人乳头瘤病毒衣壳蛋白特异性多肽与细胞受体的结合机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人乳头瘤病毒(HPV)是一类嗜上皮性无囊膜双链DNA病毒,迄今已在人体皮肤及黏膜组织中分离出100多种不同型别。病毒的生命周期以感染细胞为起点,因此研究病毒的感染机制是了解和控制病毒的重要基础,已有的研究表明HPV衣壳蛋白中的碱性氨基酸区域和细胞表面硫酸乙酰肝素蛋白聚糖(HSPG)受体之间存在特异性相互作用。我们设计合成了一系列潜在的结合细胞受体的靶点多肽,利用ITC、NMR、SLS、FL及CD等实验检测了它们与细胞表面受体模拟物肝素之间的相互作用,并对相关作用机制进行了系统研究。主要内容包括:
     (一)、设计合成了HPV-16衣壳蛋白的五个多肽模拟物,检测了它们与肝素之间的识别及相互作用。实验结果表明:多肽结合肝素不仅受多肽本身氨基酸残基种类和数目影响,而且存在明显的序列特异性依赖现象,除最基本的静电作用在内,疏水作用和氢键作用等也都参与了这些多肽与肝素的结合。另外,除了L1蛋白,L2在HPV的感染过程中也参与了结合细胞表面受体,同时证实硫酸乙酰肝素蛋白聚糖确实是细胞结合HPV的主要受体。
     (二)、设计合成了HPV-16和HPV-18L1的C端相对应位置的14肽,比较这两个多肽结合肝素的差别。结果表明,尽管H16Ctb和H18Ctb两个多肽所含的氨基酸种类与个数比较接近,但是因为氨基酸残基排列顺序的不同,导致在与肝素结合时,二者在结合能力与分子机制方面都有很大的差别。
     (三)、分别设计合成了具有不同感染性质的八种型别HPV的L1蛋白C端多肽,同样利用ITC和SLS等方法研究了这些多肽与肝素的结合过程,确认了它们是病毒结合细胞受体的靶点,比较了它们在结合宿主细胞受体方面的差别。
     综上所述,我们利用物理化学实验方法研究了HPV衣壳蛋白特异性多肽与肝素之间的相互作用,定量证实了衣壳蛋白的富含碱性氨基酸区域与细胞表面硫酸乙酰肝素蛋白聚糖在病毒感染细胞中的重要作用,研究了它们之间的作用机制,在此基础上为不同型别的不同感染性质提出一种可能的解释。
Human papillomaviruses (HPVs), a family of non-enveloped double-stranded DNA viruses that infect epithelial cells in the skin and mucosa, have been extensively studied. To date, more than 100 different types have been identified based on DNA sequence relationships. Epidemiologic and biochemical studies have indicated that infection with low-risk HPVs as HPV-6,-11 genarally causes genital warts; while infection with certain high-risk types such as HPV-16,-18,-31,-33,-45, and-58 is an important factor associated with anogenital malignancies, particularly cervical cancer.
     The life cycle of HPV viruses starts with its adsorption and attachment to host cells by binding to receptor molecules on the cell surface, being followed by amplification of the viral genome and production of progeny virus. Therefore, the prerequisite for exploring the viral life cycle should be the investigation on how the viruses adsorb to cells. Because efficiently propagating HPVs is nearly impossible to obtain in vitro, VLPs generated by synthesizing L1 and L2 proteins have been used as mode in exploring interaction between the cell surface and the viral capsid. These studies implicated cell surface heparan sulfate (HS) proteoglycans (HSPGs) as the primary attachment factors for most HPV types and an involvement of electrostatic interactions between the basic amino acid residues of the capsid protein with the negatively charged sulfate groups.
     Firstly, we examined the interaction of five synthetic peptides of HPV-16 capsid protein with heparin, a substitute for cell surface HS, comparing the different sequential peptides of HPV-16 capsid proteins. The positively charged sequences at the C-terminus of the L1 protein and the N- and C-termini of the L2 protein of HPV-16 can efficiently bind to heparin receptors, which were characterized in the present study by quantitative isothermal titration calorimetry experiments primarily, fluorescence spectroscopy, and static right-angle light scattering. The binding constant, K, was at an order-of-magnitude of 107 M-1 for the two peptides at the N-and C-termini of HPV-16 L2 and segment b at the C-terminus of HPV-16 L1; while that for other L1 analogues were of a smaller order, illustrating the heparin binding is a typical sequence-specific and-dependent phenomenon. These results suggest that, in addition to L1, the L2 protein may participate in cell surface attachment during HPV infection and provide a solid physical-chemical foundation for the involvement of proteoglycans during HPV infection. Furthermore, the calorimetry results demonstrated that hydrophobic interactions and hydrogen bonding are involved in peptide binding to heparin in addition to the essential electrostatic interactions. Meanwhile, circular dichroism spectroscopy revealed that binding to heparin does not induce obvious secondary structural changes in the peptides.
     The high-risk types of human papillomaviruses (HPV) HPV-16 and HPV-18 are the predominant types associated with cervical cancer. HPV-16 and HPV-18 account for about 50% and 20%, respectively, of cervical cancers worldwide. While the reason and molecular mechanism of the distinct prevalence and distributions between them remain poorly understood, the binding affinity of cell surface receptor with capsid proteins, especially L1, may be involved. The previous studies also revealed that the C-terminus of the L1 protein can efficiently bind to heparin receptors. We examined heparin binding with two synthetic peptides corresponding to the 14 amino acid C-terminal peptides of HPV-16 and HPV-18 L1 with the goal of comparing the equivalent residues in different HPV types. Using isothermal titration calorimetry (ITC) and static right-angle light scattering (SLS), we determined the binding constant K, reaction enthalpy AH, and other thermodynamic parameters in the interaction. Especially, we assessed the role of specific residues in binding with heparin by comparing the NMR spectra of free and heparin-bounded peptides. We showed that the C-terminal of HPV-18 L1 is probably a potential candidate for the attachment factors owing to its higher binding affinity to heparin as compared to H16Ctb. Several driving forces contribute to the interaction between heparin and L1 peptides, but the H18Ctb peptide undergoes less hydrogen bonding and more hydrophobic interactions in the binding than H16Ctb. Meanwhile, in contrast to the cluster of six basic residues in the structure of H16Ctb, the unconnected basic residues in H18Ctb contributed more to the ionic interactions and lead to aggregations. Furthermore, we propose a new approach of using the C-terminal of HPV L1 as an agent to compare the binding affinity with heparin between HPV-16 and-18, then provide a possible explanation for the distinct prevalences owing to the significance of the virus adsorption and attachment to host cells.
     Among the 100 different types of HPV, sevaral types HPV such as HPV-5, HPV-1, and HPV-4 are not found in genital and about 40 HPV types can infect the genital tract. Genital HPV types have been subdivided into low-risk types, such as HPV-6, HPV-11, HPV-44, and HPV-55, which are found mainly in genital warts, and high-risk types, such as HPV-16, HPV-18, HPV-31, HPV-33, HPV-45, and HPV-58, which are frequently associated with invasive cervical cancer. We examined heparin binding with eight synthetic peptides corresponding to the 14 amino acid C-terminal peptides of non-genital types HPV-5, HPV-1a, HPV-4, low-risk types HPV-11, HPV-44, HPV-55 and high-risk types HPV-16, HPV-18 with the goal of comparing the equivalent residues in different HPV types. Using isothermal titration calorimetry (ITC) and static right-angle light scattering (SLS), we investigated the interactions involved in peptide binding to the HS portion of the cell surface at the molecular or sub-molecular level, compared the binding affinity with heparin between different HPV types, then provided a possible explanation for the distinct prevalences owing to the significance of the virus adsorption and attachment to host cells.
     In summary, we studied the interactions between specific peptides of HPV capsid peptides and heparin using physical-chemical experiments for the first time. Our study quantitatively supplied solid evidences of strong interactions and confirmed the binding mechanism between several basic-sequence-rich L1 and L2 peptides and the negatively charged polyelectrolyte, which show a potential guideline in further research of the binding mechanism in HPV infected cells.
引文
[1]SHOPE R E, HURST E W. Infectious Papillomatosis of Rabbits:With a Note on the Histopathology [J]. J. Exp. Med.,1933,58 (5):607-624.
    [2]SHOPE R E. Immunization of Rabbits to Infectious Papillomatosis [J]. J. Exp. Med.,1937,65(2):219-231.
    [3]ZUR HAUSEN H. Virus and cancer. The concept of the masked causative agent [J]. Immun. Infekt.,1973, 1(1):5-9.
    [4]ZUR HAUSEN H. Human papillomaviruses and their possible role in squamous cell carcinomas [J]. Curr. Top Microbiol. Immunol.,1977,78:1-30.
    [5]ZUR HAUSEN H, MEINHOF W, SCHEIBER W, et al. Attempts to detect virus-secific DNA in human tumors. I. Nucleic acid hybridizations with complementary RNA of human wart virus [J]. Int. J. Cancer,1974,13(5):650-656.
    [6]ZUR HAUSEN H. Condylomata acuminata and human genital cancer [J]. Cancer Res.,1976,36(2 pt 2):794-796.
    [7]DURST M, GISSMANN L, IKENBERG H, et al. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions [J]. Proc. Natl. Acad. Sci. U. S. A.,1983,80(12):3812-3815.
    [8]BOSHART M, GISSMANN L, IKENBERG H, et al. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer [J]. EMBO J.,1984,3(5):1151-1157.
    [9]DE VILLIERS EM, FAUQUET C, BROKER TR, et al. Classification of papillomaviruses [J]. Virology,2004,324(1):17-27.
    [10]CHATURVEDI A K, KATKI H A, HILDESHEIM A, et al. Human Papillomavirus Infection with Multiple Types:Pattern of Coinfection and Risk of Cervical Disease [J]. J. Infect. Dis.,2010,203(7):910-920.
    [11]YOUSUF S, SYED S, MOAZZAM A, et al. Frequency of high risk human papillomavirus types in squamous cell carcinoma of cervix among women [J]. J. Pak. Med. Assoc.,2010,60(3):193-196.
    [12]SIGURDSSON K. Cervical cancer:cytological cervical screening in Iceland and implications of HPV vaccines [J]. Cytopathology,2010,21(4):213-222.
    [13]MAVER PJ, POLJAK M, SEME K, et al. Detection and typing of low-risk human papillomavirus genotypes HPV 6, HPV 11, HPV 42, HPV 43 and HPV 44 by polymerase chain reaction and restriction fragment length polymorphism [J]. J. Virol. Methods,2010,169(1):215-218.
    [14]STANLEY M. Pathology and epidemiology of HPV infection in females [J]. Gynecol. Oncol.,2010,117(2 Suppl):S5-10.
    [15]KING L E, FISK J C, DORNAN E S. et al. Human papillomavirus E1 and E2 mediated DNA replication is not arrested by DNA damage signalling [J]. Virology, 2010,406(1):95-102.
    [16]SUPRYNOWICZ F A, KRAWCZYK E, HEBERT J D, et al. The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification [J]. J. Virol.,2010,84(20):10619-10629.
    [17]BARBARESI S, CORTESE M S, QUINN J, et al. Effects of human papillomavirus type 16 E5 deletion mutants on epithelial morphology:functional characterization of each transmembrane domain [J]. J. Gen. Virol.,2010,91(Pt 2):521-530.
    [18]SOMBERG M, SCHWARTZ S. Multiple ASF/SF2 sites in the human papillomavirus type 16 (HPV-16) E4-coding region promote splicing to the most commonly used 3'-splice site on the HPV-16 genome [J]. J. Virol.,2010, 84(16):8219-8230.
    [19]LACE M J, ANSON J R, THOMAS G S, et al. The E8--E2 gene product of human papillomavirus type 16 represses early transcription and replication but is dispensable for viral plasmid persistence in keratinocytes [J]. J. Virol.,2008, 82(21):10841-10853.
    [20]FINNEN R L, ERICKSON K D, CHEN X S, et al. Interactions between papillomavirus L1 and L2 capsid proteins [J]. J. Virol.,2003,77(8):4818-4826.
    [21]JAGU S, KWAK K, GARCEA R L, et al. Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection [J]. Vaccine,2010,28(28):4478-4486.
    [22]RUBIO I, SEITZ H, CANALI E, et al. The N-terminal region of the human papillomavirus L2 protein contains overlapping binding sites for neutralizing, cross-neutralizing and non-neutralizing antibodies [J]. Virology,2010, 409(2):348-359.
    [23]CALDEIRA JDO C, MEDFORD A, KINES R C, et al. Immunogenic display of diverse peptides, including a broadly cross-type neutralizing human papillomavirus L2 epitope, on virus-like particles of the RNA bacteriophage PP7 [J]. Vaccine,2010,28(27):4384-4393.
    [24]VILLANUEVA R, MORALES-PEZA N, CASTELAN-SANCHEZ I, et al. Heparin (GAG-hed) inhibits LCR activity of human papillomavirus type 18 by decreasing API binding [J]. BMC Cancer,2006,6:218-227.
    [25]TRUS BL, RODEN RB, GREENSTONE HL, et al. Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 A resolution [J]. Nat. Struct. Biol.,1997,4(5):413-420.
    [26]BAKER T S, NEWCOMB W W, OLSON N H, et al. Structures of bovine and human papillo ma viruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction [J]. Biophys. J.,1991,60(6):1445-1456.
    [27]BUCK C B, THOMPSON C D, PANG Y Y, et al. Maturation of papillomavirus capsids [J]. J. Virol.,2005,79(5):2839-2846.
    [28]WANG X M, COOK J C, LEE J C, et al. Human papillomavirus type 6 virus-like particles present overlapping yet distinct conformational epitopes [J]. J. Gen. Virol.,2003,84(Pt 6):1493-1497.
    [29]CONWAY M J, MEYERS C. Replication and assembly of human papillomaviruses [J]. J. Dent. Res.,2009,88(4):307-317.
    [30]CHEN X S, GARCEA R L, GOLDBERG I, et al. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16 [J]. Mol. Cell, 2000,5(3):557-567.
    [31]MUNOZ N, BOSCH F X, DE SANJOSE S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer [J]. N. Engl. J. Med., 2003,348(6):518-527.
    [32]BODILY J, LAIMINS L A. Persistence of human papillomavirus infection:keys to malignant progression [J]. Trends. Microbiol.,2010,19(1):33-39.
    [33]STANLEY M. Prospects for new human papillomavirus vaccines [J]. Curr. Opin. Infect. Dis.,2010,23(1):70-75.
    [34]SPINILLO A, DAL BELLO B, GARDELLA B, et al. Multiple human papillomavirus infection and high grade cervical intraepithelial neoplasia among women with cytological diagnosis of atypical squamous cells of undetermined significance or low grade squamous intraepithelial lesions [J]. Gynecol. Oncol., 2009,113(1):115-119.
    [35]SAPP M, DAY P M. Structure, attachment and entry of polyoma-and papillomaviruses [J]. Virology,2009,384(2):400-409.
    [36]SAPP M, BIENKOWSKA-HABA M. Viral entry mechanisms:human papillomavirus and a long journey from extracellular matrix to the nucleus [J]. FEBS J.,2009,276(24):7206-7216.
    [37]BOUSARGHIN L, TOUZE A, COMBITA-ROJAS A L. Coursaget P:Positively charged sequences of human papillomavirus type 16 capsid proteins are sufficient to mediate gene transfer into target cells via the heparan sulfate receptor [J]. J. Gen. Virol.,2003,84(1):157-164.
    [38]ABB AN C Y, BRADBURY N A, MENESES P I. HPV16 and BPV1 infection can be blocked by the dynamin inhibitor dynasore [J]. Am. J. Ther.,2008, 15(4):304-311.
    [39]LANIOSZ V, HOLTHUSEN K A, MENESES P I. Bovine papillomavirus type 1: from clathrin to caveolin [J]. J. Virol.,2008,82(13):6288-6298.
    [40]DAY P M, LOWY D R, SCHILLER J T. Papillomaviruses infect cells via a clathrin-dependent pathway [J]. Virology,2003,307(1):1-11.
    [41]LIU D W, YANG Y C, LIN H F, et al. Cytotoxic T-lymphocyte responses to human papillomavirus type 16 E5 and E7 proteins and HLA-A*0201-restricted T-cell peptides in cervical cancer patients [J]. J. Virol.,2007,81(6):2869-2879.
    [42]DUENSING S, MUNGER K. Human papillomaviruses and centrosome duplication errors:modeling the origins of genomic instability [J]. Oncogene, 2002,21 (40):6241-6248.
    [43]MCLAUGHLIN-DRUBIN M E, MUNGER K. Oncogenic activities of human papillomaviruses [J]. Virus Res.,2009,143(2):195-208.
    [44]BOULET G, HORVATH C, VANDEN BROECK D, et al. Human papillomavirus: E6 and E7 oncogenes [J]. Int. J. Biochem. Cell Biol.,2007,39(11):2006-2011.
    [45]SIMA N, LU W, XIE X. Early proteins E6 and E7 of human papillomavirus may attenuate ischemia-reperfusion injury [J]. Med. Hypotheses.,2011,76(4):607-609.
    [46]MCLAUGHLIN-DRUBIN M E, MUNGER K. The human papillomavirus E7 oncoprotein [J]. Virology,2009,384(2):335-344.
    [47]TALBERT-SLAGLE K, DIMAIO D. The bovine papillomavirus E5 protein and the PDGF beta receptor:it takes two to tango [J]. Virology,2009,384(2):345-351.
    [48]TALBERT-SLAGLE K, MARLATT S, BARRERA F N, et al. Artificial transmembrane oncoproteins smaller than the bovine papillomavirus E5 protein redefine sequence requirements for activation of the platelet-derived growth factor beta receptor [J]. J. Virol.,2009,83(19):9773-9785.
    [49]MAUFORT J P, WILLIAMS S M, PITOT H C, et al. Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis [J]. Cancer Res., 2007,67(13):6106-6112.
    [50]BROWN J, HIGO H, MCKALIP A, et al. Human papillomavirus (HPV) 16 E6 sensitizes cells to atractyloside-induced apoptosis:role of p53, ICE-like proteases and the mitochondrial permeability transition [J]. J. Cell Biochem.,1997, 66(2):245-255.
    [51]WALKER J, SMILEY L C, INGRAM D, et al. Expression of human papillomavirus type 16 E7 is sufficient to significantly increase expression of angiogenic factors but is not sufficient to induce endothelial cell migration [J]. Virology,2010,410(2):283-290.
    [52]SHIN H J, KIM J Y, HAMPSON L, et al. Human papillomavirus 16 E6 increases the radiosensitivity of p53-mutated cervical cancer cells, associated with up-regulation of aurora A [J]. Int. Radiat. Biol.,2010,86(9):769-779.
    [53]MCCLOSKEY R, MENGES C, FRIEDMAN A, et al. Human papillomavirus type 16 E6/E7 upregulation of nucleophosmin is important for proliferation and inhibition of differentiation [J]. J. Virol.,2010,84(10):5131-5139.
    [54]VARDAS E, GIULIANO A R, GOLDSTONE S, et al. External genital'human papillomavirus prevalence and associated factors among heterosexual men on 5 continents [J]. J. Infect. Dis.,2011,203(1):58-65.
    [55]FILIPI K, TEDESCHINI A, PAOLINI F, et al. Genital human papillomavirus infection and genotype prevalence among Albanian women:a cross-sectional study [J]. J. Med. Virol.,2010,82(7):1192-1196.
    [56]CROWELL R L, LONBERG-HOLM K. Virus Attachment and Entry into Cells [M]. Washington, DC:American Society for Microbiology,1986.
    [57]WIMMER, E. Cellular Receptors for Animal Viruses [M]. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press,1994.
    [58]HORVATH C A, BOULET G A, RENOUX V M, et al. Mechanisms of cell entry by human papillomaviruses:an overview [J]. Virol. J.,2010,7:11-17.
    [59]BARANOWSKI E, RUIZ-JARABO C M, DOMINGO E. Evolution of cell recognition by viruses [J]. Science,2001,292(5519):1102-1105.
    [60]STEWART P L, NEMEROW G R. Recent structural solutions for antibody neutralization of viruses [J]. Trends. Microbiol.,1997,5(6):229-233.
    [61]CULP T D, BUDGEON L R, CHRISTENSEN N D. Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor [J]. Virology,2006,347(1):147-159.
    [62]孙媛媛,苗季,夏宁邵.人乳头瘤病毒结构蛋白在病毒感染中的作用研究进展[J].病毒学报,2008,24(1):79-82.
    [63]FAUST H, KNEKT P, FORSLUND O, et al. Validation of multiplexed human papillomavirus serology using pseudovirions bound to heparin-coated beads [J]. J. Gen. Virol.,2010,91 (Pt 7):1840-1848.
    [64]EVANDER M, FRAZER I H, PAYNE E, et al. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses [J]. J. Virol.,1997, 71(3):2449-2456.
    [65]RABENSTEIN D L. Heparin and heparan sulfate:structure and function [J]. Nat. Prod. Rep.,2002,19(3):312-331.
    [66]GANDHI N S, MANCERA R L. Heparin/heparan sulphate-based drugs [J]. Drug Discov. Today,2010,15(23-24):1058-1069.
    [67]JOYCE J G, TUNG J S, PRZYSIECKI C T, et al. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes [J]. J. Biol. Chem.,1999,274(9):5810-5822.
    [68]SIBBET G, ROMERO-GRAILLET C, MENEGUZZI G, et al. alpha6 integrin is not the obligatory cell receptor for bovine papillomavirus type 4 [J]. J. Gen. Virol., 2000,81(Pt 6):1629-1635.
    [69]GIROGLOU T, FLORIN L, SCHAFER F, et al. Human papillomavirus infection requires cell surface heparan sulfate [J]. J. Virol.,2001,75(3):1565-1570.
    [70]PATTERSON N A, SMITH J L, OZBUN M A, Human papillomavirus type 31b infection of human keratinocytes does not require heparan sulfate [J]. J. Virol., 2005,79(11):6838-6847.
    [71]BUCK C B, THOMPSON C D, ROBERTS J N, et al. Carrageenan is a potent inhibitor of papillomavirus infection [J]. PloS. Pathog.,2006,2(7):e69-e73.
    [72]SELINKA H C, GIROGLOU T, NOWAK T, et al. Further evidence that papillomavirus capsids exist in two distinct conformations [J]. J. Virol.,2003, 77(24):12961-12967.
    [73]JOHNSON K M, KINES R C, ROBERTS J N, et al. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus [J]. J. Virol.,2009,83(5):2067-2074.
    [74]RICHARDS R M, LOWY D R, SCHILLER J T, et al. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection [J]. Proc. Natl. Acad. Sci. U. S. A.,2006,103(5):1522-1527.
    [75]PEREIRA R, HITZEROTH,11, RYBICKI E P. Insights into the role and function of L2, the minor capsid protein of papillomaviruses [J]. Arch. Virol.,2009, 154(2):187-197.
    [76]RODEN R B, DAY P M, BRONZO B K, et al. Positively charged termini of the L2 minor capsid protein are necessary for papillomavirus infection [J]. J. Virol., 2001,75(21):10493-10497.
    [77]KAMPER N, DAY P M, NOWAK T, et al. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes [J]. J. Virol.,2006,80(2):759-768.
    [78]BUCK C B, CHENG N, THOMPSON C D, et al. Arrangement of L2 within the papillomavirus capsid [J]. J. Virol.,2008,82(11):5190-5197.
    [79]VERA-BRAVO R, OCAMPO M, URQUIZA M, et al. Human papillomavirus type 16 and 18 L1 protein peptide binding to VERO and HeLa cells inhibits their VLPs binding [J]. Int. J. Cancer,2003,107(3):416-424.
    [80]KNAPPE M, BODEVIN S, SELINKA HC, et al. Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate [J]. J. Biol. Chem.,2007,282(38):27913-27922.
    [81]CHRISTENSEN J J, IZATT R M, HANSEN L D, et al. Entropy Titration. A Calorimetric Method for the Determination of △G, AH, and AS from a Single Thermometric Titration [J]. J. Phys. Chem.,1966,70 (6),2003-2010
    [82]IZATT R M, RYTTING J H, HANSEN L D, et al. Thermodynamics of proton dissociation in dilute aqueous solution:An entropy titration study of adenosine, pentoses, hexoses, and related compounds [J]. J. Am. Chem. Soc.,1966, 88(12):2641-2645.
    [83]陈荣悌,古宗信,陈学民.一套恒温环境连续式滴定量热装置的建立及其热谱图分析方法的改进[J].高等学校化学学报,1987,8(9):823-828.
    [84]杨桦,王文清,彭立娥.量热滴定法测定苯丙氨酸、亮氨酸、蛋氨酸、色氨酸的热力学函数[J].物理化学学报,1989,5(5):583-586.
    [85]STITES W E. Proteinminus signProtein Interactions:Interface Structure, Binding Thermodynamics, and Mutational Analysis [J]. Chem. Rev.,1997, 97(5):1233-1250.
    [86]WIEPRECHT T, APOSTOLOV O, BEYERMANN M, et al. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium [J]. J. Mol. Biol.,1999, 294(3):785-794.
    [87]TODD M J, GOMEZ J. Enzyme kinetics determined using calorimetry:a general assay for enzyme activity [J]. Anal. Biochem.,2001,296(2):179-187.
    [88]SEELIG J. Titration calorimetry of lipid-peptide interactions [J]. Biochim. Biophys. Acta.,1997,1331(1):103-116.
    [89]WENK M R, SEELIG J. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation [J]. Biochemistry, 1998,37(11):3909-3916.
    [90]FREIRE E, MAYORA O L, Straume M. Isothermal Titration Calorimetry [J]. Anal. Chem.,1990,62(18):950A-959A.
    [91]DAM T K, TORRES M, BREWER C F, et al. Isothermal titration calorimetry reveals differential binding thermodynamics of variable region-identical antibodies differing in constant region for a univalent ligand [J]. J. Biol. Chem.,2008, 283(46):31366-31370.
    [92]CHEN Z X, GUO G M, DENG S P. Isothermal titration calorimetry study of the interaction of sweeteners with fullerenols as an artificial sweet taste receptor model [J]. J. Agric. Food Chem.,2009,57(7):2945-2954.
    [93]REYMOND C, BISAILLON M, PERREAULT J P. Monitoring of an RNA multistep folding pathway by isothermal titration calorimetry [J]. Biophys. J., 2009,96(1):132-140.
    [94]WANG S S, LIN M S, CHEN S L, et al. Using isothermal titration calorimetry to real-time monitor the heat of metabolism:a case study using PC 12 cells and Abeta(1-40) [J]. Colloids. Surf. B. Bio interfaces,2010,83(2):307-312.
    [95]DE PAULA W X, DENADAI A M, SANTORO M M, et al. Supramolecular interactions between losartan and hydroxypropyl-beta-CD:ESI mass-spectrometry, NMR techniques, phase solubility, isothermal titration calorimetry and anti-hypertensive studies [J]. Int. J. Pharm.,2010,404(1-2):116-123.
    [96]HENZLER K, HAUPT B, LAUTERBACH K, et al. Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes:direct proof of counterion release by isothermal titration calorimetry [J]. J. Am. Chem. Soc.,2010, 132(9):3159-3163.
    [97]LEAVITT S, FREIRE E. Direct measurement of protein binding energetics by isothermal titration calorimetry [J]. Curr. Opin. Struct. Biol.,2001,11(5):560-566.
    [98]FREIRE E, VAN OSDOL W W, MAYORGA O L, et al. Calorimetrically determined dynamics of complex unfolding transitions in proteins [J]. Annu. Rev. Biophys. Biophys. Chem.,1990,19:159-188.
    [99]FREIRE E. The thermodynamic linkage between protein structure, stability, and function [J]. Methods Mol. Biol.,2001,168:37-68.
    [100]CELEJ M S, DASSIE S A, FREIRE E, et al. Ligand-induced thermostability in proteins:thermodynamic analysis of ANS-albumin interaction [J]. Biochim. Biophys. Acta.,2005,1750(2):122-133.
    [101]CARBONELL T, FREIRE E. Binding thermodynamics of statins to HMG-CoA reductase [J]. Biochemistry,2005,44(35):11741-11748.
    [102]VELAZQUEZ-CAMPOY A, FREIRE E. Isothermal titration calorimetry to determine association constants for high-affinity ligands [J]. Nat. Protoc.,2006, 1(1):186-191.
    [103]WIEPRECHT T, BEYERMANN M, SEELIG J. Binding of antibacterial magainin peptides to electrically neutral membranes:thermodynamics and structure [J]. Biochemistry,1999,38(32):10377-10387.
    [104]WIEPRECHT T, APOSTOLOV O, BEYERMANN M, et al. Membrane binding and pore formation of the antibacterial peptide PGLa:thermodynamic and mechanistic aspects [J]. Biochemistry,2000,39(2):442-452.
    [105]WIEPRECHT T, APOSTOLOV O, SEELIG J. Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles [J]. Biophys. Chem.,2000,85(2-3):187-198.
    [106]ZIEGLER A, BLATTER X L, SEELIG A, et al. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis [J]. Biochemistry,2003,42(30):9185-9194.
    [107]SEELIG J. Thermodynamics of lipid-peptide interactions [J]. Biochim. Biophys. Acta.,2004,1666(1-2):40-50.
    [108]ZIEGLER A, NERVI P, DURRENBERGER M, et al. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts:optical, biophysical, and metabolic evidence [J]. Biochemistry,2005,44(1):138-148.
    [109]ZIEGLER A, SEELIG J. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate:binding mechanism and thermodynamic parameters [J]. Biophys. J.,2004,86(1 Pt 1):254-263.
    [110]ZIEGLER A, SEELIG J. High affinity of the cell-penetrating peptide HIV-1 Tat-PTD for DNA [J]. Biochemistry,2007,46(27):8138-8145.
    [111]GONCALVES E, KIT AS E, SEELIG J. Binding of oligoarginine to membrane lipids and heparan sulfate:structural and thermodynamic characterization of a cell-penetrating peptide [J]. Biochemistry,2005, 44(7):2692-2702.
    [112]GONCALVES E, KIT AS E, SEELIG J. Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin [J]. Biochemistry,2006,45(9):3086-3094.
    [113]KLOCEK G, SEELIG J. Melittin interaction with sulfated cell surface sugars [J]. Biochemistry,2008,47(9):2841-2849.
    [1]RICHARDS R M, LOWY D R, SCHILLER J T, et al. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection [J]. Proc. Natl. Acad. Sci. U. S. A.,2006,103(5):1522-1527.
    [2]PEREIRA R, HITZEROTH,11, RYBICKI E P. Insights into the role and function of L2, the minor capsid protein of papillomaviruses [J]. Arch. Virol.,2009, 154(2):187-197.
    [3]RODEN R B, DAY P M, BRONZO B K, et al. Positively charged termini of the L2 minor capsid protein are necessary for papillomavirus infection [J]. J. Virol., 2001,75(21):10493-10497.
    [4]KAMPER N, DAY P M, NOWAK T, et al. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes [J]. J. Virol.,2006,80(2):759-768.
    [5]BUCK C B, CHENG N, THOMPSON C D, et al. Arrangement of L2 within the papillomavirus capsid [J]. J. Virol.,2008,82(11):5190-5197.
    [6]DE PAULA W X, DENADAI A M, SANTORO M M, et al. Supramolecular interactions between losartan and hydroxypropyl-beta-CD:ESI mass-spectrometry, NMR techniques, phase solubility, isothermal titration calorimetry and anti-hypertensive studies [J]. Int. J. Pharm.,2010,404(1-2):116-123.
    [7]HENZLER K, HAUPT B, LAUTERBACH K, et al. Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes:direct proof of counterion release by isothermal titration calorimetry [J]. J. Am. Chem. Soc.,2010, 132(9):3159-3163.
    [8]SONG Y, WANG D, QI H, et al. Metal ion binding of the first external loop of DCT1 in aqueous solution [J]. Metallomics,2009, 1(5):392-394.
    [9]QI H, YANG L, XUE R, et al. The third and fourth transmembrane domains of Slcllal:comparison of their structures and positioning in phospholipid model membranes [J]. Biopolymers,2009,92(1):52-64.
    [10]SUN J, YU J S, JIN S, et al. Interaction of synthetic HPV-16 capsid peptides with heparin:thermodynamic parameters and binding mechanism [J]. J. Phys. Chem. B, 2010,114(30):9854-9861.
    [11]ZIEGLER A, SEELIG J. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate:binding mechanism and thermodynamic parameters [J]. Biophys. J.,2004,86(1 Pt 1):254-263.
    [12]WANG J, RABENSTEIN D L. Interaction of heparin with two synthetic peptides that neutralize the anticoagulant activity of heparin [J]. Biochemistry,2006, 45(51):15740-15747.
    [13]KLOCEK G, SEELIG J. Melittin interaction with sulfated cell surface sugars [J]. Biochemistry,2008,47(9):2841-2849.
    [14]OLSON ST, BJORK I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrornbin-thrombin reaction. Elucidation from salt concentration effects [J]. J. Biol. Chem.,1991, 266(10):6353-6364.
    [15]THOMPSON L D, PANTOLIANO M W, SPRINGER B A. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain [J]. Biochemistry,1994, 33(13):3831-3840.
    [16]FATH M A, WU X, HILEMAN R E, et al. Interaction of secretory leukocyte protease inhibitor with heparin inhibits proteases involved in asthma [J]. J. Biol. Chem.1998,273(22):13563-13569.
    [17]MATULIS D, ROUZINA I, BLOOMFIELD V A. Thermodynamics of DNA binding and condensation:isothermal titration calorimetry and electrostatic mechanism [J]. J. Mol. Biol.,2000,296(4):1053-1063.
    [18]GONCALVES E, KITAS E, SEELIG J. Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin [J]. Biochemistry, 2006,45(9):3086-3094.
    [19]ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions:forces contributing to stability [J]. Biochemistry,1981, 20(11):3096-3102.
    [20]HILEMAN R E, JENNINGS R N, LINHARDT R J. Thermodynamic analysis of the heparin interaction with a basic cyclic peptide using isothermal titration calorimetry [J]. Biochemistry,1998,37(43):15231-15237.
    [21]JELESAROV I, BOSSHARD H R. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition [J]. J. Mol. Recognit.,1999,12(1):3-18.
    [22]AHL I M, JONSSON B H, TIBELL L A. Thermodynamic characterization of the interaction between the C-terminal domain of extracellular superoxide dismutase and heparin by isothermal titration calorimetry [J]. Biochemistry,2009, 48(41):9932-9940.
    [23]THOMSON J A, LADBURY J E. Isothermal Titration Calorimetry:a Tutorial, in Biocalorimetry 2; Applications of Calorimetry in the Biological Sciences [M], New York:John Wiley & Sons,2004
    [24]CHANDLER D. Hydrophobicity:two faces of water [J]. Nature,2002, 417(6888):491.
    [25]STURTEVANT J M. Heat capacity and entropy changes in processes involving proteins [J]. Proc. Natl. Acad. Sci. U. S. A.,1977,74(6):2236-2240.
    [26]GOMEZ J, HILSER V J, XIE D, et al. The heat capacity of proteins [J]. Proteins, 1995,22(4):404-412.
    [27]TANFORD C. Interfacial free energy and the hydrophobic effect [J]. Proc. Natl. Acad. Sci. U. S. A.,1979,76(9):4175-4176.
    [28]SPOLAR R S, HA J H, RECORD MT J R. Hydrophobic effect in protein folding and other noncovalent processes involving proteins [J]. Proc. Natl. Acad. Sci. U. S. A.,1989,86(21):8382-8385.
    [29]GONCALVES E, KITAS E, SEELIG J. Binding of oligoarginine to membrane lipids and heparan sulfate:structural and thermodynamic characterization of a cell-penetrating peptide [J]. Biochemistry,2005,44(7):2692-2702.
    [30]RECORD M T. LOHMAN M L, DE HASETH P. Ion effects on ligand-nucleic acid interactions [J]. J. Mol. Biol.,1976,107(2):145-158.
    [31]RECORD M T, ANDERSON C F, LOHMAN T M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids:the roles of ion association or release, screening, and ion effects on water activity [J]. Q. Rev. Biophys.,1978,11(2):103-178.
    [32]MANNING G S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides [J]. Q. Rev. Biophys., 1978,11 (2):179-246.
    [33]EDELHOCH H, BRAND L, WILCHEK M. Fluorescence studies with tryptophyl peptides [J]. Biochemistry,1967,6(2):547-559.
    [34]MCELROY C A, MANFREDO A, GOLLNICK P, et al. Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein [J]. Biochemistry,2006,45(25):7844-7853.
    [35]RASMUSSEN T, EDWARDS M D, BLACK S S, et al. Tryptophan in the pore of the mechanosensitive channel MscS:assessment of pore conformations by fluorescence spectroscopy [J]. J. Biol. Chem.,2010,285(8):5377-5384.
    [36]MANSOOR S E, DEWITT M A, FARRENS D L. Distance mapping in proteins using fluorescence spectroscopy:the tryptophan-induced quenching (TrIQ) method [J].2010, Biochemistry,49(45):9722-9731.
    [37]CHEN X S, GARCEA R L, GOLDBERG I, et al. Structure of small virus-like particles assembled from the LI protein of human papillomavirus 16 [J]. Mol. Cell, 2000,5(3):557-567.
    [38]BISHOP B, DASGUPTA J, KLEIN M, et al. Crystal structures of four types of human papillomavirus LI capsid proteins:understanding the specificity of neutralizing monoclonal antibodies [J]. J. Biol. Chem.,2007, 282(43):31803-31811.
    [39]ADLER A J, GREENFIELD N J, FASMAN G D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides [J]. Methods Enzymol.,1973, 27:675-735.
    [40]XIONG K, ASHER S A. Circular dichroism and UV resonance raman study of the impact of alcohols on the Gibbs free energy landscape of an alpha-helical peptide [J]. Biochemistry,2010,49(15):3336-3342.
    [41]GEORGE J, THOMAS K G. Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes [J]. J. Am. Chem. Soc.,2010, 132(8):2502-2503.
    [42]UNCKELL F, STREECK R E, SAPP M. Generation and neutralization of pseudovirions of human papillomavirus type 33 [J]. J. Virol.,1997, 71(4):2934-2939.
    [43]KINES R C, THOMPSON C D, LOWY D R et al. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding [J]. Proc. Natl. Acad. Sci. U. S. A.,2009,106(48):20458-20463.
    [44]JOYCE J G, TUNG J S, PRZYSIECKI C T, et al. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes [J]. J. Biol. Chem.,1999,274(9):5810-5822.
    [45]BOUSARGHIN L, TOUZE A, COMBITA-ROJAS A L. Coursaget P:Positively charged sequences of human papillomavirus type 16 capsid proteins are sufficient to mediate gene transfer into target cells via the heparan sulfate receptor [J]. J. Gen. Virol.,2003,84(1):157-164.
    [46]JAGU S, KWAK K, GARCEA R L, et al. Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection [J]. Vaccine,2010,28(28):4478-4486.
    [47]RUBIO I, SEITZ H, CANALI E, et al. The N-terminal region of the human papillomavirus L2 protein contains overlapping binding sites for neutralizing, cross-neutralizing and non-neutralizing antibodies [J]. Virology,2010, 409(2):348-359.
    [1]MUNOZ N, BOSCH F X, DE SANJOSE S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer [J]. N. Engl. J. Med., 2003,348(6):518-527.
    [2]SIGURDSSON K. Cervical cancer:cytological cervical screening in Iceland and implications of HPV vaccines [J]. Cytopathology,2010,21(4):213-222.
    [3]YOUSUF S, SYED S, MOAZZAM A, et al. Frequency of high risk human papillomavirus types in squamous cell carcinoma of cervix among women [J]. J. Pak. Med. Assoc.,2010,60(3):193-196.
    [4]SIMA N, LU W, XIE X. Early proteins E6 and E7 of human papillomavirus may attenuate ischemia-reperfusion injury [J]. Med. Hypotheses.,2011,76(4):607-609.
    [5]WALKER J, SMILEY L C, INGRAM D, et al. Expression of human papillomavirus type 16 E7 is sufficient to significantly increase expression of angiogenic factors but is not sufficient to induce endothelial cell migration [J]. Virology,2010,410(2):283-290.
    [6]SHIN H J, KIM J Y, HAMPSON L, et al. Human papillomavirus 16 E6 increases the radiosensitivity of p53-mutated cervical cancer cells, associated with up-regulation of aurora A [J]. Int. Radiat. Biol.,2010,86(9):769-779.
    [7]DE VILLIERS EM, FAUQUET C, BROKER TR, et al. Classification of papillomaviruses [J]. Virology,2004,324(1):17-27.
    [8]STANLEY M. Pathology and epidemiology of HPV infection in females [J]. Gynecol. Oncol.,2010,117(2 Suppl):S5-10.
    [9]GODDARD T D, KNELLER D G. SPARKY3, [M].University of California:San Francisco,2001.
    [10]ZIEGLER A, SEELIG J. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate:binding mechanism and thermodynamic parameters [J]. Biophys. J.,2004,86(1 Pt 1):254-263.
    [11]WANG J, RABENSTEIN D L. Interaction of heparin with two synthetic peptides that neutralize the anticoagulant activity of heparin [J]. Biochemistry,2006, 45(51):15740-15747.
    [12]KLOCEK G, SEELIG J. Melittin interaction with sulfated cell surface sugars [J]. Biochemistry,2008,47(9):2841-2849.
    [13]RABENSTEIN D L. Heparin and heparan sulfate:structure and function [J]. Nat. Prod. Rep.,2002,19(3):312-331.
    [14]GANDHI N S, MANCERA R L. Heparin/heparan sulphate-based drugs [J]. Drug Discov. Today,2010,15(23-24):1058-1069.
    [15]THOMSON J A, LADBURY J E. Isothermal Titration Calorimetry:a Tutorial, in Biocalorimetry 2; Applications of Calorimetry in the Biological Sciences [M], New York:John Wiley & Sons,2004
    [16]WANG S S, LIN M S, CHEN S L, et al. Using isothermal titration calorimetry to real-time monitor the heat of metabolism:a case study using PC 12 cells and Abeta(1-40) [J]. Colloids. Surf. B. Biointerfaces,2010,83(2):307-312.
    [17]DE PAULA W X, DENADAI A M, SANTORO M M, et al. Supramolecular interactions between losartan and hydroxypropyl-beta-CD:ESI mass-spectrometry, NMR techniques, phase solubility, isothermal titration calorimetry and anti-hypertensive studies [J]. Int. J. Pharm.,2010,404(1-2):116-123.
    [18]STURTEVANT J M. Heat capacity and entropy changes in processes involving proteins [J]. Proc. Natl. Acad. Sci. U. S. A.,1977,74(6):2236-2240.
    [19]RECORD M T. LOHMAN M L, DE HASETH P. Ion effects on ligand-nucleic acid interactions [J]. J. Mol. Biol.,1976,107(2):145-158.
    [20]RECORD M T, ANDERSON C F, LOHMAN T M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids:the roles of ion association or release, screening, and ion effects on water activity [J]. Q. Rev. Biophys.,1978, 11(2):103-178.
    [21]MANNING G S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides [J]. Q. Rev. Biophys., 1978,11 (2):179-246.
    [22]YANG A, ABBOTT K L, DESJARDINS A, et al. NMR structure of a complex formed by the carboxyl-terminal domain of human RAP74 and a phosphorylated peptide from the central domain of the FCP1 phosphatase [J]. Biochemistry,2009, 48(9):1964-1974.
    [23]MEREDITH J J, DUFOUR A, BRUCH M D. Comparison of the structure and dynamics of the antibiotic peptide polymyxin B and the inactive nonapeptide in aqueous trifluoroethanol by NMR spectroscopy [J]. J. Phys. Chem. B,2009, 113(2):544-551.
    [24]NAIK M T, CHANG C C, NAIK N M, et al. NMR chemical shift assignments of a complex between SUMO-1 and SIM peptide derived from the C-terminus of Daxx [J]. Biomol. NMR Assign.,2011,5(1):75-77.
    [25]XUE R, WANG S, WANG C, et al. HFIP-induced structures and assemblies of the peptides from the transmembrane domain 4 of membrane protein Nrampl [J]. Biopolymers,2006,84(3):329-339.
    [26]SONG Y, WANG D, QI H, et al. Metal ion binding of the first external loop of DCT1 in aqueous solution [J]. Metallomics,2009, 1(5):392-394.
    [27]XUE R, WANG S, QI H, et al. T178 deletion impairs intermolecular interaction of the peptide Nrampl(164-191) [J]. J. Pept. Sci.,2009,15(5):377-384.
    [28]WUTHRICH K. NMR of Proteins and Nucleic Acids [M], New York:John Wiley & Sons,1986.
    [29]KINES R C, THOMPSON C D, LOWY D R, et al. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding [J]. Proc. Natl. Acad. Sci. U. S. A.,2009,106(48):20458-20463.
    [30]DAY P M, GAMBHIRA R, RODEN R B, et al. Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies [J]. J. Virol.,2008,82(9):4638-4646.
    [31]JOHNSON K M, KINES R C, ROBERTS J N, et al. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus [J]. J. Virol.,2009,83(5):2067-2074.
    [32]MOODY C A, LAIMINS L A. Human papillomavirus oncoproteins:pathways to transformation [J]. Nat. Rev. Cancer,10(8):550-560.
    [33]SAPP M, DAY P M. Structure, attachment and entry of polyoma-and papillomaviruses [J]. Virology,2009,384(2):400-409.
    [34]SAPP M, BIENKOWSKA-HABA M. Viral entry mechanisms:human papillomavirus and a long journey from extracellular matrix to the nucleus [J]. FEBS J.,2009,276(24):7206-7216.
    [35]GIROGLOU T, FLORIN L, SCHAFER F, et al. Human papillomavirus infection requires cell surface heparan sulfate [J]. J. Virol.,2001,75(3):1565-1570.
    [36]STANLEY M. Prospects for new human papillomavirus vaccines [J]. Curr. Opin. Infect. Dis.,2010,23(1):70-75.
    [37]VU H L, SIKORA A G, FU S, et al. HPV-induced oropharyngeal cancer, immune response and response to therapy [J]. Cancer Lett.,2010,288(2):149-155.
    [38]DAUNER J G, PAN Y, HILDESHEIM A, et al. Characterization of the HPV-specific memory B cell and systemic antibody responses in women receiving an unadjuvanted HPV16 L1 VLP vaccine [J]. Vaccine,2010,28(33):5407-5413.
    [39]CHRISTENSEN N D, CLADEL N M, REED C A, et al. Hybrid papillomavirus L1 molecules assemble into virus-like particles that reconstitute conformational epitopes and induce neutralizing antibodies to distinct HPV types [J]. Virology, 2001,291(2):324-334.
    [40]BISHOP B, DASGUPTA J, KLEIN M, et al. Crystal structures of four types of human papillomavirus L1 capsid proteins:understanding the specificity of neutralizing monoclonal antibodies [J]. J. Biol. Chem.,2007, 282(43):31803-31811.
    [41]SCHILLER J T, DAY P M, KINES R C. Current understanding of the mechanism of HPV infection [J]. Gynecol. Oncol.,2010,118(1 Suppl):S12-17.
    [42]GRACE B V M. HPV type 18 is more oncopotent than HPV 16 in uterine cervical carcinogenesis although HPV16 is the prevalent type in Chennai, India [J]. Indian J. Cancer.,2009,46(3):203-207.
    [1]DE VILLIERS EM, FAUQUET C, BROKER TR, et al. Classification of papillomaviruses [J]. Virology,2004,324(1):17-27.
    [2]CHATURVEDI A K, KATKI H A, HILDESHEIM A, et al. Human Papillomavirus Infection with Multiple Types:Pattern of Co infection and Risk of Cervical Disease [J]. J. Infect. Dis.,2010,203(7):910-920.
    [3]YOUSUF S, SYED S, MOAZZAM A, et al. Frequency of high risk human papillomavirus types in squamous cell carcinoma of cervix among women [J]. J. Pak. Med. Assoc.,2010,60(3):193-196.
    [4]SIMA N, LU W, XIE X. Early proteins E6 and E7 of human papillomavirus may attenuate ischemia-reperfusion injury [J]. Med. Hypotheses.,2011,76(4):607-609.
    [5]MCLAUGHLIN-DRUBIN M E, MUNGER K. The human papillomavirus E7 oncoprotein [J]. Virology,2009,384(2):335-344.
    [6]WANG J, RABENSTEIN D L. Interaction of heparin with two synthetic peptides that neutralize the anticoagulant activity of heparin [J]. Biochemistry,2006, 45(51):15740-15747.
    [7]KLOCEK G, SEELIG J. Melittin interaction with sulfated cell surface sugars [J]. Biochemistry,2008,47(9):2841-2849.
    [8]SUN J, YU J S, JIN S, et al. Interaction of synthetic HPV-16 capsid peptides with heparin:thermodynamic parameters and binding mechanism [J]. J. Phys. Chem. B, 2010,114(30):9854-9861.
    [9]ZIEGLER A, SEELIG J. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate:binding mechanism and thermodynamic parameters [J]. Biophys. J.,2004,86(1 Pt 1):254-263.
    [10]WANG S S, LIN M S, CHEN S L, et al. Using isothermal titration calorimetry to real-time monitor the heat of metabolism:a case study using PC 12 cells and Abeta(1-40) [J]. Colloids. Surf. B. Bio interfaces,2010,83(2):307-312.
    [11]DE PAULA W X, DENADAI A M, SANTORO M M, et al. Supramolecular interactions between losartan and hydroxypropyl-beta-CD:ESI mass-spectrometry, NMR techniques, phase solubility, isothermal titration calorimetry and anti-hypertensive studies [J]. Int. J. Pharm.,2010,404(1-2):116-123.
    [12]STURTEVANT J M. Heat capacity and entropy changes in processes involving proteins [J]. Proc. Natl. Acad. Sci. U. S. A.,1977,74(6):2236-2240.
    [13]MANNING G S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides [J]. Q. Rev. Biophys., 1978,11 (2):179-246.
    [14]CHEN X S, GARCEA R L, GOLDBERG I, et al. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16 [J]. Mol. Cell, 2000,5(3):557-567.
    [15]BISHOP B, DASGUPTA J, KLEIN M, et al. Crystal structures of four types of human papillomavirus L1 capsid proteins:understanding the specificity of neutralizing monoclonal antibodies [J]. J. Biol. Chem.,2007, 282(43):31803-31811.
    [16]XIONG K, ASHER S A. Circular dichroism and UV resonance raman study of the impact of alcohols on the Gibbs free energy landscape of an alpha-helical peptide [J]. Biochemistry,2010,49(15):3336-3342.
    [17]KINES R C, THOMPSON C D, LOWY D R, et al. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding [J]. Proc. Natl. Acad. Sci. U. S. A.,2009,106(48):20458-20463.
    [18]DAY P M, GAMBHIRA R, RODEN R B, et al. Mechanisms of human papillomavirus type 16 neutralization by 12 cross-neutralizing and 11 type-specific antibodies [J]. J. Virol.,2008,82(9):4638-4646.
    [19]JOHNSON K M, KINES R C, ROBERTS J N, et al. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus [J]. J. Virol.,2009,83(5):2067-2074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700