleophilic methoxylation of polychlorofullerenes and their aluminum trichloride catalyzed Friedel-Crafts reaction with aromatics to polyarylfullerenes[J]. J. Am. Chem. Soc, 1991, 113(24): 9385-9387.
    [6] Tebbe F N, Becker J Y, Chasek B, et al. Multiple, reversible chlorination of C_(60)[J]. J. Am. Chem. Soc, 1991, 113(26): 9900-9901.
    [7] Avent A G, Birkett P R, Darwish A D, et al. Spontaneous oxidation of C_(60)Ph_5X (X = H, Cl) to a benzo[b]furanyl[60]fullerene[J]. Chem. Commun., 1997, 16: 1579-1580.
    [8] Kitagaw T, Tanaka T, Takata Y, et al. Regiospecific Coordination of tert-Butylfulleride Ion and 1,4-Dicyclopropyltropylium Ion: Synthesis of a Dialkyldihydrofullerene Having a Heterolytically Dissociative Carbon-Carbon sigma. Bond[J]. J. Org. Chem., 1995, 60(6): 1490-1491.
    [9] Kitagawa T, Tanaka T, Takata Y, et al. Ionically Dissociative hydrocarbons Containing the C_(60) SkeIeton[J ]. Tetrahedron, 1997, 53(29): 9965-9976.
    [10] Kitagawa T, Tanaka T, Takata Y, et al. Reversible Carbon-Carbon Bond Heterolysis of a Hydrocarbon Derived from tert-Butylfulleride Ion and Tricyclopropylcyclopropenylium Ion[J]. J. Org. Chem., 1999, 64(1): 2-3.
    
    [11] Keshavarz-K M, Knight B, Srdanov G, et al. Cyanodihydrofullerenes and Dicyanodihy- drofullerene: The First Polar Solid Based on C_(60)[J]. J. Am. Chem. Soc, 1995, 117(45): 11371-11372.
    
    [12] Khairallah G, Peel J B. Cyano adduct-anions of [60]fullerene observed by electrospray mass spectrometry[J]. Chem. Commun., 1997, 3: 253-254.
    [13] Wang G W, Komatsu K, Murata Y, Shiro M. Synthesis and X-ray structure of dumb-bell-shaped C_(120)[J]. Nature, 1997, 387: 583-586.
    [14] Orfanopoulos M, Kambourakis S. Fullerene C_(60) and C_(70) photosensitized oxygenation of olefins[J]. Tetrahedron Lett., 1994, 35(12): 1945-1948.
    [15] Orfanopoulos M, Kambourakis S. Chemical evidence of singlet oxygen production from C_(60) and C_(70) in aqueous and other polar media[J]. Tetrahedron Lett., 1995, 36(3): 435-438.
    [16]Nagashima H,Hosoda K,Abe T,et al.Efficient Photooxygenation of Olefins by a C_(60) Derivative Bearing an Organofluorine Tail[J].Chem.Lett.,1999,28(6):469-470.
    [17]Krusic P J,Wasserman E,Parkinson B A,et al.Electron spin resonance study of the radical reactivity of C_(60)[J].J.Am.Chem.Soc.,1991,113(16):6274-6275.
    [18]Krusic P J,Wasserman E,Keizer P N,et al.Radical Reactions of C_(60)[J].Science,1991,254:1183-1185.
    [19]Morton J R,Preston K F,Krusic P J,et al.ESR studies of the reaction of alkyl radicals with fullerene (C_(60))[J].J.Phys.Chem.,1992,96(9):3576-3578.
    [20]Sun Y P,Lawson G E,Bunker C E,et al.Preparation and Characterization of Fullerene-Styrene Copolymers[J].Macromolecules,1996,29(26):8441-8448.
    [21]洪瀚,刘向前,杜福胜等.含C_(60)聚乙基乙烯基醚的合成及其荧光行为[J].高分子学报,1999,(1):123-125.
    [22]Heath J R,O'Brien S C,Zhang Q,et al.Lanthanum complexes of spheroidal carbon shells[J].J.Am.Chem.Soc.,1985,107(25):7779-7780.
    [23]Chai Y,Guo T,Jin C M,et al.Fullerenes with metals inside,J.Phys.Chem.,1991,95(20):7564-7568
    [24]Weaver J H,Chai Y,Kroll G H,et al.XPS probes of carbon-caged metals[J].Chem.Phys.Lett.,1992,190(5):460-464.
    [25]Guo T,Diener M D,Chai Y,et al.Uranium Stabilization of C_(28):A Tetravalent Fullerene[J].Science,1992,257:1661-1664.
    [26]Wang L S,Alford J M,Chai Y,et al.The electronic structure of Ca@C_(60)[J].Chem.Phys.Lett.,1993,207(4-6):354-359.
    [27]Murata Y,Murata M,Komatsu K.100%Encapsulation of a Hydrogen Molecule into an Open-Cage Fullerene Derivative and Gas-Phase Generation of H_2@C_(60)[J].J.Am.Chem.Soc.,2003,125(24):7152-7153.
    [28]Komatsu K,Murata M,Murata Y.Encapsulation of Molecular Hydrogen in Fullerene C_(60) by Organic Synthesis[J].Science,2005,307:238-240.
    [29]Yuan D Q,Koga K,Kourogi Y,et al.Synthesis of fullerene-cyclodextrin conjugates[J].Tetrahedron.Lett.,2001,42(38):6727-6729.
    [30]Zhu Y H,Stefan B,Ching C B,et al.An effective system to synthesize methano-fullerenes:substrate-ionic liquid-ultrasonic irradiation[J].Tetrahedron Lett.,2003,44(29):5473-5476.
    [31]Nair V,Sethumadhavan D,Smitha M N,et al.Reaction of Allenamides with[60]Fullerene:Formation of Novel Cyclobutane Annulated Fuilerene Derivatives[J].Synthesis,2002,12:1655-1657.
    [32]Guldi D M,Zilbermann I,Anderson G A,et al.Langmuir-Biodgett and layer-by-layer films of photoactive fullerene-porphyrin dyads[J].J.Mater.Chem.,2004,14(3):303-309.
    [33] Yashiro A, Nishida Y, Kobayashi K, et al. P-Hydroxy Nitrile and P-Hydroxy Oxime Derivatives of [60]Fullerene by Nucleophilic Ring Cleavage of Fulleroisoxazoline and -isoxazolidine in the Presence of Methanol[J]. Synlett, 2000, 3: 361-362.
    [34] Guldi D M, Gonzalez S, Martin N, et al. Efficient Charge Separation in C_(60)-Based Dyads: Triazolino[4',5':1,2][60]fullerenes[J]. J. Org. Chem., 2000, 65(7): 1978-1983.
    [35] Martlin N, Angeles M G, Sanchez L, et al. The First Hetero-Diels-Alder Reaction of C_(60) with 1-Azadienes. Synthesis of Tetrahydropyrido[2',3':1,2][60]fullerene Derivatives[J]. J. Org. Chem., 1998, 63(22): 8074-8076.
    [36] Krautler B, Muller T, Duarte-Ruiz A. Efficient Preparation of Monoadducts of [60]Fullerene and Anthracenes by Solution Chemistry and Their Thermolytic Decomposition in the Solid State[J]. Chem. Eur.J. 2001, 7(15): 3223-3235.
    [37] Chronakis N, Orfanopoulos M. Concerted Diels-Alder reaction between anthracene and C_(60)[J]. Tetrahedron Lett., 2001,42:1201-1204.
    [38] Cheng F, Yang X, Zhu H, et al. Synthesis and optical properties of tetraethyl methano[60]fullerenediphosphonate[J]. Tetrahedron Lett., 2000, 41(20): 3947-3950.
    [39] Richardson C F, Schuster D I, Wilson S R. Synthesis and Characterization of Water-Soluble Amino Fullerene Derivatives[J]. Org. Lett., 2000, 2 (8): 1011-1014.
    [40] Barbara F, Pierluca G, Roberta S, et al. Synthesis of new ferrocenyl derivatives and their use in the first cyclopropanation of fullerene C_(60) with ferrocenes[J]. Journal of Organometallic Chemistry, 2003, 679(2): 202-207.
    [41] Zhu Y H. Application of ultrasound technique in the synthesis of methanofullerene derivatives[J]. Journal of Physics and Chemistry of Solids, 2004,65(2-3): 349-353.
    [42] Montserrat C, Miquel D, Jordi M, et al. Mechanism of the Addition Reaction of Alkyl Azides to [60]Fullerene and the Subsequent N_2 Extrusion to Form Monoimino- [60]fullerenes[J]. J. Org. Chem., 2001, 66(2): 433-442.
    [43] Baran P S, Monaco R R, Khan A U, et al. Synthesis and Cation-Mediated Electronic Interactions of Two Novel Classes of Porphyrin-Fullerene Hybrids[J]. J. Am. Chem. Soc, 1997, 119(35): 8363-8364.
    [44] Mariappan M. Predicting Efficient C_(60) Epoxidation and Viable Multiple Oxide Formation by Theoretical Study[J]. J. Org. Chem., 2000, 65(4): 1093-1098.
    [45] Heymann D, Bachilo S M, Weisman R B, et al. C_(60)O_3, a Fullerene Ozonide: Synthesis and Dissociation to C_(60)O and O_2[J]. J. Am. Chem. Soc, 2000, 122(46): 11473-11479.
    [46] Diederich F, Isaacs L, Philp D. Syntheses, structures, and properties of methanofullerenes[J]. Chem. Soc Rev., 1994,23:243-255.
    [47] Osterodt J, Vogtle F. C_(61)Br_2: a new synthesis of dibromomethanofullerene and mass spectrometric evidence of the carbon allotropes C_(121) and C_(122)[J]. Chem. Commun., 1996,4: 547-548.
    [48] Du C M, Xu B, Li Y L, et al. Self-Assembly of [60]Fullerene Substituted 2 2'-bipyridines on the surface of Au(111) and Au Nanoparticles[J]. New J. Chem., 2001, 25: 1191-1194.
    [49] Romanova 1 P, Yusupova G G, Fattakhova S G, et al. The synthesis of N-isocyanurato- substituted aziridino[1,2][60]fullerenes[J]. Russ. Chem. Bull., Int. Ed., 2001, 50: 445-452.
    [50] Murray R W, Iyanar K. Oxidation of [60]fullerene by the methyltrioxorhe- nium-hydrogen peroxide system[J]. Tetrahedron Lett., 1997, 38(3): 335-338.
    [51] Choi C H, Lee H I. Theoretical study of C_(20) fullerene dimerization: a facile [2+2] cycloaddition[J]. Chem. Phys. Lett., 2002, 359(5-6): 446-452.
    [52] Knol J, Hummelen J C. Photodimerization of a m-Phenylenebis(arylmethanofullerene): The First Rigorous Proof for Photochemical Inter-Fullerene [2+2] Cycloaddition[J]. J. Am. Chem. Soc, 2000, 122(13): 3226-3227.
    [53] Zhang X, Fan A, Foote C S. [2+2] Cycloaddition of Fullerenes with Electron-Rich Alkenes and Alkynes[J]. J. Org. Chem., 1996, 61(16): 5456-5461.
    [54] Alonso A M, Prato M. Synthesis of a soluble fullerene-rotaxane incorporating a furamide template[J]. Tetrahedon, 2006,62(9): 2003-2007.
    [55] Maria D L T, Andrea G P R, Augusto C T, et al. [60]Fullerene-flavonoid dyads[J]. Tetrahedron, 2004, 60(16): 3581-3592
    [56] Sofou P, Elemes Y, Stavrakoudis A, et al. Synthesis of a proline-rich [60]fullerene peptide with potential biological activity[J]. Tetrahedron, 2004, 60(12): 2823-2828.
    [57] Zhou Z G, Magriotis P A. A New Method for the Functionalization of [60] Fullerene: An Unusual 1,3-Dipolar Cycloaddition Pathway Leading to a C_(60) Housane Derivative[J]. Organic. Lett., 2005, 7(26): 5849-5851.
    [58] Maggini M, Scorrano G, Prato M. Addition of azomethine ylides to C_(60): synthesis, characterization, and functionalization of fullerene pyrrolidines[J]. J. Am. Chem. Soc, 1993,115(21): 9798-9799
    [59] Maria D L T, Marcorin G L, Pirri G, et al. Synthesis of novel [60]fullerene-flavonoid dyads[J]. Tetrahedron Lett., 2002, 43(9): 1689-1691.
    [60] Ishida H, Itoh K, Ohno M. 1,3-Dipolar cycloaddition reaction of [60]fullerene with thiocarbonyl ylide and synthetic application of the cycloadduct[J]. Tetrahedron, 2001, 57(9): 1737-1747.
    [61] Nair V, Sethumadhavan D, Sheela K C, et al. Cycloaddition reactions of carbonyl ylides to
    
    [60]fullerene: Synthesis of novel C_(60) derivatives[J]. Tetrahedron Lett., 1999,40(27): 5087-5090.
    [62] Irngartinger H, Weber A, Escher T. Cycloaddition of Functionalized Nitrile Oxides and Fulminic Acid to [60]Fullerene[J]. Liebigs Ann., 1996, 11: 1845-1850.
    [63] Kotha S, Ghosh A K. A Diels-Alder approach for the synthesis of highly functionalized benzo-annulated indane-based α-amino acid derivatives via a sultine intermediate[J]. Tetrahedron lett., 2004, 45(14): 2931-2934.
    [64] Manoharan M, Proft F D, Geerlings P. Aromaticity Interplay between Quinodimethanes and C_(60) in Diels-Alder Reactions: Insights from a Theoretical Study[J]. J. Org. Chem., 2000, 65(19): 6132-6137
    [65] Kotha S, Ghosh A K. Cycloaddition approach to benzo-annulated indane-based a-amino acid derivatives[J]. Tetrahedron, 2004, 60(48): 10833-10841.
    [66] Wilson S R, Lu Q. Electrospray MS studies of C_(60) Diels-Alder chemistry: Characterization of a C_(60) Adduct with the Danishefsky Diene[J]. Tetrahedron Lett., 1993, 34(50): 8043-8046.
    [67] Ros T D, Prato M, Novello F, et al. Easy Access to Water-Soluble Fullerene Derivatives via 1,3-Dipolar Cycloadditions of Azomethine Ylides to C_(60)[J]. J. Org. Chem., 1996, 61(25): 9070-9072.
    [68] Arce M J, Viado A L, An Y Z, et al. Triple Scission of a Six-Membered Ring on the Surface of C_(60) via Consecutive Pericyclic Reactions and Oxidative Cobalt Insertion[J]. J. Am. Chem. Soc, 1996, 118(35): 3775-3776.
    [69] Mack J, Miller G P. Synthesis of the First Tetracene-[60]fullerene Dyad[J]. Fullerene. Sci. Technol, 1997,5:607-610.
    [70] Komatsu, Murata Y, Kato N, Fujiwara K, et al. Solid-State [4 + 2] Cycloaddition of Fullerene C_(60) with Condensed Aromatics Using a High-Speed Vibration Milling Technique[J]. J. Org. Chem., 1999, 64(10): 3483-3488.
    [71] Takaguchi Y, Sako Y, Yanagimoto Y, et al. Facile and reversible synthesis of an acidic water-soluble poly(amidoamine) fullerodendrimer[J]. Tetrahedron Lett., 2003, 44(31): 5777-5780
    [72] Peters G, Jansen M. A New Fullerene Synthesis[J]. Angew. Chem. Int. Ed. Engl. 1992, 31(2):223-224.
    [73] Cota-Sanchez G, Soucy G, Huczko A, et al. Effect of iron catalyst on the synthesis of fullerenes and carbon nanotubes in induction plasma[J]. J. Phys. Chem. B, 2004, 108(50): 19210-19217.
    [74] Churilov G N, Weisman R B, Bulina N V. The influence of Ir and Pt addition on the synthesis of fullerenes at atmospheric pressure[J]. Fullerenes nanotubes and carbon nanostructures, 2003, 11(4):371-382.
    [75] Wang C, Imahori T, Tanaka Y, et al. Synthesis of fullerenes from carbon powder by using high power induction thermal plasma[J]. Thin Solid Films, 2001, 390:31-36.
    [76] Yoshie K, Kasuya S, Eguchi K, Yoshida T. A Novel method for C_(60) synthesis: A thermal plasma at atmospheric pressure[J]. Appl. Phys. Lett, 1992.61(23):2782-2783.
    [77] Grieco W J, Howard J B, Rainey L C, et al. Fullerenic carbon in combustion-generated soot[J].Carbon, 2000, 38:597-614.
    [78] Pope C J, Howard J B. Thermodynamic limitations for fullerene formation in flames[J]. Tetrahedron, 1996,52(14):5161-5178.
    [79]Goel A,Hebgen P,Howard J B,et al.Combustion synthesis of fullerenes and fullerenic nanostructures[J].Carbon,2002,40:177-182.
    [80]顾镇南,张泽莹.固体碳的一种新形态—富勒烯[J].大学化学,1992,7(2):1-3.
    [81]Parker D H,Wurz P,Chatterjee K,et al.High-yield synthesis,separation and mass spectrometric characterization of fullerenes C_(60) to C_(266)[J].J.Am.Chem.Soc.,1991,31:223-326.
    [82]郑经国,王建民,董三福,等.新材料C_(60)的制备研究[J].金属材料研究,1999,250):107-112.
    [83]刘咏梅,盛蓉生,朱绞,等.高富勒烯的提取新方法[J].化学通报,1997,1:41-44.
    [84]Ajie H,Alvarez M M,Anz S J,et al.Characterization of the soluble all-carbon molecules C_(60) and C_(70)[J].J.Phys.Chem.,1990,94:8630-8632.
    [85]孙淑清,刘志强,邢俊鹏,等.高温高压法提取金属富勒烯Ln_m@C_(2n)(n=Y,Gd,Tb)[J].高等学校化学学报,2002,23(2):300-302.
    [86]蒙缔亚,刘咏梅,盛蓉生,等.高富勒烯的富集方法研究[J].化学通报,1999,4:42-44.
    [87]Coustel N,Benrier P,Maznar R,et al.Purification of C_(60) by a simple crystallization Procedure[J].J.Chem.Commun.,1992,19:1402-1403.
    [88]Baum R M.Fullerenes broden scientists view of molecular structure[J].Chem.Eng.News,1993,1:29-34.
    [89]Jinno K,Uemura T,Nagashima H,et al.Separation and identification of high molecular weight fullerenes by high-performance liquid chromatography[J].Anal.Chem.,1993,65:2650-2654.
    [90]Jinno K,Uemura T,Nagashima H,et al.Separation and identification of fullerenes by liquid chromatography[J].Chromagraphia.,1993,35:38-44.
    [91]Anacleto J F,Quiiliam M A.A similar negative APCI/SIM experiment has confirmed a substantial increase in the ion signal of m/z 1002(for Sc_2@C_(76)) after SPE[J].Anal.Chem.,1993,65:2236-2242.
    [92]Jinno K,Nakagawa K,Saito Y,et al.Nano-scale design of novel stationary phases to enhance selectivity for molecular shape and size in liquid chromatography[J].J.Chromotogr.,1995,691:91-99.
    [93]Gasper M P,Armstrong D W.A comparative study of buckminsterfullerene and higher fullerene separations by HPLC[J].J.Liq.Chromatogr.,1995,18:1047-1076.
    [94]Ohta H,Saito Y,Jinno K,et al.Effect of temperature on the mechanism of retention of fullerenes in liquid chromatography using various alkyl bonded stationary phases[J].Chromatogr.1998,19:304-305.
    [95]Hawkins J M,Lewis T A,Loren S D,et al.Organic chemistry of C_(60)(buckminster fullerene):chromatography and osmylation[J].J.Org.Chem.,1990,55:6250-6252.
    [96]Cox D M,Behal S,Disko M,et al.Characterization of C_(60) and C_(70) clusters[J].J.Am.Chem.Soc., 1991,113(8):2940-2944.
    [97]李志良,曾鸽鸣,吴筱屏,等.碳笼化合物的高效液相色谱研究[J].分析科学学报,1996,12:220-222.
    [98]Pirkle W H,Welch C J.An unusual effect of temperature on the chromatographic behavior of buckminsterfullerene[J].J.Org.Chem.,1991,56:6973-6974.
    [99]Diack M,Compton R N,Guiochon G.Evaluation of stationary phases for the separation of buckminster fullerenes by high-performance liquid chromatography[J].J.Chromatogr.,1993,639:129-140
    [100]Gross B,Schurig V,Lamparth I,et al.Enantiomeric separation of[60]fullerene derivatives with an inherent chiral addition pattern[J].Chem.Commun.,1997,1117-1118.
    [101]Gross B,Schurig V,Lamparth 1,et al.Enantiomer separation of[60]fullerene derivatives by micro-column high-performance liquid chromatography using (R)-(-)-2-(2,4,5,7-tetranitro-9-fluorenylideneaminooxy) propionic acid as chiral stationary phase[J].J.Chromatogr.,1997,791:65-69.
    [102]Welch C J,Pirkle W H.Progress in the design of selectors for buckminsterfullerene[J].J.Chromatogr.,1992,609:89-93.
    [103]Herren D,Thilgen C,Calzaferri G,et al.Preparative separation of higher fullerenes by high-performance liquid chromatography on a tetrachlorophthalimidopropyl-modified silica column [J].J.Chromatogr.,1993,644:188-192.
    [104]Kimata K,Hosoya K,Araki T,et al.[2-(1-Pyrenyl) ethyl]silyl silica packing material for liquid chromatographic separation of fullerenes[J].J.Org.Chem.,1993,58:282-283.
    [105]Jinno K,Okumura C,HaradaM,et al.Shape Selectivity of Polycyclic Aromatic Hydrocarbons and Fullerenes with Tri-Tert-Butylphenoxy Bonded Silica Phase in Microcolumn Liquid Chromatography[J].J.Liq.Chromatogr.Relat.Technol.,1996,19:2883-2899.
    [106]Kibbey C E,Savina M R,Parseghian B K,et al.Selective separation of C_(60) and C_(70) fullerenes on tetraphenylporphyrin-silica gel stationary phases[J].Anal.Chem.,1993,65:3717-3719.
    [107]Xiao J,Savina M R,Martin G B.Efficient HPLC purification of endohedral metallofullerenes on a porphyrin-silica stationary phase[J].J.Am.Chem.Soc.,1994,116:9341-9342.
    [108]Countant D E,Clarke S,Francis A H,et al.Selective separation of fullerenes on hydroxyphenyl-triphenylporphyrin-silica stationary phases[J].J.Chromatogr.,1998,824:147-157.
    [109]Kele M,Compton R N,Guioehon G.Optimization of the high-performance liquid chromatographic separation of fullerenes using 1-methylnaphthalene as the mobile phase on a tetraphenylporphyrin-silica stationary phase[J].J.Chromatogr.,1997,786:31-45.
    [110]Cabrera K,Wieland G,Schafer M.High-performance liquid chromatographic separation of fullerenes (C_(60) and C_(70)) using chemically bonded γ-cyclodextrin as stationary phase[J].J.Chromatogr.,1993,644:396-399.
    [111]Copper C L,Whitaker K W,Sepaniak M J.Separation behavior of common fullerenes in cyclodextrin-HPLC based on computationally-derived interaction energies[J].J.Liq.Chromatogr.,1994,17:4311-4325.
    [112]Hare J P,Kroto H W,A new separation method of C_(60)/C_(70)-Column Chromatography[J].Chem.Phys.Lett.,1991,177:394-397.
    [113]Scrivens W A,Bedwohrt P V.Purification of gram quantifies of C_(60):A new inexpensive and facile method[J].J.Am.Chem.Soc.,1992,144:7917-7919.
    [114]陈或,孔胜前,黄祖恩,等.C_(60)/C_(70)制置备分离与提纯技术[J].化学世界,1995,1:3-6.
    [115]Brabec C J,Padinger F,Hummelen J C et al.Realization of large area flexible fullerene conjugated polymer photocells:A route to plastic solar cells[J].Synth.Met.,1999,102(1-3):861-864.
    [116]Allemand P M,Khemano K C,Koch A et al.Organic Molecular Soft Ferromagnetism in a Fullerene C_(60)[J].Science,1991,253:301-302.
    [117]TuttL W,Kost A.Optical limiting performance of C_(60) and C_(70) solutions[J].Nature,1992,356:225-226.
    [118]Jiang L M,Sun W L,Weng JL,Shen Z Q.A novel bithiazole oligomer containing C_(60) and its ferro-complexes:syntheses and magnetic properties[J].Polymer,2002,43:1563-1566.
    [119]Nagashima H,Nakaoka A,Saito Y,et al.C_(60)Pd_n:the first organometallic polymer of buckminsterfullerene[J].J.Chem.Soc.Chem.Commun.,1992,4:377-379.
    [120]Nagashima H,Kato Y,Yamagachi H,et al.Synthesis and Reactions of Organoplatinum Compounds of C_(60),C_(60)Pt_n[J].Chem.Lett.,1994,23(7):1207-1210.
    [121]Chiang L Y,Wang L Y.Fullerenol derived urethane-connected polyether dendritic polymers[J].J.Chem.Soc.Chem.Commun.,1994,23:2675-2676.
    [122]Barbour L J,Willian G.Supramolecular intercalation of C_(60) into a calixarene bilayer-a well-ordered solid-state structure dominated by van der Waals contacts[J].Chem.Commun.,1997,15:1439-1440.
    [123]Margadonna S,Prassides K,Neumann D A,et al.Rotational dynamics of C_(60) in(ND_3)K_3C_(60)[J].Phys.Rev.B,1999,59(2):943-947.
    [124]Chen X,Maniwa Y,Kuper C A,et al.Preparation of Rb_3C_(60) Utilizing Room-Temperature Solubilization in Alkylamines[J].Chem.Mater.,1997,9(12):3049-3051.
    [125]Ceulemans A,Chibotard L F,Cimpoesu F.Intramolecular Charge Disproportion-ation and the Band Structure of A_3C_(60) Superconductors[J].Phys.Rev.Lett.,1997,78(19):3725-3728.
    [126]Becker L,Poreda R J,Bada J L.Extraterrestrial Helium Trapped in Fullerenes in the Sudbury Impact Structure[J].Science,1996,272:249-252.
    [127]Yannoni C S,Wendt H R,Siemens R L,et al.Characterization of fullerenes and doped fullerenes[J].Synthetic Metals,1993,59(3):279-295.
    [128]王乃兴,李纪生.苦基氮杂C_(60)衍生物的合成研究[J].含能材料,1996,4(1):6-9.
    [129]张云怀,欧忠文,李兵等.C_(60)硝基-羟基化合物的合成研究[J].重庆大学学报,1998,21(3):127-130.
    [130]王乃兴,李纪生.硝基苯类C_(60)衍生物的合成研究[J].科学通报,1995,40(15):1381-1382.
    [131]李疏芬,高帆,赵凤起等.富勒烯在RDX-CMDB推进剂中的催化机理[J].推进技术,2000,21(3):75-78.
    [132]王其平.电器电弧理论[M].北京:机械工业出版社,1982,1-97.
    [133]周颖,邱介山,杨兆国等.富勒烯C_(60)的制备研究[J].新型炭材料,1999,4(14):18-21.
    [134]K-J equation:Kamlet,M.J.,Jacobs,S.J.Chemistry of Detonations.I.Simple Method for Calculating Detonation Properties of C-H-O-N Explosives[J].J.Chem.Phys,1968,48:23-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700