FOXP3、T淋巴细胞亚群在鼻息肉中的表达及其临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     鼻息肉(nasal polyps, NP)是鼻腔和鼻窦粘膜的慢性炎症性疾病,发病率约占总人数的1%~4%。临床上以慢性鼻-鼻窦炎伴鼻息肉(CRSwNP)较为多见,其复发率较高。发病机制目前尚不清楚,近年来的研究表明可能与感染、变态反应、免疫及细胞因子等有关。
     叉头状转录因子3(forkhead transcription factor p3, Foxp3)是一个新发现的转录调节因子,对CD4+ CD25+ T调节性细胞的发育及功能的维持至关重要,并具有免疫抑制作用。FOXP3已被证明在CD4+ CD25+ T调节性细胞上特异性表达,在一定程度上反映CD4+ CD25+ T调节性细胞的水平和功能活性。
     本研究旨在分析FOXP3、CD4和CD8在鼻息肉中的表达及分布、弄清FOXP3、与CD4和CD8的相互关系,探讨FOXP3+ CD4+ CD25+ T调节细胞、T淋巴细胞亚群在鼻息肉发生、发展中的作用,明确其临床意义。
     材料与方法
     本研究对实验组50例鼻息肉组织和对照组20例正常下鼻甲黏膜组织的标本切片分别行HE染色,采用免疫组化SP法检测两组标本中FOXP3、CD4以及CD8的表达情况,采用SPSS16.0统计软件,选择正确的检验方法,进行数据分析及对照研究。
     结果
     1 FOXP3蛋白的阳性产物主要定位于细胞核和(或)细胞质,呈棕黄色或棕褐色颗粒。免疫组化结果光镜下见:鼻息肉组和正常下鼻甲黏膜组均能观察到FOXP3阳性细胞。
     2 CD4和CD8蛋白阳性产物主要定位于细胞膜,呈棕黄色或棕褐色颗粒。在鼻息肉组织中见大量的CD4和CD8阳性表达的细胞,呈丛集性分布,多集中在上皮下和腺体周围,CD4+T细胞数显著高于CD8+T细胞数。正常下鼻甲黏膜组织中大部分切片也可见少量的CD4+T细胞和CD8+T细胞。
     3计算机图像分析系统检测FOXP3、CD4、CD8平均灰度值
     (1)FOXP3在50例鼻息肉组织和20例正常下鼻甲黏膜组织中表达的平均灰度值差异具有统计学意义(p<0.05)。在单侧和双侧鼻息肉组织中FOXP3表达的平均灰度值差异具有统计学意义(p<0.05)。FOXP3在鼻息肉首发组与复发组表达的平均灰度值差异具有统计学意义(p<0.05)。
     (2)CD4在50例鼻息肉组织和20例正常下鼻甲黏膜组织中表达的平均灰度值差异具有统计学意义(p<0.01)。在单侧与双侧鼻息肉组织中CD4表达的平均灰度值差异具有统计学意义(p<0.05)。CD4在鼻息肉首发组与复发组表达的平均灰度值差异具有统计学意义(p<0.05)。
     (3)CD8在50例鼻息肉组织和20例正常下鼻甲粘膜组织中表达的平均灰度值差异具有统计学意义(p<0.05)。在单侧与双侧鼻息肉组织中CD8表达的平均灰度值差异具有统计学意义(p<0.05)。CD8在鼻息肉首发组与复发组表达的平均灰度值差异具有统计学意义(p<0.05)。
     4通过spearson相关分析,在鼻息肉组织中CD4与FOXP3之间存在负相关关系(γ=-0.383,p<0.01);CD8与FOXP3之间存在负相关关系(r=-0.364,p<0.01)。
     结论
     1FOXP3在鼻息肉组织中表达下调,提示FOXP3的缺乏或功能低下在鼻息肉的发生和发展中起着重要的作用。
     2FOXP3、CD4和CD8均参与鼻息肉的形成过程,且可能鼻息肉的复发特性有关。
     3FOXP3、CD4和CD8在鼻息肉中的表达具有相关性,提示三种蛋白可能协同参与鼻息肉的形成过程。
     4检测鼻息肉组织中FOXP3表达,可以了解鼻息肉微环境中CD4+ CD25+调节性T细胞浸润状态,从而可判定鼻息肉组织局部免疫反应状态,为鼻息肉提供新的治疗方法。
Background and Objective
     Nasal polyps is a kind of chronic inflammatory disease of nasal cavity and nasal sinuses mucosa, the total number of its incidence is about 1%-4%. Nasal polyps usually occur in the lateral wall of nasal cavity and nasal roof, Second, ethmoid and membranous of maxillary sinuses are also seen, and the rate of its recurrence was high. The etiology and pathogenesis of nasal polyps are not yet clear, recent research indicates that it may be related to infection, allergy, immunology and cell factor and so on.
     Forkhead transcription factor p3 is a newly discovered transcription factor, its a multifunctional transcription factor which is related to the growth and development of CD4+ CD25+ Treg cells. FOXP3 has been shown specifically expressed in CD4+ CD25+ T regulatory cells, to some extent, it reflects the level and functional activity of the CD4+ CD25+ T regulatory cells.
     The purpose of this study is to analysis the expression and distribution of FOXP3、CD4、CD25+ Treg cells, to explore the effects in occurrence,development of nasal polyps, to determine its clinical significance.
     Methods
     50 cases of nasal polyps(the test group) and 20 cases of normal inferior turbinate mucosa (the normal group) underwent HE staining and immunohistochemical (SP method detected) in two groups to detect the expression of FOXP3, CD4 and CD8, using statistical packages of SPSS16.0,the datas will be studied by classification, analysis and contrast.
     Results
     1 The positive products of FOXP3 protein localized in the cytoplasm and (or)cytoplasm, and the color was clearly brownish yellow or brown particles. Under the microscope, the FOXP3 positive cell could be observed in both of nasal polyps and normal turbinate mucasa specimemts.
     2 The positive staining of CD4 protein and CD8 protein mainly located in the cell membrane, and were stained for brown yellow or brown particles. In nasal polyps, a large number of CD4 and CD8 positive lymphocytes can be seen, wich gathered in the skin and around the gland, and was scattered distribution in the interstitium. CD4+Tcells was significantly higher than the number of CD8+Tcells. In normal mucosa group, most of the slices can also be found, but the quantity of CD4+T cells and CD8+T cells is less which concentrated in the glands around the blood vessels, and scattered.
     3 Computer graphics analysis system detects FOXP3, CD4, CD8 average gray value
     (1) The difference of average gray value of FOXP3 between 50 cases of nasal polyps and 20 cases of inferior turbinate mucosa was statistically significant (p< 0.05). The difference of average gray value of FOXP3 between unilateral and bilateral nasal polyps was statistically significant(p<0.05). The difference of average gray value of FOXP3 between starting group and relapse group wa
     statistically significant (p<0.05).
     (2) The difference of average gray value of CD4 between 50 cases of nasal polyps and 20 cases of inferior turbinate mucosa was statistically significant (p< 0.05). The difference of average gray value of CD4 between unilateral and bilateral nasal polyps was statistically significant (p<0.05). The difference of average gray value of CD4 between starting group and relapse group wa statistically significant (p <0.05).
     (3) The difference of average gray value of CD8 between 50 cases of nasal polyps and 20 cases of inferior turbinate mucosa was statistically significant (p< 0.05). The difference of average gray value of CD8 between unilateral and bilateral nasal polyps was statistically significant (p<0.05). The difference of average gray value of CD8 between starting group and relapse group wa statistically significant (p <0.05). 4. By spearson correlation analysis, there exists the negative correlation between FOXP3 and CD4 in nasal polyps(r=-0.383,P=0.006); nor exists between CD8 and FOXP3 (r=-0.364,p=0.009).
     Conclusion
     1 The expression of FOXP3 in nasal polyps reduced, suggesting that the absence or dysfunction of FOXP3 plays an important role in the occurrence and development of nasal polyps.
     2 The FOXP3, CD4 and CD8 were involved in the formation of nasal polyps, and maybe related to the recurrence properties of nasal polyps.
     3 The expression of FOXP3 CD4 and CD8 in nasal polyps correlated to each other, indicating that the three proteins might collaboratively involved in the formation of nasal polyps.
     4 By detecting the expression of FOXP3 in nasal polyps, we can know the state of CD4+ CD25+ regulatory T cell infiltration in nasal microenvironment, and determine the state of local immune response in nasal polyps, which provide a new method of treatment for nasal polyps.
引文
[1]Bachert N D, Fahy C. Woolford T J.Nasal Polyps:still more questions than answers[J]. Laryngol Otol,2003,117(1):1~9
    [2]Bachert C,Gevaert P,Holtappels G,et al.Nasal Polyps:From cytokines growth [J].Am Journal Rhinol,2000,14(3):279~290
    [3]Pawankar R.Nasal polyposis:an update editorial review[J].Curr Opin Allergy Clin Immunol.2003,3:1~6
    [4]BrunkowME,Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J]. N at Genet,2001,27(1):68-73
    [5]Morgan ME, van Bilsen JH, Bakker AM, et al. Exp ression of FOXP3 mRNA isnot confined to CD4 (+) CD25 (+) T regulatory cells in humans[J]. Hum Imm unol,2005,66 (1):13~20
    [6]Suciu-Foca N, Manavalan JS, Scotto L, et al. Molecular character-ization of allos-pecific T supp ressor and tolerogenic dendritic cells:re-view[J]. In t Imm unopha rm acol,2005,5 (1):7~11
    [7]中华医学会耳鼻喉科学分会,中华耳鼻咽喉杂志编辑委员会.慢性鼻窦炎鼻息肉临床分型分期及内窥镜鼻窦手术疗效评定标准(1997年,海口).中华耳鼻咽喉杂志.1998;15(6):394~397
    [8]Handel ML,Mcmorrow LB,Gravallese EM,et al.Nuclear factor-kappa B in rheumatoid synovium.Localization of P50 and P65.Arthritis Rheum,1995,38(12):1762~1770
    [9]Tos M,Mogensen C.Pathogenesis of nasal polyps[J].Rhinology,1977,15:87~95
    [10]Bernstein JM,Gorfien J,Noble B.Role of allery in nasal polyposis:a review[J].Otolaryngol Head Neck Surg,1995,113:724~732
    [11]Bernstein JM, Gorfien J,Noble B,et al. nasal polyposis:immunohistochemistry and bioelectrical findings:a hypothesis for the developmemt of nasal polyps[J].J Allergy Clin Immunol,1997,99:165~175
    [12]Brunkow ME,Jeffery EW,Hjerrild KA,et al.Disruption of a new forkhead/winged-helix protein,scurfin,results in the fatal lymphoproliferative disorder of the scurfy mouse[J].Nat genet,2001,27(1):68~73
    [13]Carlsson P,Mahlapuu M.Forkhead transcription factor.key players in devepment and function of CD4+ CD25+ T regulatory T cell[J].Nat Immunol,2003,4(4):33033~6
    [14]Morgan ME, van Bilsen JH, Bakker AM, et al. Exp ression of FOXP3 mRNA is not confined to CD4+ CD25+ T regulatory cells in humans[J]. Hum Imm unol,2005,66 (1):13~ 20
    [15]Uciu-Foca N, Manavalan JS, Scotto L, et al. Molecular character-ization of allos-pecific T supp ressor and tolerogenic dendritic cells:re-view[J]. In t Imm unopha rm acol,2005,5 (1):7~11
    [16]Gavin MA,Torqerson TR,Rudensky AY,et al Single cell analysis of nomaland FOXP3 mutant human T cells:Foxp3 expression without regulatory T cell development[J].procnatl Acad Sciusa.2006,103 (17):6659~6664
    [17]Hori S,Nomura T,Sakaguchi S.Control of regulatory T cell development by the transcription factor Foxp3[J].Science,2003,299(5609):1057~1061
    [18]Picca CC,Caton AJ.The role of self-peptides in the development of CD4+CD25+regulatory T cells[J].Curr Opin Immunol,2005,17(4):1311~36
    [19]Yi HF,Zhen Y,Jiang LL,et al.The phenotypic characterization of naturally occurring regulatory CD4+ CD25+ T cells[J].Ceu Mol Immunol,2006,3(3): 189~195
    [20]Christine-Lutsiak ME,Semnani RT,Pascalis RD,et al.Inhibition of CD4+ CD25+ T regulatory cell function implicated in enhanced immune response by bow-dose cyclophosphamide[J].Blood,2005,105(7):2862~2868
    [21]Godfrey WR,Spoden DJ,Ge YG,et al.Cord blood CD4+ CD25+ derived T regulat-ory cells lines express FOXP3 protein and manifest potent suppressor function[J].Blood,2005,105 (2):750-758
    [22]闫蓓,达万明.CD4+ CD25+调节性T细胞及其与GVHD的关联性[J].中国实验血液学杂志.2006,14(2):408~412
    [23]Torgerson TR, Ochs HD.Immune dysregulation,polyendocrinopathy, ente-ropathy, X-linked:forkhead box protein 3mutations and lack of regu-latory T cells[J].J Allery Clin Immunol 2007,120:744~750
    [24]Cao D,Vollenhoven R,K lareskog L et al. CD25bright CD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheum atic disease[J].A rthritis Res Ther,2004,6 R335~R346
    [25]Jaeckels E,Boehmer H,Manns MP.Antigen-specific FOXP3-transduced T-cell can control established typeldiabetes[J].Diabetes,2005,54(2):306
    [26]牟中林、赵质彬、程雷等.叉头状转录因子3在变应性鼻炎的表达[J].中国耳鼻咽喉头颈外科.2007,14(6):375~378
    [27]Woo Y,Chu C S,Goletz T J,et al Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer[J].Cancer Res,2001,61(12):4766~4772
    [28]Curel TJ,Coukos QZou L,et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J].Nat Med.2004,10; 924~949
    [29]Unitt E,Rushbrook SM,Marshall A,et al. Compromised lymphocytes infiltrate hepatocellular carcinoma:role of T-regulatory cells[J]. Hepatology.2005,41:722~730
    [30]Karagiannidis C,Akdis M,Holopainen P,Woolley NJ,Hense G,Ruckert B,et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma[J].J Allery Clin Immunol.2004,114:1425~1433
    [31]Verhangen J,Akdis M,Traidl-Hoffmann C,Schmid-Grendelmeier P,Hijnen D,Knol EF,et al.Absence of T-regulatory cell expression and function in atopic dermatitis skin[J].J Allery Immunol.2006,117:176~183
    [32]Umetsu DT,DeKruyff RH.The regulation of allergy and asthma[J].Immunol Rev.2006,212: 238~255
    [33]李华斌,许庚,李源,等.鼻息肉组织中Th1、Th2细胞因子的表达及其意义[J].临床耳鼻咽喉科杂志,2001,15:51~52
    [34]Otto BA, Wenzel SE. The role of cytokines in chronic rhinosinusitis with nasal polyps[J]. Curr Opin Otolaryngol Head Neck Surg,2008,16:270~274
    [35]Bachert C,Gevaert P,Holtappels G,Cuvelier C,Van Cauwenberge P.nasal polyposis:from cytokines to growth[J].Am J Rhinol.2000,14:279~290
    [36]Van Bruaene N,Perez-Novo CA,Basinski TM,et al.T-cell regulation in chronic paranasal sinus disease[J].J Allergy Clincal Immunology 2008,121(6):1435~1441
    [37]Mosmann TL,Coffinan RL.Thl and Th2 cells:Different pauem sof lymph-okine secretion leads to different functional properties[J].Anna Rev Immunol,1989,7:145~173
    [38]Murphy KM,Reiner SL.The lineage decisiom of helper T cells[J].Nat Rev Immunol,2002, 2:933~944
    [39]park H,Li Z,Yang XO,et al.Adistinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J].Nat Immunol,2005,6:1133~1141
    [40]Stoop AE,van der Heijden HA,Biewenga J,et al.Lymphocytes and nonlym-phoid cells in human nasal polyps [J].Allergy Clin Immunol,1991,87:470~475
    [41]Larocca LM,Maggiano N,Capelli A,et al.Immunolpathology of nasal polyps:an immunohistochemical approch[J].Ann Allergy.1989,63:508~512
    [42]Hamilos DL,Leung DY, Wood R,et al.Chronic hyperplastic sinusitis:association of tissu eosinophilia with mRNA expression of granulocyte-mancrophage colony-stimulating factor and interleukin-3[J]. Allergy Clin Immunol,1993,92:39~48
    [43]Leprin A,garaventa G,pallestrini E,et al.Classland Ⅱ molecular expression in edenatoustype nasal polyps[J].Acta Otorhino Iaryngolltalt-Ital,1992,12:475~487
    [44]Bernstein JM, Ballow M, Rich G, et al. Lymphocyte subpopulations and cytokines in nasal polyps:is there a local immune system in the nasal polyp?[J] Otolaryngol Head Neck Surg,2004,130:526~535
    [1]BrunkowME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J]. N at Genet,2001,27(1):68~73
    [2]Shevach EM.CD4CD25 suppressor T cells:more questions than answers [J].Nature Rev Immunol,2002,2 (6):389~400
    [3]Anderson MS,Venanzi ES,Klein L,et al.Projection of an immunological self shadow within the thymus by the aire protien [J]. Science,2002,298(5597):1395~1401
    [4]Kaestner KH, KnochelW, Martinez DE. Unified nomenclature for the winged helix/ forkhead transcription factors [J]. Genes Dev,2000,14 (2):142~146
    [5]Hori S,Nomura T,Sakaguchi S. Control of regulatory T cell development by the transcrip tion factor Foxp3 [J].Science,2003,299(5609):1057~1061
    [6]Kaestner KH, KnochelW, Martinez DE. Unified nomenclature for the winged helix/ forkhead transcrip tion factors [J]. Genes Dev,2000,14 (2):142~146
    [7]Bassuny WM,Ihara K.A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes[J]. Immunogenetics,2003,55 (3): 149~156
    [8]Carlsson P,Mahlapuu M.Forkhead transcription factor.key players in devepment and function of CD4+ CD25+ T regulatory T cell [J]. Nat Immunol,2003,4 (4):330~336
    [9]Li B.Samnta A,Song X,et al.FOXP3 ensemble in T-cell renulation. Immunol Rev,2006,212: 99~113
    [10]Lopes JE,Torgeson TR,Schubert LA,et al.Analysis of FOXP3 reveals multiple domains requred for its function as a transcriptional repressor[J] Immunol.2006,177(5):3133~3142
    [11]Morgan ME, van Bilsen JH, Bakker AM, et al. Exp ression of FOXP3 mRNA is not confined to CD4 (+) CD25 (+) T regulatory cells in humans [J].Hum Imm unol,2005,66 (1):13~20
    [12]Suciu-Foca N, Manavalan JS, Scotto L,et al.Molecular character-ization of allos-pecific T supp ressor and tolerogenic dendritic cells:re-view[J]. In t Imm unopha rm acol,2005,5 (1):7~11
    [13]Gavin MA,Torqerson TR,Rudensky AY,et al Single cell analysis of nomaland FOXP3 mutant human T cells:Foxp3 expression without regulatory T cell development[J].procnatl Acad Sciusa.2006,103 (17):6659~6664
    [14]Bennett CL,Brunkow ME,Ramsdell F,et al.A rare polyadenylation signal mutation of the Foxp3 gene(AAUAAAA→AAUGAA)leads to the IPEX synrome[J]. Immunmogenetics, 2001,53(6):435~439
    [15]Oach JF.Regulatory T cells under scrutiny[J].J Clin Endocrinol Metab,2003,88 (12): 6034~6039
    [16]Wildin R S,Smyk-Pearson S,Filipovich AH.Clin and molecular fentures of the immunodysregulation, polyendocrinopathy, enteropathLinked (IPEX) syndrome[J].J Med Genet,2002,39(8):537~545
    [17]Chen W,Jin W,Hardegen N,et al.Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25- regulatory T cells by TGF-beta induction of transcription factor FOXP3[J].J Exp Med,2003,198(12):1875~1886
    [18]Walker MR,Kasprowicz DJ,Gersuk VH,et al.Induction of FOXP3 and acquis-Ition of T regulatory activity by stimulated human CDCDT cells[J].Clin Invest,2003,112:1437~ 1443
    [19]Fahlen L,Read S Gorelik L,et al.T cells that cannot respon to TGF-β escape control by CDCDregulatory T cells[J].Exp Med,2005,201:737~746
    [20]Peng Y Laouar Y LiMO,et al TGF-beta regulates in vivo expansion of FOXP3-expressing CD4+ CD25+ regulatory T cells responsible for protection Against diabetes[J].Pro Natl Acad SciUSA,2004,101(13):4572~4577
    [21]Marie JC,Letterio J,Gavin M,et al.TGF-β1 maintains suppressor function and FOXP3 expression in CD4+CD25+regulatory T cells[J].J Exp Med,2005,201(7):1061~1067
    [22]袁劲等.TGF-β1诱导CD4+ CD25 T细胞分化为CD4+ CD25+ Treg细胞.免疫学杂志[J].2007,23(6):589~592
    [23]Sakaguchi S.Naturally arising Foxp3-expressing CD4+ CD25+ regulatory T cells in immunological tolerance to self and non-self[J].Nat Immunol,2005,6(4):345~352
    [24]SchubertL A,Jeffery E,Zhang Y,et al Scurfin(FOXP3) acts as a repressor of transcription and regulates T cell activation[J].J Biol Chem,2001,276:37672~37679
    [25]Polanczy MJ,Carson BD,Subramanian S,et al.Cutting edge:estrogen drives expansion of the CD4+ CD25+ regulatory T cells compartment[J].J Immunol,2004,173:2227~2230
    [26]Li HB,Cai KM,et al. FOXP3+ T regulatory cells are increased in nasal polyps after treatment with intranasal steriod[J].Clinical Immunology,2008,129(3):394~400
    [27]Kapturczak MH,Wasserfall C,Brusko T,et al Heme oxygenase-1 modulates early inflammatory responses:evidence from the heme oxygenase-1-defi-cient[J].AM J Pathol, 2004,165(3):1045~1053
    [28]Choi BM,Pae HO,Jeong YR,et al Critical role of heme oxygenase-1 in FOXP3-mediated immune suppression[J].B iochem B iophys Res Conmun,2005,327(4):1066~1071
    [29]Pae HO,Oh GS,Choi BM,et al Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production[J].J Immunol,2004,172(8): 4744~4751
    [30]Song R,Mahidhara RS,Zhou Z,et al Carbon monoxide inhibits T lymphocyte proliferation via caspase-dependent pathway[J].J Immunol,2004,172 (2):1220~1226
    [31]Wu Y,Borde M,Heissm eyer V,et al FOXP3 controls regulatory cell function through cooperation with NFAT[J].Cell,2006,126(2):375~387
    [32]Bettelli E,Dastrange M,Oukka M.Foxp3 interacts with muclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and dffector functions of T helper cells[J].Proc N atl A cad Sci USA,2005,102(14):5138~5143
    [33]Zheng Y,Josefowicz SZ,Kas A,et al.Genome-wide analusis of Foxp3 target Genes in developing and mature regulatory T cells[J] Nature,2007,445:936~940
    [34]Ziegler SF.FOXP3:of mice and men[J].Annu Rev Immunol,2006,24:209~226
    [35]Chatila TA Role of regulatory T cells in human diseases[J] J Allergy Clim Immunol,2005, 116:949~959
    [36]Mills KH,McGnirk P.Antigen-specific regulatory T cells:their induction and role in infection[J].Semin Immunol 2004,16:107~117
    [37]Jordan MS,Boesteanu A,Reed AJ,etal.Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide[J].Nat Immunol,2001,167:1137~1140
    [38]JORDAN M S,BOESTEANU A,REED A J,et al. Thymic selection of CD4+ CD25+ regulatory T cellsinduced by an agonist self-peptide[J]. Nat Immunol,2001,2:301~306
    [39]WATANABEN, WAN G Y, LEE H, et al. Hassall's corpuscles instruct dendritic cells to induce CD4+ CD25+ regulatory T cells in human thymus[J]. Nature,2005,435:1181~ 1185
    [40]ZHEN G S G, WAN GJ H, GRA YJ D, et al. Natural and induced CD4+ CD25+ cells educate CD4+ CD25+ cells to develop suppressive activity:the role of IL-22, TGF-beta,and IL-10[J].J Immunol,2004,172:5213~5221
    [41]Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alphachains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune disease[J].J Immunol,1995(3): 1151~1164
    [42]Ramsdell F,Ziegler SF.Transcription in autoimmunity[J].Curr Opin in Immunol,2003, 15(6):718~724
    [43]Bruder D,Probst-Kepper M,Westendorf AM.et al.Neuropilin-1:a surface maker of regulatory T cells[J].Eur J Immunol,2004,34:623~630
    [44]Piccivillo CA,Shevach EM.Cutting edge:Control of CD8+ T cell activa-tion by CD4+ CD25+ immunoregulatory cell[J].Immunol,2001,167:1137~1140
    [45]Shevach EM.CD4+CD25+suppressor T cells:More questions than answers[J].Nat Rev Immunol,2002,2(6):389~400
    [46]Saguchi S.The origin of FOXP3-expressing CD4+regulatory T cells:Thymus or periphery [J]. J Clin Invest,2003,112(9):1310~1322
    [47]Hori S,Nomura T,Sakaguchi S Control of regulatory T cell development by the transcription factor FOXP3[J].Science,2003,299(5609):1057~1061
    [48]Khattrl R,Cox T,Yasayko SA,et al.An essential role for scurfin in CD4+ CD25+ T regulatory cells[J] Nat Immunol,2003,4(4):337~342
    [49]Cosmi L,Liotta F Lazzeri E,et al Human CDCDthymocytes share pheno-typic and functional features with CDCDregulatory thymocytes[J].Blood,2003,102(12):4107~4114
    [50]Khattri R,Kasprowicz D,Cox T,et al.The amount of scurfin protein determines peripheral T cell mumber and responsiveness[J].J Immunol,2001,167(11):6312~1443
    [51]Picca CC,Caton AJ The role of self-peptides in the development of CD4+ CD25+ regulatory T cells[J].Curr Opin Immunol,2005,17(4):131~136
    [52]ontenot JD,Gavin MA,Rudensky AY.Foxp3 programs the development and function of regulatory T cells[J].Nature Immunol,2003,4(4)330~336
    [53]厉小梅,李向培,钱龙等.转录因子FOXP3在干燥综合征患者唇腺及外周血的表达.中华内科杂志[J].2007,46(7):544~546
    [54]Cao D,Vollenhoven R,K lareskog L et al. CD25bright CD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheum atic disease[J].A rthritis Res Ther,2004,6 R335~R346
    [55]Valencia X,Yarboro C,et al.Defiient CD4+ CD25+ high T regulatory cell function in patients with active systemic lupus erythematosus[J] J Immunol,2007,178(4):2579~2588
    [56]Lee JH,Wang LC,Lin YT,et al.Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus[J]. J Immunol,2006,117:280~286
    [57]Alvarado-Sanchez B,Hemandez-Castro B,Portales-Perez D,et al. Regu-latory T cells in patients with systemic lupus erythematosus[J].J Autoimmun,2006,27(2):110~118
    [58]Wildin R S,Ramsdell F,Peake J,et al X-linked neonatal diabetes mellitus,enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy[J].Nat Genet,2001, 27(1):18~20
    [59]Chatila T A,Blaeser F,Ho N,et al Encoding a fork head-related protein,is mutated in X-linked autoimmunity-allergic disregulation syndrome[J].J Clin Invest,2000,106(12): R75~R81
    [60]Azuma T,Takahashi T,KunisatoA,et al.Human CD4+ CD25+ regulatory Tcells suppress NKT cell functions[J].Cancer Res.2003; 63:4516~4520
    [61]Trzonkowski P,Szmit E,Mysliwska J,et al. CD4+ CD25+ regulatory cells inhibit cytotoxic activity of T CD8 and NK lymphcytes in the direct cell-to-cell interaction[J].Clin Immunol.2004; 112:258~267
    [62]Chen W.Dendritic cells and CD4+ CD25+ regulatory T cells:crosstalk between two professional in immunity versus tolerrance[J].Front Biosci.2006,11:1360~1370
    [63]Sasada T,Kinura M,Yoshida Y,et al. CD4+ CD25+ regulatory T cells in patients with gastro in testinal malignancies possible involvement of regulatory T cells in disease in diseae progression[J].Cancer 2003,98(5):1089~1099
    [64]Woo Y,Chu C S,Goletz T J,et al Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer[J].Cancer Res,2001,61 (12):4766~4772
    [65]Curel TJ,Coukos G,Zou L,et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival [J].Nat Med.2004,10; 924~949
    [66]Unitt E,Rushbrook SM,Marshall A,et al.Compromised lymphocytes infiltrate hepatocellular carcinoma:role of T-regulatory cells[J].Hepatology.2005,41:722~730
    [67]Liyanage UK,Moore TT,Joo HG,et al.Prevalence of regulatory T cells is increased in peripheral blood and tumor microenviroment of patients with pancreas or breast adenocarcinoma[J].J Immunol.2002,169:2756~2761
    [68]张利宁.调节性T细胞与肿瘤.中国肿瘤生物治疗杂志[J].2007,14(3):201~205
    [69]Bernstein JM, Ballow M, Rich G, et al. Lymphocyte subpopulations and cytokines in nasal polyps:is there a local immune system in the nasal polyp?[J] Otolaryngol Head Neck Surg,2004,130:526~535
    [70]李华斌,许庚,李源,等.鼻息肉组织中Th1、Th2细胞因子的表达及其意义.临床耳鼻咽喉科杂志[J].2001,15:51~52
    [71]Otto BA, Wenzel SE. The role of cytokines in chronic rhinosinusitis with nasal polyps[J]. Curr Opin Otolaryngol Head Neck Surg,2008,16:270~274
    [72]Van Bruaene N,Perez-Novo CA,Basinski TM,et al.T-cell regulation in chronic paranasal sinus disease[J].J Allergy Clincal Immunology 2008,121 (6):1435~1441
    [73]Li HB,Cai KM,Liu Z.et al.FOXP3+ T regulatory cells(Tregs) are increa-sed in nasal polyps(NP) after treatment with intranasal steroid[J]. Clincalimmunology.2008,129(3): 394~400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700