基于Volterra级数和神经网络的非线性电路故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术的飞速发展,非线性模拟电路在工程上广泛应用。但是,测试和故障诊断问题一直是生产和使用这些非线性模拟电路的瓶颈。由于元件的非线性,不存在一种普遍适用的非线性电路模型,缺乏通用的非线性电路仿真程序,导致电路的故障特性无统一的分析计算方法。非线性系统的Volterra级数核是系统的本质特征,基于Volterra级数的非线性系统分析和系统辨识已经引起了国际学术界的重视。神经网络具有较强的模式识别和非线性函数逼近能力。因此,本文针对非线性电路的特点,利用Volterra级数和神经网络等理论系统的研究了非线性模拟电路自动故障诊断系统结构,故障特征的提取方法和测试激励信号参数优化方法。作者主要做了如下几个方面的工作:
     1.基于神经网络的模拟电路故障诊断系统
     研究了基于神经网络的模拟电路故障诊断系统的结构,包括特征提取,神经网络训练样本的形成、结构确定和学习算法。
     2.频域法非线性模拟电路故障特征提取
     ①基于非线性模拟电路频率响应的故障诊断。本文首先利用Volterra级数分析非线性模拟电路的频率响应,然后研究了如何从频率响应提取故障特征。频率响应法诊断故障的关键是激励信号的频率设计。本文提出了两种激励信号设计方法,一种方法是以尽量少的谐波信号获得尽量大的故障特征向量的方法设计激励信号;另一种方法是把激励信号的设计当作一个优化问题,即用Volterra级数建立非线性模拟电路的数学模型,然后用遗传算法搜索使故障电路和无故障电路响应区别最大的激励信号的方法。在用Volterra级数建模的过程中,Volterra核的测量是关键,因此,本文还研究了Volterra级数显著阶的确定和Volterra核的测量。
     ②基于非线性模拟电路的Volterra频域核的故障特征提取方法。非线性模拟电路的Volterra频域核不依赖于系统的输入,完全反映了系统的本质特性。因此本文提出用非线性模拟电路的Volterra频域核作故障特征进行故障诊断,并提出一种直接利用电路的频率响应快速测量Volterra频域核的方法,测量精度高。
     3.瞬态响应法非线性模拟电路故障特征提取
     ①研究了应用小波分析从电路的瞬态响应中提取电路故障特征的方法。应用小波多分辨分析从电路的瞬态响应中提取故障电路和无故障电路的特征,作为神经网络的输入,对故障类别进行辨识,该方法减少了神经网络的输入数目,简化了结构和减少了训练时间,提高了故障辨识能力。本文分析了各种小波函数对故障诊断率的影响,并提出一种利用总体类间离散度的方法选择诊断效率最高的小波的方法。
     ②研究了瞬态测试故障诊断的激励信号的优化。本文提出用反馈神经网络建立动态非线性模拟电路的数学模型,然后用遗传算法搜索激励信号的最佳参数的方法,以提高故障识别率。
     通过对举例电路的仿真表明,利用所提出的方法,能较好地分析非线性模拟电路的故障响应,较准确地完成非线性模拟电路的故障诊断,并且具有良好的可行性。
With the advancement in electronic technology, nonlinear analog are being used aggressively in industry. Nevertheless, fault diagnosis continues to be the bottleneck in producing and using these circuits. For the circuits with nonlinear component, there are no generally proper math model and common simulation program for nonlinear circuits. So the unified method is lacking for computing fault character of nonlinear circuits. The Volterra kernels of nonlinear analog circuits are the inherent characteristic of the system. System identification and nonlinear system analysis based on Volterra series are widely used in resent years. Neuron network has strong patter identification ability and can approximate a nonlinear system accurately. Therefore, this dissertation studied the structure of nonlinear analog circuits fault diagnosis system and the methods of how to extract the fault signatures from the respose of the circuit based on Volterra series and neural networks. Author's main work concentrates on three aspects as follows:
     1. Faults diagnosis system of analog circuits based on neural networks.
     Researched the structure of nonlinear analog circuits fault diagnosis system based on neural network. Include the methods of extract fault signatures, generate the train samples, design the neural network structure and the learn arithmetic.
     2. How to extract fault signatures from frequency response of nonlinear analog circuits
     ①Nonlinear analog circuits fault diagnose based on frequency response. This dissertation researched the character of the frequency response of nonlinear analog circuits with Volterra series, and presented a method of how to extract the fault signatures from frequency response of the nonlinear analog circuit. Because the key of fault diagnosis based on frequency response is how to design the stimulus, this dissertation presented two methods to solve this problem. One is designing the frequency of stimulus with least multisine to generate most fault signature. The other is using optimization that used the Volterra kernels as the models of the fault circuits and fault free circuits and search the optimum stimulus based on genetic algorithm. To develop the precision models of nonlinear analog circuits, this dissertation researched how to determine the highest significant order of nonlinear analog circuit and how to measure all the Volterra kernels.
     ②How to use the Volterra frequency kernels as the fault signatures in diagnosis nonlinear analog circuit. The Volterra kernels of nonlinear analog circuits which are independent of the input are the inherent characteristic of the circuits. So this dissertation presented that using the Volterra frequency kernels as the fault signatures to diagnosis. This dissertation presented a Volterra frequency kernels measurement method that used the frequency response of nonlinear analog circuits directly.
     3. How to extract fault signatures from transient response of nonlinear analog circuit
     ①This dissertation presented that use wavelet analysis to extract the transient response signature of nonlinear circuits and compress the signature data, and fed it into neural networks to execute fault identification. This method can largely reduces the input number and training time, simplifies the construction and improves the ability of fault identification for neural networks. This dissertation presented a selecting the best wavelet function method based on the between-category total scatter of signature.
     ②Studied how to optimum the transient testing stimulus. This dissertation present that use Elman network to develop the models of the fault circuits and fault free circuit and search the optimum stimulus based on genetic algorithm.
     The simulation results of examples given in this dissertation show that the fault diagnosis methods proposed above have good diagnosis effect and feasibility in analyzing the fault response of nonlinear analog circuits and can locate the fault correctly.
引文
[1] 杨士元,童诗白.模拟系统的故障诊断与可靠性设计.北京:清华大学出版社,1993.
    [2] 谭阳红,基于小波和神经网络的大规模模拟电路故障诊断研究:[博士学位论文].长沙:湖南大学,2005,1-2
    [3] 刘瑞文.反馈系统设计的公理化方法与模拟电路故障诊断问题.讲演记录.上海复旦大学,中国人民解放军国防科大情报资料室,1998,39-55
    [4] Feng Li, Peng-Yung Woo. Fault detection for linear analog IC-the method of short-circuit admittance parameters. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2002, 49(1): 105-108.
    [5] A. Roy, S. Sunter, et al. High accuracy stimul us generation for A/D converter BIST. Proceedings of International Test Conference, 2002, 1031-1039.
    [6] 杨金法,彭虎.非线性电子线路.北京:电子工业出版社 2003
    [7] 林圭年.非线性网络与系统.上海:中国铁道出版社 1987
    [8] Berkowitz R. Condition for network-element-value solvability. IRE Transaction on circuits Theory. 1962, Vol.CT-9:25-29
    [9] T. Ozawa, M. Yamada. Conditions for Determining Parameter Values in a Linear Active Network from Node Voltage Measurements. Proceeding of IEEE Int. Symp. CAS, 1982, 274-277
    [10] Z. F. Huang, C. S. Lin, R. W. Liu. Topological Condition on Multiple Fault Testability of Analog Circuits. Proceedings of IEEE Int. Symp. CAS. 1982, 1152-1155
    [11] J. W. Bandler. Recent Advances in Fault Location of Analog Networks. Proc. IEEE Int. Symp. CAS., Canada, 1984, 660-663
    [12] Z. F. Huang, C. S. Lin, R. W. Liu. Node-fault Diagnosis and a Design of Testability. IEEE Trans. On CAS, 1983, 30(5):257-265
    [13] 孙义闯.模拟电路故障诊断理论与方法综述.大连海运学院学报,1989,15(4):68-75
    [14] Bandler J. W., Salama A. E.. Fault Diagnosis of Analog Circuits. Proceedings of the IEEE, 1985, 73 (8): 1279-1327
    [15] J. A. Starzyk, M. A. El-Gamal. Artificial neural network for testing analog circuits. IEEE International Symposium on Circuits and Systems, 1990, 1851-1854.
    [16] V. Rajan, Jie Yang, et al. Machine learning algorithms for fault diagnosis in analog circuits. 1998 IEEE International Conference on Systems, Man, and Cybernetics, 1998, 1874-1879
    [17] S. Ogg, S. Lesage, et al. Multiple fault diagnosis in analogue circuits using time domain response features and multilayer perceptrons. IEE Proceedings of Circuits, Devices and Systems, 1998, 145(4):213-218.
    [18] Pramodchandran N. Variyam, Sasikumar Cherubal, Abhijit Chatterjee. Prediction of analog performance parameters using fast transient testing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2002, 21 (3):349-361
    [19] A. Walker, W. Alexander, P. K. Lala. Fault diagnosis in analog circuits using element modulation. IEEE Design Test Computers, 1992, 19-29
    [20] J. B. Brockman, S. W. Director. Predictive subset testing: Optimizing IC parametric performance testing for quality, cost and yield. IEEE Trans. Semi conduct. Manuf, 1989, 2:104-113
    [21] W. Maly, Z. Pizlo. Tolerance assignment for IC selection tests. IEEE Trans. Computer-Aided Design, 1985, 156-162
    [22] T. M. Souders, G. N. Stenbakken. Cutting the high cost of testing. IEEE Spectrum, 1991, 48-51
    [23] G. N. Stenbakken, T. M. Souders. Test-point selection and testability measures via QR factorization of linear models. IEEE Trans. Instrum. Measurement, 1987, 46-110
    [24] S. D. Huss, R. S. Gyurcsik. Optimal ordering of analog IC tests to minimize test costs. Design Automation Conf, 1991, 494-499.
    [25] L. Milor, A. L. Sangiovarmi-vincentelli. Minimizing production test time to detect faults in analog circuits. IEEE Trans. Computer Aided Design, 1994, 13:796-813
    [26] J. V. Spaandonk, T. A. M. Kevenaar. Selecting Measurements to Test the Functional Behaviour of Analog Circuits Journal of Electronic Testing: Theory and Application. 1996, 9: 9-18.
    [27] A. Abderrahman, E. Cerny. Worst case tolerance analysis and CLP-based multifrequency test generation for analog circuits. IEEE Transaction on Computer-Aided Design of Circuits and Systems, ,1999, 18(3):332-345
    [28] H. Walker, S. W. Director. VLASIC: A catastrophic fault yield simulator for integrated circuits. IEEE Trans. Computer Aided Design, 1986, 5(4): 541-556
    [29] L. Rapisarda, R. Decarlo. Analog Multifrequency Fault Diagnosis. IEEE Trans. On CAS, 1983 30(7), 223-233
    [30] N. Sen, R. Sakes. Fault Diagnosis for linear System Via Multifrequency Measurements. IEEE Trans. On CAs 1977, 26(7), 457-465
    [31] Robert Spain, Shambhu Upadhyaya. Linear Circuit Fault Diagnosis Using Neuromorphie Analyzers. IEEE Transaction on Circuits and Systems-Ⅱ. Analog and Digital Signal Processing, 1997, 44(3):188-196.
    [32] Tadeusiewicz M., Halgas S., Korzybski M.. An algorithm for soft-fault diagnosis of linear and nonlinear Circuits. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2002, 49(11): 1648-1653.
    [33] Penminfang, Heyigang. A new fault dictionary method for diagnosis of tolerance circuit. Proceedings ⅢS International Conf. on CCCT, 2004, 378-382
    [34] 崔莼,罗先觉,邱关源.故障诊断交流字典法的前向神经网络实现方法.微电子学,1996,26(5):313-318.
    [35] Aminian F., Aminian M., Collins H. W. Jr.. Analog fault diagnosis of actual circuits using neural network. IEEE Transactions on Instrumentation and Measurement, 2002, 51(3):544-550.
    [36] 孙秀宾.混合信号电路故障诊断的内建自测试(BIST)方法研究:[博士学位论文].成都:电子科技大学,2004年
    [37] G. Devarayanadurg, M. Soma. Analytical fault modeling and static test generation for analog IC's. Int. Conf. Computer Aided Design, 1994, 44~47.
    [38] N. Nagi, A. Chatterjee, A. Balivada et al. Fault-based automatic test generator for linear analog devices. Proc. Int. Conf. Computer Aided Design, 1993, 88-91.
    [39] M. Slamani, B. Kaminska. Multifrequency analysis of faults in analog circuits. IEEE Design Test Conf. Computers, 1995, 70-80
    [40] A. Abderrahman, E. Cerny, B. Kaminska. Optimization based multifrequency test generation for analog circuits. J. Electronic Testing, 1996. 9:59-73
    [41] Taylor, D., Platts, A.. Transient response testing of nonlinear analogue circuits using optimised fault sets. Circuits, Devices and Systems, IEE Proceedings, 2003, 150(2): 104-112
    [42] A. Balivada, J. Chen, J. A. Abraham. Analog testing with time response parameters IEEE Design Test Computers, 1996, 13:18-25
    [43] G. Devarayanadurg, M. Soma. Dynamic test signal design for analog IC's. Proc. Int. Conf. Computer Aided Design, 1995, 627-629.
    [44] Variyam, P. N., Chatterjee, A.. Specification-driven test generation for analog circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2000, 19(10):1189-1201
    [45] Worsman M, Wong M W T. Nonlinear circuit fault diagnosis with large change sensitivity. IEEE International Conference on Electronics, Circuits and Systems, 1998, 2:225-228
    [46] A. M. Brosa, J. Figueras. Digital signature proposal for mixed-signal circuits. Proceedings of International Test Conference, 2000, 1041-1050.
    [47] Yu S, Jervis B W, et al. Neural network approach to fault diagnosis in CMOS opamps with gate oxide short faults. Electronics Letters, 1994, 30(9): 695-696.
    [48] Ashouri M R. Fault detection of analog circuits using neural networks and Monte-Carlo analysis. Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, 2001, 2: 700-704.
    [49] Stopjakova V, Malosek P, et al. Classification of defective analog integrated circuits using artificial neural networks. Journal of electronic testing: Theory and applications 2004, 20:25-37.
    [50] Aminian M, Aminian F. A comprehensive examination of neural network architectures for analog fault diagnosis. Proceedings of International Joint Conference on Neural Networks, 2001, 3:2304-2309
    [51] Aminian F, Aminian M, et al. Analog fault diagnosis of actual circuits using neural networks. IEEE Transactions on Instrumentation and Measurement, 2002, 51 (3):544-550.
    [52] Aminian M, Aminian F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor. IEEE Transactions on: Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 2000, 47(2): 151-156
    [53] He Y; Tan Y; Sun Y. Wavelet neural network approach for fault diagnosis of analogue circuits. IEE Proceedings on Circuits, Devices and Systems, 2004, 151 (4):379-384
    [54] F. Bouwman, T. Zwemstra, et al. Application of joint time-frequency analysis in mixed signal testing. Proceedings of International Test Conference, 1994, 747-756
    [55] H. S. Mendonca, J. M. Silva, et al. ADC testing using joint time-frequency analysis. Third International Conference on Advanced A/D and D/A Conversion Techniques and their Applications, 1999, 157-159
    [56] Toczek W, Zielonko R, Adamczyk A. A method for fault diagnosis of nonlinear electronic circuits. Measurement, 1998, 2479-2486
    [57] Gad Emad, Khazaka Roni, Nakhla Michel S, et al. A Circuit Reduction Technique for Finding the Steady-State Solution of Nonlinear Circuits. IEEE Trans. Microwave Theory and Techniques, 2000-12, 48(12): 2389-2396
    [58] He Y., Sun Y.. Neural network-based Ll-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance, IEE Proceedings G- Circuits, Devices and Systems, 2001, 148(4):223-228
    [59] S. D. Huynh, Seongwon Kim, et al. Automatic analog test signal generation using multifrequency analysis. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1999, 46(5): 565-576
    [60] M. Slamani, B. Kaminska. Multifrequency testability analysis for analog circuits. 12th IEEE Proceedings of 1994 VLSI Test Symposium, 1994, 54-59
    [61] M. Slamani, B. Kaminska. Fault observability analysis of analog circuits in frequency domain. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1996, 43(2), 134-139
    [62] Burdiek, B.. Generation of optimum test stimuli for nonlinear analog circuits using nonlinear programming and time-domain sensitivities. Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001. Proceedings, 2001, 603-608
    [63] Variyam, P. N., Chatterjee, A.. Specification-driven test generation for analog circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2000, 19(10): 1189-1201
    [64] S. D. Huynh, K. Seongwon, et al. Automatic analog test signal generation using multifrequency analysis. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1999, 46(5):565-576.
    [65] Burdiek, B.. The qualitative form of optimum transient test signals for analog circuits derived from control theory methods. Proceeding, IEEE International Symposium on Circuits and Systems, 2002. 2002, 157-160
    [66] Bishop C. M. Neural Networks for Pattern Recognition. Oxford: Claredor Press, 1995.
    [67] Gu X. P, Yang Y. H, Zang W. Q, et al.. Integration of Artificial Neural Networks and Expert Systems for Power System Fault Diagnosis. Proc. IPEC'95, Singapore, February 1995.
    [68] Spina R., Upadhyaya S.. Linear Circuit Fault Diagnosis Using Neuromorphic Analyzers. IEEE Trans. on Circuits and Systems Ⅱ, 1997, 44(3):188-196
    [69] E. F. Jr Cabral, M. Y. Teruya, et al. Using MLPs for fault analysis in analog circuits. 1995 Proceedings of the 38th Midwest Symposium on Circuits and Systems, 1995, 1172-1174.
    [70] M. A. El-Gamal. A knowledge-based approach for fault detection and isolation in analog circuits. International Conference on Neural Networks, 3, 1997, 1580-1584.
    [71] Martin T. Hagan, Neural Network Design, Beijing: China machine press, 2002
    [72] M. Aminian, F. Aminian. A comprehensive examination of neural networks architectures for analog fault diagnosis. Proceedings of International Joint Conference on Neural Networks, 3, 2001:2304-2309
    [73] F. Aminian, M. Aminian, et al. Analog fault diagnosis of actual cinuits using-neural networks. IEEE Transautions on Instrumentation and Measurement, 2002, 51 (3):544-550
    [74] A. I. Nissar, S. J. Upadhyaya. Fault diagnosis of mixed signal VLSI systems using artificial neural networks. 1999 Southwest Symposium on Mixed-Signal Design, 1999, 93-98.
    [75] M. Catelani, A. Fort, et al. Application of radial basis function network to the preventive maintenance of electronic analog circuits. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, 1, 1999, 510-513.
    [76] M. Catelani, A. Fort. Fault diagnosis of electronic analog circuits using a radial basis function network classifier. Measurement 28, 2000,147-158.
    [77] M. A. El-Gamal, M. F. Abu. El-Yazeed. A combined clustering and neural network approach for analog multiple hard fault classification. 1999 Kluwer Academic Publishers. Journal of Electronic Testing: Theory and Applications 1999, 14(3): 207-217
    [78] V. Vidqvist. Bayesian methods in fault diagnosis and maintenance of production systems. Postgraduate Course in Automation Technology, 2002, 1-12
    [79] Zhen Guo, Xi Min Zhang, et al. On test and characterization of analog linear time-invariant circuits using neural networks. Proceedings of 10th Asian 2001 Test Symposium, 2001, 338-343.
    [80] M. F. Abu EI-Yazeed. An integrated approach for analog circuit testing using autocorrelation analysis, singular value decomposition and probabilistie neural network. Proceedings of the 15th International Conference on Microelectronics, 2003, 41-45.
    [81] 曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安:西安交通大学出版社 2001
    [82] Leon O. Chua, Youlin Liao. Measuring Volterra Kernels Ⅲ: How to Estimate the Highest Significant Order. International Journal of Circuit Theory and Applications, 1991, 19:189-209
    [83] Pavol Mikulik, Jan Saliga. Volterra Filtering for Integrating ADC Error Correction, Based on an A Priori Error Model. IEEE Transactions on Instrumentation and Measurement, 2002, 51(4): 870-875
    [84] Leon O. Chua, Youlin Liao. Measuring Volterra Kernels Ⅱ. International Journal of Circuit Theory and Applications, 1988, 17:151-190.
    [85] Burcin Baytekin, Robert G Meyer. Analysis and Simulation of Spectral Regrowth in Radio Frequency Power Amplifiers. IEEE Journal of Solid-State Circuits, 2005, 40(2)370-381
    [86] Van den Eijnde E, Schoukens J. A recursive solution for strongly nonlinear systems by combining Volterra principles with the harmonic balance technique. IEEE International Symposium on Circuits and Systems, 1989, 3:2159-2164.
    [87] Piet Wambacq, Georges G. E. Gielen, Peter R. Kinget, et al. High-Frequency Distortion Analysis of Analog Integrated Circuits. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 1999, 46 (3):335-345
    [88] Petr Dobrovolny, Gerd Vangersteen, Piet Wambacq, et al. Analysis and Compact Behavioral Modeling of Nonlinear Distortion in Analog Communication Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22 (9): 1215-1227
    [89] Musa H. Asyali, Mlkko Juusola. Use of Meixner Functions in Estimation of Volterra Kernels of Nonlinear System With Delay. IEEE Transactions on Biomedical Engineering, 2005, 52(2):229-237
    [90] Ceri Evans, David Rees, Michael Weiss. Periodic Signals for Measuring Nonlinear Volterra Kernels. IEEE Transactions on Instrumentation and Measurement. 1996, 45(2):362-371
    [91] Jose C. Pedro, Stephen A. Maas. A Comparative Overview of Microwave and Wireless Power-Amplifier Behavioral Modeling Approaees. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1150-1163
    [92] 周玉芬,高锡俊.模拟电路故障诊断.北京:国防工业出版社.1989
    [93] 赵国南,郭玉顺.模拟电路故障诊断.哈尔滨:哈尔滨工业大学出版社.1991
    [94] 唐人亨.模拟电子系统的自动故障诊断.北京:高等教育出版社.1991
    [95] 郑致刚,王士星,张帆.基于小波神经网络的模拟电路故障诊断.海军航空工程学院学报.2006,21(1):117-120
    [96] 彭敏放,何怡刚,王耀南,等.模拟电路的融合智能故障诊断.中国电机工程学报.2006,26(3):19-25
    [97] 何怡刚,罗先觉,邱关源.基于神经网络的模拟电路故障诊断优化近似方法.微电子学,Vol 25,No.5,1995,25(5):30:33
    [98] 陈光(礻禹).数据域测试及仪器.成都:电子科技大学出版社,2001.
    [99] 陈光(礻禹),潘中良.可测性设计技术.北京:电子工业出版社,1996.
    [100] 王承.基于神经网络的模拟电路故障诊断方法研究:[博士学位论文].成都:电子科技大学,2005年
    [101] 崔莼,罗先觉,邱关源.基于模糊规则神经分类器的模拟电路故障诊断法.微电子学,1997,27(1):32-34
    [102] 林争辉,武强.非线性电路故障诊断的理论和算法.上海交通大学学报,1995,29(1):16-21
    [103] 赵建,林争辉.非线性电阻电路的单故障诊断的一种方法.上海交通大学学报,1997,31(5):52-57
    [104] 赵建,林争辉.非线性动态电路故障诊断的递推方法.上海交通大学学报,1998,31(1):8-11.
    [105] 黄东泉,蔡金锭.子网络级故障诊断中的误区分析.电子学报,1995,23(8):75-77
    [106] 孙雨耕,吴雪,宋学军,李素红.大规模模拟电路子网络级故障诊断的改进节点撕裂法.天津大学学报(自然科学与工程技术版),1997,30(3):265-273
    [107] 周应权,闵应骅.基于连续校验和的模拟检错电路硬件开销的优化.电子学报,1997,25(2):45-49
    [108] 张志涌,杨祖樱.G参数诊断准则的理性分析.电子学报,1997,25(7):102-104
    [109] 朱大奇,于盛林.电子电路故障诊断的神经网络数据融合算法.东南大学学报(自然科学版),2001,31(6):87-90
    [110] 陈圣俭,洪炳熔.可诊断容差模拟电路软故障的新故障字典法.电子学报,2002,28(2):127-129
    [111] 王承,陈光福,谢永乐,小波-神经网络在模拟电路故障诊断中的应用,系统仿真学报,2005,(8):40-43
    [112] 谢宏,何怡刚等.小波神经网络在模拟电路故障诊断中的应用研究.湖南大学学报(自然科学版),2004,31(4):38-40.
    [113] 孙秀斌:陈光(礻禹):谢永乐:模拟集成电路的测试节点选择。电子与信息学报,2004,(04):022-025
    [114] 欧文,韩崇昭,王文正.Volterra泛函级数在非线性系统辨识中的应用.控制与决策,2002,17(2):239-242
    [115] 孔祥玉,韩崇昭,魏瑞轩等.一种全解耦的RLS自适应Volterra滤波器.电子学报,2004,32(4):687-689
    [116] 胡钋 韩进能.渥尔特拉最佳滤波器及其应用于非线性系统辨识.武汉大学学报(工学版),2004,37(1):120-124
    [117] 李义府,谢宏,何怡刚等.非线性网络广义频率响应函数统一递推分析法.中南大学学报(自然科学版),2004,35(2):268-272
    [118] “半导体集成化芯片系统基础研究”重大研究计划,国家自然科学基金委员会,2002年11月
    [119] Cesare Alippi, Marcantonio Catelani, Ada Fort et al. SBT soft fault diagnosis in analog electronic circuits: A sensitivity-based approach by randomized algorithms. IEEE Transactions on Instrumentation and Measurement, 2002, 51(5): 1116-1125
    [120] Lippmann R P. An introduction to computing with neural nets. Washington DC: IEEE ASSPM Magazine, 1999.
    [121] Hecht-Nielson R. Kolmogorov's mapping neural network existence theorem. Int. Conf on Neural Network, 1987, 3(6): 11-13.
    [122] Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks, 1989, 2(7): 183-192.
    [123] Tamura S., et al. Capabilities of a four-layered feed-forword NN, four layer versus three layer. IEEE Trans on Neural Networks, 1997, 8(3): 251-255.
    [124] 陈晓娟.模拟电路神经网络故障诊断方法研究:[博士学位论文].吉林:吉林大学,2006
    [125] B. Kaminska, K. Arabi, I. Bell et al. Analog and Mixed-Signal Benchmark Circuits-First Release. IEEE International Test Conference, Washington DC, 1997:183-190
    [126] R. Kondagunturi, E. Bradley, K. Maggard, et al. Benchmark circuits for analog and mixed-signal testing, Southeastcon'99. Proceedings. IEEE 1999, 217~220
    [127] YIN Shi-Rong, CHEN Guang-Ju. Nonlinear analog circuits fault diagnosis based on frequency testing. International Symposium on Test Automation and Instrumentation. 2006, 973-976
    [128] 殷时蓉,陈光福,谢永乐,Volterra核的测量及在非线性模拟电路测试中的应用.控制与决策,2006,25(10):1134-1137
    [129] Michael Weiss, Ceri Evans, David Rees. Identification of Nonlinear Cascade Systems Using Paired Multisine Signals[J]. IEEE transactions on instrumentation and measurement, 1998, 47(1):332-336
    [130] Tianhai wang, Thomas J. Brazil. Volterra-Mapping-based Behavioral Modeling of Nonlinear Circuits and Systems for High Frequencies. IEEE transactions on microwave theory and techniques, 2003, 51(5): 1433-1440
    [131] Ceri Evans, David Rees, Lee Jones. Periodic signals for measuring nonlinear volterra kernels. IEEE transaction on instrument and measurement, 1996, 45(2):362-371
    [132] 殷时蓉,陈光(礻禹),谢永乐.基于遗传算法的模拟电路故障诊断激励优化.测控技术,(已录用)
    [133] 边肇祺,张学工,模式识别(第二版),北京:清华大学出版社 2000
    [134] YIN Shi-Rong, CHEN Guang-Ju, Xie Rongle, Wavelet neural network based fault diagnosis in nonlinear analog circuits. Journal of Systems Engineering and Electronics, 2006. 17(3): 521-526
    [135] 张贤达,现代信号处理(第二版),北京:清华大学出版社.2002
    [136] Leopoldo Angrisani, Pasquale Daponte, and Massimo D'Apuzzo, Wavelet network-based detection and classification of transients. IEEE transactions on instrumentation and measurement. 2001, 50(5): 1425~1435
    [137] 殷时蓉,陈光福.基于Elman神经网络的非线性模拟电路激励优化.电子科技大学学报,(已录用)
    [138] 时小虎,梁艳春,徐旭.改进的Elman模型与递归反传控制神经网络.软件学报,2003,14(6):1110-1119
    [139] 葛宏伟,梁艳春.进化Elman神经网络模型与非线性系统辨识.吉林大学学报,2005,35(5):511-519

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700