清醒大鼠急性低血压兴奋前庭神经核的NMDA受体机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]大量的研究报道,在麻醉动物用动脉放血或静脉注射硝普钠(Sodium nitroprusside, SNP)诱发急性低血压,可能通过外周前庭器官经前庭神经释放谷氨酸(Glutamate, Glu)兴奋前庭内侧核(medial vestibular nucleus, MVN)并且MVN区有c-Fos蛋白表达。但是在清醒动物是否也能出现相同的结果,尤其是关于急性低血压兴奋MVN的Glu-NMDA受体机制的研究甚少。本研究观察了清醒动物诱发急性低血压导致大鼠MVN神经元兴奋过程中,NMDA受体激动剂(NMDA)和阻断剂(MK-801)对MVN内c-Fos蛋白表达的影响。
     [方法]选用体重在250±50g的清洁级Wistar系雄性大鼠60只。动物随机分成3个大组,即前庭器官正常组;单侧前庭器官损伤组;NMDA受体组。本实验首先利用免疫组化方法,观察了正常动物和药物(对氨基苯胂酸盐)破坏一侧外周前庭器官慢性期(2w),静脉注射SNP (20μg/kg/min,3min)诱发急性低血压(50%)时MVN区c-Fos蛋白的表达情况,接着结合药理学方法,进一步探讨了给侧脑室注入NMDA受体激动剂(NMDA)和阻断剂(MK-801)对上述效应的影响,借此探讨药物诱发急性低血压兴奋MVN的谷氨酸NMDA受体机制。
     [结果]
     1、在正常动物,利用静脉注射SNP诱发急性低血压使血压平均下降50%后30min、60min、120min时,MVN区c-Fos蛋白均有表达,而且在60min时c-Fos蛋白表达最明显。但是在静脉注射生理盐水的对照组则无明显的c-Fos蛋白表达,两组间相比差异非常显著(P<0.001)。
     2、单侧前庭器官损伤2w后诱发急性低血压30min、60min、120min时,损伤侧MVN区未见c-fos蛋白的明显表达。但是损伤对侧MVN区c-Fos蛋白仍明显增多,与损伤侧的相应时间比较均有显著性差异(P<0.001),在急性低血压后60min时c-Fos蛋白表达最明显;而且与前庭器官正常动物相同。
     3、前庭器官正常动物侧脑室注射NMDA阻断剂(MK-801, 1mmol/L) 60min后,再诱发急性低血压,未能在MVN区见到c-Fos蛋白的明显表达,与侧脑室注射人工脑脊液组相比无明显差异(P<0.001)。
     4、前庭器官正常动物侧脑室注射NMDA激动剂(NMDA, 1mmol/L) 60min钟后,双侧MVN区c-Fos蛋白表达显著增加,与人工脑脊液组相比有显著性差异(P<0.001)。
     [结论]
     1.清醒动物静脉注射SNP诱发急性低血压,可以兴奋MVN;
     2.破坏外周前庭器官可以阻断清醒动物诱发急性低血压兴奋MVN的作用;
     3.急性低血压诱发清醒动物MVN兴奋效应中有Glu-NMDA受体参与。
Aim:
     The acute hypotension induced by exsanguinations of arterial blood or intravenous injection of Sodium Nitroprusside (SNP), can evoke c-Fos protein expression and neuronal excitation in medial vestibular nucleus (MVN) probably via peripheral vestibular organ pathway in anesthetized animals. However, it is unknown whether the acute hypotension-evoked response in awake animals is similar to the previous studies, especially its mechanisms is related to NMDA receptor. In the present study, we observed the c-Fos protein expression induced by acute hypotension and studied the effects of damaged unilateral vestibular organ, NMDA receptor agonist (NMDA) and antagonist (MK-801) on the c-fos protein expression in MVN neurons in conscious rats.
     Methods:
     A total of 60 SPF male Wistar Rats (250±50g) were randomly divided into three groups:normal vestibular organ group, damaged unilateral vestibular organ group, NMDA receptor group. The acute hypotension (50%) of rats was induced by intravenous injection of SNP (20μg/kg/min,3min). The unilateral peripheral vestibular organ was damaged by treatment of arsanilic acid, and experiments were performed during the chronic phase (2-week later) of unilateral peripheral vestibular organ damage. The c-Fos protein expression in MVN neurons during the acute hypotension (50%) was studied by immunohistochemical methods. Furthermore, we examined the effects of NMDA receptor agonist (NMDA) and antagonist (MK-801) on acute hypotension-induced c-fos protein expression by intracerebroventricular injection techniques.
     Result:
     1, Intravenous injection of SNP (20μg/kg/min,3min) induced acute hypotension in normal rats, accompanied with an increase in c-fos protein expression in MVN region at the 30 min,60 min, and 120 min after blood pressure fell to an average of 50%percent, the peak expression of c-fos protein was observed at 60 min after the acute hypotension. The c-Fos protein expression was not induced by intravenous injection of saline in the control group. Difference between the two groups was significant (P< 0.001);
     2, Two weeks later after the damage of the unilateral peripheral vestibular organ, the increase of c-fos protein expression was not observed in the ipsilateral MVN region at the 30 min,60 min, and 120 min after induction of acute hypotension, the peak expression of c-fos protein was observed at 60 min after acute hypotension. But, the c-fos protein expression was indeed increased in the contralateral MVN region, significant higher than its expression in ipsilateral MVN region (P< 0.001).
     3, After 60 mins of intracerebroventricular injection of NMD A receptor blocker (MK-801, 1mmol/L), acute hypotension failed to induce an increase in c-Fos protein expression in MVN region in normal vestibular organ animals, the level of c-Fos protein expression was significant lower than the group of artificial cerebrospinal fluid (P< 0.001).
     4, After 60 mins of intracerebroventricular injection of NMD A receptor agonist (NMDA, 1mmol/L), the c-Fos protein expression was increased in MVN region in normal vestibular organ animals, the level of c-Fos protein expression was significant higher than the group of artificial cerebrospinal fluid (P< 0.001).
     Conclusion:
     1. SNP-induced acute hypotension could evoke c-Fos over expression in MVN in the conscious rat.
     2. UL prevented the c-Fos over expression in ipsilateral MVN without change the c-Fos expression in the contralateral MVN.3. Acute hypotension-induced c-Fos over expression involed the activation of NMD A receptor.
引文
[1]李国彰,张志雄,何承敏.神经生理学人民卫生出版社,2007;113-115
    [2]Szentagothai. The elementary vestibulo-ocular reflex arc. Jneurophysiol,1950; 13: 395-407.
    [3]Suzuki I, Park BR, Wilson VJ. Directional sensitivity of, and neck afferent input to, cervical and lumber interneurons modulated by neck rotation. Brain Res,1986; 367:356-359.
    [4]Yates BJ. Vestibular influences on the sympathetic nerve system. Brain Res,1992, 17:51-59.
    [5]Lacour M, Ez-zaher L. Neurotrophic cand/or neuritogenic properties of the extract of Ginkgo biloba (EGb 761) as evidenced in vestiular compensation. In:Y christen, J Costentin, M Lacour eds. Effects of Ginkgo biloba Extract (EGb 761) on the Central Nervous System. Paris:Elsevier,1992; 37-56.
    [6]Radtke A, Popov K, Bronstein AM, Vestibulo-autonomic control in man:Short-and long-latency vestibular effects on cardiovascular function. Gresty MA. J vestibRes,2003; 13(1):25-37.
    [7]Jauregui-Renaud K, Hermosillo AG, Gomez A, Marquez MF, Cardenas M, Bronstein AM. Vestibular function interferes in cardiovascular reflexes. Arch MedRes,2003; 34(3):200-204.
    [8]Brandt T, Strupp M. General vestibular testing. Clin Neurophysiol,2005; 116(2): 406-426.
    [9]Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ. Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol,1999; 86(5): 1552-1560.
    [10]Yates BJ, Jakus JP, Miller AD. Properties of sympathetic reflexes elicited by natural vestibular stimulation:implications for cardiovascular control. J Neurophysiol,1994; 71:2087-2092.
    [11]Smith PF, Curthoys IS. Mechanisms of recovery following unilateral labyrinthectomy:a review. Brain Res Brain Res Rev,1989; 14(2):155-180.
    [12]蒋子栋.前庭损伤后脑干相关神经元c-Fos的表达.中华耳科学杂志, 2006;4(4):294-297.
    [13]Kitahara T, Takeda N, Kiyama H, Kubo T. Molecular mechanisms of vestibular compensation in the central vestibular system-Review. Acta Otolaryngol,1998; Suppl539:19-27.
    [14]Darlington CL, Flohr H, Smith PF. Molecular mechanisms of brainstem plasticity. The vestibular compensation model. Mol Neurobiol,1991; 5(2-4):355-368.
    [15]Darlington CL, Smith PF. Molecular mechanisms of recovery form vestibular damage in mammals:recent advances. Prog Neurobiol,2000,62(3):313-325.
    [16]Chan YS, Lai CH, Shum DK. Bilateral otolith contribution to spatial coding in the vestibular system. J Biomed Sci,2002,9(6 Pt2):574-586.
    [17]Chan YS. The coding of head orentations in neurons of bilateral vestibular nuclei of cats after unilateral labyrinthctomy:response to off-vertical axis rotation. Exp Brain Res,1997; 114(2):293-303.
    [18]Chan YS, Shum DK, Lai CH. Neuronal response sensitivity to bidirectional off-vertibular rotations:a dimension of imbalance in the bilateral vestibular nuclei of cats after unilateral labyrinthectomy. Neuroscience,1999; 94(3):831-843.
    [19]Bunemann L, Jensen KA, Riisager S, Thomsen LJ. Cerebral blood flow and metabolism during hypotension induced with sodium nitroprusside and metoprolol. Eur JAnaesthesiol,1991; 8(3):197-201.
    [20]Hamaguchi M, Ishibashi T, Katsumata N, Mitomo A, Imai S. Effect of sodium nitroprusside(MR7S1) and nitroglycerin on the systemic, renal crebral and coronary circulation of dogs anesthetized with enflurane. Cardiovasc Drugs Ther, 1992; 6(6):611-622.
    [21]Park BR, Kim MS, Yee GH, Moon MJ, Kim JH, Jin YZ, Kim YS. Changes in vestibular nerve activity following acute hypotension in rats. Korean J Physiol pharmacol,2003,7(4):85-89.
    [22]Kim MS, Kim JH, Kry D, Choi M A, Choi DO, Cho BG, Jin YZ, Lee SH, Park BR. Effects of acute hypotension on expression of cFos-like protein in the vestibular nuclei of rats. Brain Res,2003; 962(2):111-121.
    [23]Kim MS, Kim JH, Kim H, Jin YZ, Kry D, Park BR. Temporal changes of cFos-like protein expression in medial vestibular nuclei following arsanilate-induced unilateral labyrinthectomy in rats. Neuroscience Letters,2002; 319:9-12.
    [24]Jin YZ, Jin GS, Kim MS, Park BR. Role of central vestibular pathway on control of blood pressure during acute hypotension in rats. J Korean Balance Soc,2005; 4(2):189-200.
    [25]Park BR, Kim MS, Kim JH and Jin YZ. Effects of acute hypotension on neuronal activity in the medial vestibular nuclei of rats. Neuroreport,2001; 12(17):3821-3824.
    [26]安英,于海玲,邴艳华,金清华,崔勋,金元哲.急性低血压对清醒大鼠前庭神经内侧核区谷氨酸和牛磺酸含量的影响.中国临床康复,2006;10(30):82~85.
    [27]于海玲,安英,邴艳华,金清华,崔勋,金元哲.急性低血压对前庭神经内侧核区谷氨酸和牛磺酸含量的影响.生理学报,2006;58(2):177-182.
    [28]Le Gal La Salle G. Long-lasting and sequential increase of c-fos oncoprotein expression in kainic acid-induced status epilepticus. Neuroscience Letters,1988 May26;88(2):127-30.
    [29]Greenberg ME, Ziff EB, Greene LA. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science,1986 Oct 3; 234(4772):80-83.
    [30]Badoer E, McKinley MJ, Oldfield BJ, McAllen RM. Distribution of hypothalamic, medullary and lamina terminalis neurons expressing Fos after hemorrhage in conscious rats. Brain Research,1992 Jun 12;582(2):323-328.
    [31]Hamamura M, Nunez DJ, Leng G, Emson PC, Kiyama H. c-fos may code for a common transcription factor within the hypothalamic neural circuits involved in osmoregulation. Brain research,1992 Feb 14; 572(1-2):42-51.
    [32]Giovannelli L, Shiromani PJ, Jirikowski GF, Bloom FE. Oxytocin neurons in the rat hypothalamus exhibit c-fos immunoreactivity upon osmotic stress. Brain research,1990 Oct 29; 531(1-2):299-303.
    [33]罗培福等.全脑暂时性缺血诱导c-Fos原癌基因蛋白(FOS)在大鼠脑内的表达.神经解剖学杂志,1993;9:71-78.
    [34]Funahashi M, He YF, Sugimoto T, Matsuo R. Noxious tooth pulp stimulation suppresses c-fos expression in the rat hippocampal formation[J].Brain Res,1999; 827:215-220.
    [35]Katano H, Fujita K, Kato T, Asai K, Kawamura Y, Masago A, Yamada K. A metabotropic glutamate receptor antagonist, alpha-methyl-4-carboxy phenylglycine, attenuates immediate early gene mRNA expression following
    traumatic injury in cultured rat cortical glial cells. Neurosci Lett.2001 Jun 22; 306(1-2):101-5.
    [36]龚群,张蕴琨.运动与脑中谷氨酸受体及其基因表达.南京体育学院学报,2003;2(4):4-11.
    [37]Paxinos G, Waston C. The rat brain in stereotaxic coordinates. New York: Academic Press,1986; 60-69.
    [38]Cho SG, Lee JH, Kim MS, Jin YZ, Park BR, Oh SK, Jeong JW. The role of the vestibular system in modulating blood pressure of sinoaortic denervated rats. Korean Circulation J,2003; 33(6):513-522.
    [39]陈阳.前庭神经系统神经递质及受体的研究进展.国外医学耳鼻喉科学分册,1998,22(4):194-196.
    [40]Nordang L, Cestreicher E, Arnold W, Anniko M. Glutamate is the afferent neurotransmitter in the human cochlea. Acta Otolaryngol,2000; 120:359-362.
    [41]Pujol R, Puel JL. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea:a review of recent findings. Ann N Y A cad Sci,1999; 884: 249-254.
    [42]Meldrum BS. Glutamate as a Neurotransmitter in the Brain:Review of Physiology and Pathology. Journal of Nutrition,2000; 130:1007-1015.
    [43]Nishizawa Y. Glutamate realease and neuronal damage in ischemia. Life Sciences, 2001,69(4):369-381.
    [44]Paul P, Juan PR, Jua CA, Popper P, Rodrigo JP, Alvarez JC, Lopez I, Honrubia V. Expression of the AMPA-selective receptor subunits in the vestibular nuclei of the chinchilla. Molecular Brain Research,1997; 44(7):21-30.
    [45]顾美珍、尹善开.Otolaryngology Foreign Medical Sciences.January,2004; 28(1) 54-56.
    [46]Dragunow, M. and Faull, R., The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods,1989 Sep; 29(3):261-265.
    [47]Walberg F, Ottersen OP, Rinvik E. GABA, glycine, aspartate, glutamate and taurine in the vestibular nuclei:an immunocytochemical investigation in the cat. Exp Brain Res,1990; 79(3):547-563.
    [48]Smith PF, Darlington CL. Recent advances in the pharmacology of the vestibulo-ocular reflex system. Trends Pharmacol Sci,1996; 17(11):421-427.
    [1]王尧,杜子威主编.神经生物化学与分子生物学.北京:人民卫生出版社,1997,184-207.
    [2]Greengard P. The neurobiology of slow synaptic transmission. Science,2001; 294:1024-1029.
    [3]Gillessen T, Budd SL, Lipton SA.-Excitatory amino acid neurotoxicity. Adv Exp Med Biol,2002; 513(1):3-40.
    [4]Coodman Y, Bruce AJ, Cheng B, Mattson MP.Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem,1996; 66(5): 1835-1844.
    [5]Debler EA, Lajtha A. High-affinity transport of gamma-aminobutyric acid, glycine, taurine, L-aspartic acid, and L-glutamic acid in synaptosomal (P2) tissue:a kinetic and substrate specificity analysis. Journal of Neurochemistry, 1987,48:1851-1856.
    [6]Yang JM, Nam K, Kim HC, Lee JH, Park JK, Wu K, Lee ES, Steinert PM. A novel glutamic acid to aspartic acid mutation near the. end of the 2B rod domain in the keratin 1 chain in epidermolytic hyperkeratosis. J Invest Dermatol,1999; 112(3):376-379.
    [7]Nicholls D and Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci,1990; 11(11):462-468.
    [8]杨如,杨雄里.高亲和力谷氨酸转运体.生理科学进展,2000,31(4):293-298.
    [9]党红梅,马万云,韩慧婉.川芎嗪对脑缺血下大鼠纹状体区痕量氨基酸类神经递质的影响.高等学校化学学报,2005;26(10):1803-1807.
    [10]Burger PM, Hell J, Mehl E, Krasel C, Lottspeich F, Jahn R. GAB A and glycine in synaptic vesicles:storage and transport characteristics. Neuron,1991; 7(2):287-293.
    [11]胡元元,何善述,徐仁泅等.神经元GABA合成、分解和分泌与癫痫发病的 研究.中风与神经疾病杂志,2002;18(3):134-136.
    [12]Yoshimura M, Nishi S. Primary afferent-evoked glycine-and GABA-mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro. JPhysio 1, 1995; 482(1):29-33.
    [13]简坤林,宋开源,孙学川.择时运动对大鼠中枢甘氨酸神经递质的量及其节律的影响.解放军体育学院学报,2000;19(1):31-35.
    [14]Furma N and Koizurm T Neurotransimitter of vestibular commissural inhibition in the cat[J]. Acta Otolaryngol(Stockh),1998; 118:64-59.
    [15]Guth P S, Perin P, Morris CH. The vestibular hair cells:post-transductional signal processing. Prog Neurobiol; 1998,54:193-247.
    [16]Schwartz JC Pollard H, Quach TT. Histamine as a neurotransmitter in mammalian brain:neurochemical evidence. J Neurochem,1980; Jul; 35(1): 26-33.
    [17]Scarfone E, Ulfendahl M, Lundeberg T. The cellular localization of the neuropeptides substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y in guinea-pig vestibular sensory organs:a high-resolution confocal microscopy study. Neuroscience,1996 Nov; 75(2):587-600.
    [18]Panzanelli P, Valli P, Cantino D, Fasolo A. Glutamate and carnosine in the vestibular system of the frog. Brain Res,1994 Oct 31; 662(1-2):293-6.
    [19]李国彰,张志雄,何承敏.神经生理学.人民卫生出版社,2007;113-115.
    [20]Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor:the DARPP-32/proteinphosphatase-1 cascade[J]. Neuron,1999 Jul;23(3):435-47.
    [21]Fujita S, Usami S, Shinkawa H, Sato K, Kiyama H, Tohyama M. Expression of NMDA receptor subunit mRNA in the vestibular ganglion of the rat and guinea-pig. Neuroreport,1994 Apr 14; 5(8):862-864.
    [22]Dememes D, Lleixa A, Dechesne CJ. Cellular and subcellular localization of AMPA-selective glutamate receptors in the mammalian peripheral vestibular system. Brain Res,1995 Feb 6; 671(1):83-94.
    [23]Guth PS, Aubert A, Ricci AJ, Norris CH. Differential modulation of spontaneous and evoked neurotransmitter release from hair cells:some novel hypotheses. Hear Res,1991 Nov; 56(1-2):69-78.
    [24]Park BR, Kim MS, Yee GH, Moon MJ, Kim JH, Jin YZ, Kim YS. Changes in vestibular nerve activity following acute hypotension in rats. Korean J Physiol pharmacol,2003,7(4):85-89.
    [25]蒋子栋.前庭损伤后脑干相关神经元c-Fos的表达.中华耳科学杂志2006;4(4):294-297.
    [26]Shino I, Toshiaki Y, Taizo K, Toshikatsu N, Hiroshi H. Glutamate release in the rat medial vestibular nucleus following unilateral labyrinthectomy using in vivo microdialysis. Brain Research,2003; 991:78-83.
    [27]于海玲,安英,邴艳华,金清华,崔勋,金元哲.急性低血压对前庭神经内侧核区谷氨酸和牛磺酸含量的影响.生理学报2006;58(2):177-182.
    [28]Smith PF, Darlington CL. Recent advances in the pharmacology of the vestibulo-ocular reflex system. Trends Pharmacol Sci,1996; 17(11):421-427.
    [29]Takahashi Y, Tsumoto T, Kubo T. N-methyl-D-aspartate receptors contribute to afferent synaptic transmission in the medial vestibular nucleus of young rats. Brain Res,1994 Oct 3;659(1-2):287-291.
    [30]De Waele C, Vibert N Baudrimont M Vidal PP. NMDA receptors contribute to the resting discharge of vestibular neurons in the normal and hemilabyrin-thectomized guinea pig..Exp Brain Res,1990; 81(1):125-133.
    [31]Vidal PP, Vibert N, Serafin M, Babalian A, Muhlethaler M, de Waele C. Intrinsic physiological and pharmacological properties of central vestibular neurons. Adv Otorhinolaryngol,1999; 55:26-81.
    [32]Smith PF, Darlington CL, Hubbard J1. Evidence for inhibitory amino acid receptors on guinea pig medial vestibular nucleus neurons in vitro. Neurosci Lett. 1991; 121:244-246.
    [33]Dutia MB, Johnston AR, McQuen DS. Tonic activity of rat medial vestibular nucleus in vitro and its inhibition by GABA. Exp Brain Res,1992; 84:466-472.
    [34]Vibert N, Serafin M, Vidal PP, Muhlethaler M. Effects of baclofen on medial vestibular nucleus neurons in guinea-pig brainstem slices. Neurosci Lett,1995; 183:193-197.
    [35]Vibert N, Serafin M, Vidal PP. Direct and indirect effects of muscimol on medial vestiblar nucleus neurons in guinea-pig brainstem slices. Exp Brain Res,1995; 104:351-356.
    [36]Wess J. Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol,1996; 10:69-99.
    [37]韩维举,张素珍,韩东一,姜泗长,杨伟炎.胆碱能受体激动剂对豚鼠离体前庭毛细胞内钙离子浓度的影响.军医进修学院学报2001;22(1):1-4
    [38]余其林,孔维佳.毒蕈碱受体在大鼠前庭神经核中表达的免疫组织化学与原位杂交研究.听力学及语言疾病杂志,2005;13(4):264-266
    [39]Takeshita S, Sasa M, Ishihara K, Matsubayashi H, Yajin K, Okada M, Izumi R, Arita K, Kurisu K. Cholinergic and glutamatergic transmission in medial vestibular nucleus neurons responding to lateralroll tilt in rats[J]. Brain Res,1999 Sep4;840(1-2):99-105.
    [40]Wackym P A, Chen C T, Ishiyama A, Pettis RM, Lopez IA, Hoffman L. Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int,1996; 20:187-192.
    [41]Ohno K, Takeda N, Kiyama H, Kato H, Fujita S Matsunaga T, Tohyama M. Synaptic contact between vestibular afferent nerve and cholinergic efferent terminal:its putative mediation by nicotinic receptors. Brain Res Mol Brain Res, 1993 Jun; 18(4):343-6.
    [42]Anniko M, Arnold W. Acetylcholine receptor localization in human adult cochlear and vestibular hair cells. Acta Otolarybgol,1991; 111(3):491-499.
    [43]Kia HK, Miquel MC, Brisorgueil MJ, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, Verge D. Immunocytochemical localization of serotonin IA receptors in the rat central nervous system. J Comp Neuiol,1996; 365: 289-305.
    [44]Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L. Comparative localizations of serotonin 1A,1C and 2 receptor subtypes mRNAs in rat brain. J Comp Neuiol,1995; 351:357-373.
    [45]Fay R, Kubin L. Pontomedullary distribution of 5-HT2A receptorlike protein in the rat. J Comp Neuiol,2000; 418:323-345.
    [46]韩济生,许伟.5一羟色胺,神经科学原理(第二版).北京:北京医科大学出版社,1999:504-523.
    [47]Amano T, Akbar M, Matsubayashi H, Sasa M. Inhibitory effects of tandospirone, a 5-HT1A agonists on medial vestibular nucleus neurons responding to lateral roll tilt stimulation in rats. Brain Res,2001; 910:195-198.
    [48]Li Volsi G, Licata F, Fretto G, Mauro MD, Santangelo F..Influence of serotonin on the glutamate-induced excitations of secondary vestibular neurons in the rat. Exp Neurol,2001; 172:446-459.
    [49]Kishimoto T, Yamanaka T, Amano T, Todo N, Sasa M.5-HT1A receptor-mediated inhibition of lateral vestibular nucleus neurons projecting to the abducens nucleus. Brain Res,1994 Apr 25; 644(1):47-51.
    [50]Licata F, Volsi GL, Maugeri G, Santangelo F. Excitatory and inhibitory effects of 5-hydroxytryptamine on the firing rate of medial vestibular nucleus neurons in the rat. Neurosci Lett,1993 May 14; 154(1-2):195-8.
    [51]Schwartz JC. Histaminergic mechanisms in brain. Annu Rev Pharmacol Toxical, 1977; 17:325-39.
    [52]Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature,1983 Apr 28; 302(5911):832-7.
    [53]Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M. Histaminergic transmission in the mammalian brain. Physiol Rev,1991 Jan; 71(1):1-51.
    [54]Panula P, Pirvola U, Auvinen S, Airaksinen MS. Histamine-immunoreactive nerve fibers in the rat brain. Neuioscience,1989;28(3):585-610.
    [55]De Waele C, Serafin M, Khateb A, Vibert N, Yabe T, Arrang JM, Mulhethaler M, Vidal PP. An in vivo and in vitro study of the vestibular nuclei histaminergic receptors in the guinea pig. Ann NY Acad Sci,1992 May 22;656:550-565.
    [56]Serafin M, Khateb A, Vibert N, Vidal PP, Muhlethaler M. Medial vestibular nucleus in the guinea-pig:histaminergic receptors. I. An in vitro study. Exp Brain Res,1993; 93(2):242-248.
    [57]Yabe T, de Waele C, Serafin M, Vibert N, Arrang JM, Muhlethaler M, Vidal PP. Medial vestibular nucleus in the guinea-pig:histaminergic receptors. II. An in ivo study. Exp Brain Res,1993; 93(2):249-258.
    [58]Horii A, Takeda N, Matsunaga T, Yamatodani A, Mochizuki T, Okakura-Mochizuki K, Wada H. Effect of unilateral vestibular stimulation on histamine release from the hypothalamus of rats in vivo. J Neurophysiol,1993 Nov; 70(5): 1822-1826.
    [59]Kaufman GD, Anderson JH, Beitz AJ. Fos-defined activity in rat brainstem following centripetal acceleration. JNeurosci,1992 Nov; 12(11):4489-4500.
    [60]MarshburnTH, Kaufman GD, Purcell IM, Perachio AA. Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation. Brain Res,1997 Jun 27; 761(1):51-58.
    [61]Morgan JI, Curran T. Stimulus-transcription coupling in neurons:role of cellular immediate-early genes. Trends Neurosci,1989 Nov; 12(11):459-62.
    [62]Sonnenberg JL, Mitchelmore C, Macgregor-Leon PF, Hempstead J, Morgan JI, Curran T. Glutamate receptor agonists increase the expression of Fos, Fra, and AP-1 DNA binding activity in the mammalian brain. J Neurosci Res,1989 Sep; 24(1):72-80.
    [63]Morgan JI, Cohen DR, Hempstead JL, Curran T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science,1987 Jul 10; 237(4811):192-197.
    [64]Le Gal La Salle G. Long-lasting and sequential increase of c-fos oncoprotein expression in kainic acid-induced status epilepticus. Neuroscience Letters,1988 May 26; 88(2):127-130.
    [65]Barker PE, Rabin M, Watson M, Breg WR, Ruddle FH, Verma IM. Human c-Fos oncogene mapped within chromosomal region 14q21-q31.Proc. Natl.Acad.Sci. USA,1984 Sep;81(18):5826-5830.
    [66]Sambucetti LC, Curran T. The Fos protein complex is associated with DNA in isolated nuclei and binds to DNA cellulose.Science,1986 Dec 12; 234(4782): 1417-1419.
    [67]Rauscher FJ 3rd, Cohen DR, Curran T, Bos TJ, Vogt PK, Bohmann D, Tjian R, Franza BR Jr. Fos-associated protein p39 is the product of the jun proto-oncogene. Science,1988 May 20; 240(4855):1010-1016.
    [68]张遐,等.c-Fos癌基因的诱导和显示.生理科学进展,1991;22:299-303.
    [69]Curran T, Morgan JI. Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science,1985 Sep 20; 229 (4719):1265-1268.
    [70]Lindvall O, Ernfors P Bengzon J, Kokaia Z, Smith ML, Siesjo BK, Persson H. Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci USA,1992 Jan 15; 89(2):648-652.
    [71]Szekely AM, Barbaccia ML, Costa E. Activation of specific glutamate receptor subtypes increases C-fos proto-oncogene expression in primary cultures of neonatal rat cerebellar granule cells. Neuropharmacology,1987 Dec;26(12): 1779-1782.
    [72]Macara IGOncogenes and cellular signal transduction. Physiological Reviews, 1989 Jul; 69(3):797-817.
    [73]Greenberg ME, Ziff EB, Greene LA. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science,1986 Oct 3; 234(4772):80-83.
    [74]Badoer E, McKinley MJ, Oldfield BJ, McAllen RM. Distribution of hypothalamic, medullary and lamina terminalis neurons expressing Fos after hemorrhage in conscious rats. Brain Research,1992 Jun 12; 582(2):323-328.
    [75]Hamamura M, Nunez DJ, Leng G, Emson PC, Kiyama H. c-fos may code for a common transcription factor within the hypothalamic neural circuits involved in osmoregulation. Brain research,1992 Feb 14; 572(1-2):42-51.
    [76]Giovannelli L, Shiromani PJ, Jirikowski GF, Bloom FE. Oxytocin neurons in the rat hypothalamus exhibit c-fos immunoreactivity upon osmotic stress. Brain research,1990 Oct 29; 531(1-2):299-303.
    [77]罗培福等.全脑暂时性缺血诱导c-Fos原癌基因蛋白(FOS)在大鼠脑内的表达.神经解剖学杂志,1993;9:71-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700