糖皮质激素受体介导的激素性白内障形成机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:糖皮质激素广泛应用于临床疾病的治疗。长期全身、局部应用糖皮质激素可导致激素性白内障,其发病机制尚不明确。目前已证实晶状体上皮细胞存在糖皮质激素受体。糖皮质激素作用于人晶状体上皮细胞后,与其受体结合,其激素受体复合物与相应靶基因的糖皮质激素反应元件(GRE)结合后调控大量靶基因的转录,进而影响相应靶基因的功能。其中主要涉及细胞膜的转运和细胞骨架结构的改变等。晶状体通过Na+,K+-ATP酶维持离子进出细胞的平衡,其功能的改变将会引起晶状体细胞内水钠潴留,形成白内障。波形蛋白是重要的细胞骨架蛋白,在晶状体上皮细胞中适量表达,对于维持晶状体细胞正常的形态和功能,具有重要意义。本实验将应用糖皮质激素受体拮抗剂RU486探讨糖皮质激素受体介导的大鼠激素性白内障Na+,K+-ATP酶和波形蛋白的变化,探讨糖皮质激素受体在激素性白内障的发病中的作用机制。
     方法:大鼠透明晶状体随机分为对照组、糖皮质激素诱导的激素白内障组(地塞米松5μM)、糖皮质激素受体拮抗剂RU486组(地塞米松5μM+RU486 5μM)。离体晶状体孵育7天,倒置显微镜动态观察晶状体的透明度。HE染色分析三组晶状体的组织形态学变化,分光光度计动态分析Na+,K+-ATP酶的活性,蛋白质印迹法和免疫组化法分析Na+,K+-ATP酶α1和波形蛋白的蛋白表达,RT-PCR分析Na+,K+-ATP酶α1和波形蛋白的mRNA表达。
     结果:白内障组与其它两组相比,晶状体在第5天出现雾状混浊(P<0.05),第7天雾状混浊更明显(P<0.01),而对照组和拮抗剂组保持透明。白内障组与其它两组相比,Na+,K+-ATP酶活性随孵育时间的延长而逐渐下降(P<0.001),而对照组和拮抗剂组无明显变化。HE染色显示白内障组与对照组和拮抗剂组相比,晶状体纤维结构排列紊乱,细胞间隙增宽。白内障组Na+,K+-ATP酶α1蛋白和mRNA表达下降,而对照组和拮抗剂组表达正常。白内障组波形蛋白的蛋白表达下降,而对照组和拮抗剂组表达正常。三组中波形蛋白mRNA表达无明显改变。
     结论:本研究表明糖皮质激素受体介导的晶状体Na+,K+-ATP酶α1和酶活性以及波形蛋白的改变参与了激素性白内障的形成,并且发挥着重要作用。
PURPOSE: Cataract formation can be induced by prolonged use of glucocorticoids. The underlying mechanism is not fully understood yet. The presence of the functional glucocorticoid receptor (GR) in human and rat lens epithelial cells suggests that glucocorticoids target lens epithelial cells directly and specifically. Glucocorticoids exert their effects by binding to a specific intracellular receptor, the glucocorticoid receptor (GR), which acts as a ligand dependant transcription factor. The ligand-receptor complex dimerizes, translocates to the nucleus, and binds to a cis acting element, the glucocorticoid response element (GRE), to modulate the expression of target genes. The glucocorticoid–GR binding to a GRE located on that many target genes to directly modulate transcription, which indicate that a broad range of transcripts are altered. The main groupings of transcripts identified were involved in cell structure/extracellular matrix and adhesion, catalysis, transport protein activity, apoptosis, cell growth, and development and cell cycle. Na+, K+-ATPase has long been recognized for its role in regulating electrolyte concentration in the lens, contributing to lens transparency. Vimentin is an important cytoskeletal protein in the epithelial cells of the lens, which plays important roles in maintaining the normal morphology and function of the lens. It’s interesting to know whether the changes of Na+, K+-ATPase and vimentin can be induced through the specific GR activation in glucocorticord-induced cataract formation in rat lens in vitro.
     METHODS: Rat clear lenses were cultured in vitro and were treated with or without dexamethasone (Dex) or RU486(a glucocorticoid receptor antagonist). The lenses were cultured for 7 days and photographed daily to record the development of opacity. The changes of morphology were examined by HE staining. The activity of Na+, K+-ATPase was determined by using spectrophotometric analysis. The mRNA and protein expression of Na+, K+-ATPaseα1 and vimentin were examined by RT-PCR, and Western blot analysis and immunohistochemistry were conducted, respectively.
     RESULTS: Mist-like opacity of the lenses was observed as early as 5 days after incubation with dexamethasone (P<0.05). The opacity was more obvious at day 7 in the Dex group (P<0.01). At day 7, HE staining showed an orderly arrangement of fiber cells in the control group and the RU486 group. However, in the Dex group, the arrangement of fiber cells was disrupted and the lenses exhibited expanded extracellular lacunae. The activity of Na+, K+-ATPase in the only Dex-treated group decreased in a time-dependent manner. There was no significant loss of enzyme activity in either the control or the RU486 group throughout the incubation peroid (P<0.001). Both the protein and mRNA expression level of Na+, K+-ATPaseα1 decreased in the Dex-treated group. The expression of vimentin protein decreased in the Dex-treated group but its expression of mRNA maintained nomal.
     CONCLUSIONS: These results suggest that the GR-mediated reduction of Na+, K+-ATPase and vimentin may contrubite to the formation of steriod-induced cataract.
引文
[1]. Veenstra, D.L., Best, J.H., Hornberger, J., et al. Incidence and long-term cost of steroid-related side effects after renal transplantation. Am J Kidney Dis, 1999;33(5):829-839.
    [2]. James, E.R.,Fresco,V.M., Robertson, L.L.Glucocorticoid-induced changes in the global gene expression of lens epithelial cells. J Ocul Pharmacol Ther, 2005;21:11-27.
    [3]. Derfoul, A., Robertson, N.M., Lingrel, J.B., et al. Regulation of the human Na/K-ATPase beta1 gene promoter by mineralocorticoid and glucocorticoid receptors. J Biol Chem, 1998;273:20702-20711.
    [4]. Kolla,V.,Robertson,N.M.,Litwack,G. Identification of a mineralocorti- coid/glucocorticoid response element in the human Na/K ATPase alpha1 gene promoter. Biochem Biophys Res Commun, 1999;266:5-14.
    [5]. Georgatos, S.D., Marchesi, V.T. The binding of vimentin to human erythrocyte membranes: a model system for the study of intermediate filament-membrane interactions. J Cell Biol, 1985;100:1955-1961.
    [6].徐国兴,王婷婷.波形蛋白在老年性白内障晶状体上皮细胞中的表达及其意义.眼视光学杂志, 2002;4(4):215-217.
    [7].周健,惠延年,李燕等.波形纤维蛋白在老年性白内障晶状体上皮细胞的表达.中华眼科杂志, 2001;37(5):342-345.
    [8]. Black, R.L., Oglesby, R.B., von Sallmann, et al. Posterior subcapsular cataracts induced by corticosteroid in patients with rheumatoid arthritis. JAMA, 1960;174:166-171.
    [9]. Cumming, R.G., Mitchell, P., Leeder, S.R. Inhaled corticosteroids and the risk of cataract. N Eng1 J Med, 1997;337:1555.
    [10].叶天才,刘东光,于敏斌等.糖皮质激素性白内障93例临床分析.中华眼科杂志, 1995;31(5):443-445.
    [11]. Nishigori, H., Lee, L.W., Yamauchi, Y., et al. The alteration of lipid peroxide in glucocorticoid-induced cataract of developing chick embryos and the effect of ascorbic acid. Curr Eye Res, 1986;5:37-40.
    [12]. Dickerson, J.E., Dotzel, J.E., Clark, A.F. Steroid-induced cataract: new perspective from in vitro and lens culture studies. Exp Eye Res, 1997;655:07-16.
    [13]. Watanabe, H., Kosano,H., Nishigori, H. Steroid induced short-term diabetes in chick embryos: reversible effects of insulin on metabolic changes and cataract formation. Invest Ophthalmol Vis Sci, 2000;41:1846-1852.
    [14]. Hook, D.W.A. and Harding, J.J. The effect of modification of alpha-crystallin by prednisolone-21-hemisuccinate and fructose 6-phosphate on chaperone activity. Dev Ophthalmol, 2002;35:150-160.
    [15].严宏,刘兵,俞兰等.糖皮质激素对a-晶体蛋白分子伴侣功能的影响.眼科研究, 2005;23(1):37-39.
    [16]. Sun, Y., Yan, H. Carnosine inhibits cataract formation and inactivation of Na+-K+-ATPase induced by a glucocorticoid. Int J Ophthalmol, 2006;6(3):519-522.
    [17]. Yan, H. and Harding JJ. Inactivation and loss of antigenicity of esterase by sugars and a steroid. Biochim Biophys Acta, 1999;1454(2)183-190.
    [18].王建伟,严宏,王永强等.地塞米松诱导大鼠白内障形态学及酶活性变化.第四军医大学学报, 2005;26(21):1938-1941.
    [19].王建伟,严宏,刘兵等.大鼠激素性白内障Na+-K+-ATP酶活性的变化.国际眼科杂志, 2005;5(5):919-921.
    [20]. Yan H.,Wang,J.W.,Liu, B., et al. Protective effect of aspirin againstdexamethasone-induced cataract in cultured rat lens. Opthalmic Res, 2006;38:303-308.
    [21]. Bucala, R., Gallati, M., Manabe, S. et al. Glucocorticoid-lens protein adducts in experimentally induced steroid cataracts. Exp Eye Res, 1985;40(6):853-63.
    [22]. Lyn , J., Kim, J.A., Chung, S.K., et al. Alteration of Cadherin in dexamethasone-induced cataract organ-cultured rat lens. Invest Ophthalmol Vis Sci, 2003;44:2034-2040.
    [23]. Shui, Y.B., Kojima, M., Sasaki, A. New steroid-induced cataract model in the rat:long-term prednisolone applications with a minimum of X-irradiation. Ophthalmic Res, 1996;28(Suppl 2):92-101.
    [24]. Hamamichi, S., Kosano, H., Hakai, S., et al. Involvement of hepatic glucocorticoid receptor-mediated functions in steroid-induced cataract formation. Exp Eye Res, 2003;77:757-580.
    [25]. Ishikawa, K., Ohba, T., Tanaka, N., et al. Organ-specific production control of vascular endothelial growth factor in ovarian hyperstimulation syndrome-model rats. Endocr J, 2003;50(5):515-25.
    [26]. Jobling, A.I., Augusteyn, R.C. Is there a glucocorticoid receptor in the bovine lens? Exp Eye Res, 2001;72:687-694.
    [27]. Jobling, A.I., Stevens, A., Augusteyn, R.C. Binding of dexamethasone by alpha-crystallin. Invest Ophthamol Vis Sci, 2001;42:1829-1832.
    [28]. Stokes, J., Noble, J., Brett, J., et al. Distribution of glucocorticoid and mineralocorticoid receptors and 11?-hydroxy-steroid dehydrogenases in human and rat ocular tissues. Invest Ophthalmol Vis Sci, 2000;41:1629-1638.
    [29]. Suzuki, T., Sasano, H., Kaneko, C., et al. Immunohistochemical distribu- tion of 11?-hydroxysteroid dehydrogenase in human eye. Mol Cell Endocrinol, 2001;173:121-125.
    [30]. Gupta, V., Wagner B.J., 2003. Expression of the functional glucocorticoid receptor in mouse and human lens epithelial cells. Invest Ophthalmol Vis Sci, 2003; 44:2041-2046.
    [31]. James, E. R, Robertson, L., Ehlert, E., et al. Presence of a transcriptionally active glucocorticoid receptor in lens epithelial cells. Invest Ophthalmol Vis Sci, 2003;44:5269-5276.
    [32]. Awasthi, N., Wagner, B.J. Interferon induces apoptosis in lens TN4–1 cells and proteasome inhibition has an antiapoptotic effect. Invest Ophthalmol Vis Sci, 2004;45:222–229.
    [33]. Rogerson, F.M., Yao, Y., Smith, B.J., et al. Differences in the determinants of eplerenone, spironolactone and aldosterone binding to the mineralocorticoid receptor. Clin Exp Pharmacol Physiol, 2004;31:704–709.
    [34]. Rupprecht, R., Reul, J.M., Van, S.B., et al. Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol, 1993;247:145–154.
    [35]. Arriza, J.L., Weinberger, C., Cerelli, G., et al. Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science, 1987;237:268–275.
    [36]. Rogerson, F.M., Yao, Y.Z., Smith, B.J., et al. Determinants of spironolactone binding specificity in the mineralocorticoid receptor. J Mol Endocrinol, 2003;31:573-582.
    [37]. Couette, B., Marsaud, V., Baulieu, E.E., et al. Spironolactone, an aldosterone antagonist, act as an antiglucocorticosteroid on the mouse mammary tumor virus promoter. Endocrinology, 1992;130:430-436.
    [38]. Baulieu, E.E. The steroid hormone antagonist RU486: mechanism at the cellular level and clinical applications. Endocrinol Metab Clin North Am, 1991;20:873–891.
    [39]. Gupta, V., Awasthi, N., Wagner, B.J. Specific activation of the glucocorticoid receptor and modulation of signal transduction pathways in human lens epithelial cells. Invest Ophthalmol Vis Sci, 2007;48:1724- 1734.
    [40]. Mohan, R., Muralidharan, A.R. Steroid induced glaucoma and cataract. Indian J Ophthalmol, 1989;37:13–16.
    [41]. Theodosiou, A. MAP kinase phosphatases, Genome Biol, 2002;2:3009.
    [42]. Chang, F., Lee, J.T., Navolanic, P.M., et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy, Leukemia, 2003;17:590–603.
    [43]. Zatechka, S.D., Lou, M.F. Studies of the mitogen-activated protein kinases and phosphatidylinositol-3 kinase in the lens. Exp Eye Res, 2002;74:703– 717.
    [44]. Scarborough, G.A. Molecular mechanisms of the P-type ATPase. J Bioenerg Biomembranes, 2002;34:315-327.
    [45]. Kaplan, J.H. Biochemistry of Na+,K+-ATPase. Ann Rev Biochem, 2002;71:511-535.
    [46]. Delamere, N.A., Tamiya, S. Expression, reglulation and function of Na+,K+-ATPase in the lens. Progress in Retinal and Eye Res, 2004;23:593-615.
    [47]. Geering, K. The functional role of beta subunits in oligomeric P-type ATPase. J Bioenerg Biomembranes, 2001;33:425-438.
    [48]. Moseley A.E., Dean W.L., Delamere N.A. Isoforms of Na+, K+-ATPase in rat lens epithelium and fiber cells. Invest Ophthalmol Vis Sci, 1996; 37:1502-1508.
    [49]. Palva, M., Palkama, A. Electronmicroscopical, histochemical and biochemical findings on the Na,K-ATPase activity in the epithelium of therat lens. Exp Eye Res, 1976;22:229-236.
    [50]. Unakar, N.J., Tsui, J.Y. Sodium-potassium-dependent ATPase,I. Cytochem- ical localization in normal and cataractous rat lenses. Invest Ophthalmol Vis Sci, 1980;19:630-641.
    [51]. Unakar, N.J., Mostafapour, K., Tsui, J. Ultrastructural cytochemistry of the ocular lens. Curr Eye Res, 1981;1:145-199.
    [52]. Delamere, N.A., Dean, W.L. Distribution of lens sodium-potassium-adenosine triphosphatase. Invest Ophthalmol Vis Sci, 1993;34:2159-2163.
    [53]. Blostein, R. Structure-function studies of the sodium pump. Biochem Cell Biol, 1999;77:1-10.
    [54]. Patmore, L., Duncan, G. The physiology of lens membranes. In: Duncan G, ed. Mechanisms of Cataract Formation in the Human Lens. London: Academic Press, 1981;193-217.
    [55]. Manabe, S., Bucala R., Cerami, A. Nonenzymatic addition of glucocorticoids to lens proteins in steroid induced cataract. J Clin Invest, 1984;74:1803-1810.
    [56]. Granger, B.L., Lazarides, E. Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy. Cell, 1982;30:263-275.
    [57]. Kerr, J.F.R., Winterford., C.M., Harmon, B.Y., 1994. Apoptosis: its significance in cancer and cancer therapy [J]. Cancer, 1994;73:2013-2016.
    [58]. Spector, A., Wang, G.M., Wang, R.R., et al. The prevention of cataract caused by oxidative stress in cultured rat lenses. I. H2O2 and photochemically induced cataract. Curr Eye Res, 1993;12:163-179.
    [59]. Itani, O.A., Auerbach, S.D., Husted, R.F., et al. Glucocorticoid-stimulated lung epithelial Na(+) transport is associated with regulated ENaC and sgk1expression. Am. J Physiol Lung Cell Mol Physiol, 2002;282:631-641.
    [60]. Boyd, C., Naray-Fejes-Toth, A. Gene regulation of ENaC subunits by serum- and glucocorticoid-inducible kinase-1. Am J Physiol Renal Physiol, 2005;288:505-512.
    [61]. Thomas, C.P., Liu, K.Z., Vats, H.S. Medroxyprogesteroneacetate binds the glucocorticoid receptor to stimulate alpha-ENaC and sgk1 expression in renal collecting duct epithelia. Am J Physiol Renal Physiol, 2006;290:306- 312.
    [62]. Mayman, C.I., Miller, D., Tijerina, M.L. In vitro production of steroid cataract in bovine lens. Part II: measurement of sodium-potassium adenosine triphosphatase activity. Acta Ophthalmol (Copenh), 1979;57 (6):1107-1116.
    [63]. Thomas, N.B., John, F.H., Paul, G.F. Development- and differentiation- dependent reorganization of intermediate filaments in fiber cells. Invest Ophthalmol Vis Sci, 2001;42:735-742.
    [64]. Mathur, P., Gupta, S.K., Wegener, A.R., et al. Comparison of various calpain inhibitors in reduction of light scattering, protein precipitation and nuclear cataract in vitro. Curr Eye Res, 2000;21:926-933.
    [65]. Delamere, N.A. Regulation of Na,K-ATPase function in the lens. J Exp Zool, 2003;300:25-29.
    [66]. Matthews, G.G. Membrane potential, ionic equilibrium. In:Matthews, G.G. (Ed.), Cellular Physiology of Nerve and Muscle. Blackwell, Malden, MA, 2003;26-39.
    [67]. Gupta, V., Galante, A., Soteropoulos, P., et al. Global gene profiling reveals novel glucocorticoid induced changes in gene expression of human lens epithelial cells. Mol Vis, 2005;11:1018-1040.
    [68]. Seger, R. and Krebs, E.G. The MAPK signaling cascade. FASEB J, 1995; 9:726-735.
    [69]. Bomser, J.A. Selective induction of mitogen-activated protein kinases in human lens epithelial cells by ultraviolet radiation. J Biochem Mol Toxicol, 2002;16:33-40.
    [70]. Chandrasekher,G. and Sailaja,D.Phosphatidylinositol 3-kinase (PI3K)/AKT but not PI3K/p70 S6 kinase signalling mediates IGF-1-promoted lens epithelial cell survival. Invest Ophthalmol Vis Sci, 2004;45:3577-3588.
    [71]. Bagchi, M., Caporale, M.J. Vimentin synthesis by ocular lens cells. Exp Eye Res, 1985;40(3):385-392.
    [72]. Bradley, R.H., Ireland, M.E. Age changes in the skeleton of the human lens. Acta Ophthalmol (Copenh), 1979;57(3):461-9.
    [73]. Ellis,M.,Alousi,S. Studies on lens vimentin. Exp Eye Res, 1984;38 (2):195-202.
    [74]. Sandilands, A., Prescott, A.R. Vimentin and CP49/filensin form distinct networks in the lens which are independent modulated during lens fiber cell differentiation. J Cell Sci, 1995;108:1397-406.
    [75]. Capetanaki, Y., Smith, S., Heath, J.P. Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation. J Cell Biol, 1989;109:1653-1664.
    [76]. Caulin, C.Salvesen, G.S. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol, 1997;138(6):1379-94.
    [77]. Oshima, R.G. Apoptosis and keratin intermediate filaments. Cell Death Differ, 2002;9(5):486-92.
    [78]. Omary, M.B., Coulombe, P.A. Intermediate filament proteins and theirassociated diseases. N Engl J Med, 2004;351(20):1087-100.
    [79]. Lehto, V.P., Virtanen, J., Kurki, P. Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts. Nature, 1987;272:175-177.
    [80]. Woodcock, C.L.F. Nucleus-associated intermediate filaments from chicken erythrocytes. J Cell Biol, 1980;85:881-889.
    [81]. Laurila, P., Virtanen, J., Sternman, S. Intermediate filaments in enucleation of human fibroblasts. Exp Cell Res,1981;131:41-46.
    [82]. Georgatos, S.D., Blobel, G. Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: a basis for a vectoral assembly of intermediate filaments. J Cell Biol, 1987a;105:117-127.
    [83]. Georgatos, S.D., Blobel, G. Lamin B constitutes an intermediate filament attachment site at the nuclear envelope. J Cell Biol, 1987b;105:105-115.
    [84]. Georgatos, S.D., Weaver, D.C., Marchesi, V. Site specificity in vimentin-membrane interactions: intermediate filament subunits associate with the plasma membrane via their head domains. J Cell Biol, 1985;100:1962-1967.
    [85]. Goldman, R.D., Goldman, A.E., Green, K.G., et al. Intermediate filament networks: organization and possible function of diverse group of cytoskeletal elements. J Cell Sci Suppl, 1986;5:69-97.
    [86]. Takashi, N., Kim, J.S., Mohuczy, D., et al. Murine cirrhosis induces hepatocyte epithelial mesenchymal transition and alterations in survival signaling pathways. Hepatology, 2008;48:909-919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700