渡槽结构考虑水体晃动的多点地震输入分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要探讨了大型渡槽结构体系在强地震作用下,渡槽内水体的大幅度晃动以及水体与槽壁的动力相互作用所形成的强流体固体动力耦合,以及大跨度渡槽结构各支承点跨越不同类型的场地,多支承点不同激励的行波效应问题,得出了一些有意义的结论,为大型渡槽结构的抗震研究提供一定的参考。
     本文首先采用频率积分法的Trifunac方法对所选的地震波加速度时程曲线来进行0轴修正,消除求解速度时程和位移时程由于积分误差累积造成的基线漂移。为渡槽结构进行地震时程分析做相应的准备。
     其次,对渡槽结构进行了动力特性分析研究,结构的动力特性主要包括结构的自振频率和振型等一些基本参数。自振频率是结构动力特性的指标,同时也是判别结构是否会发生共振的依据。通过对结构自振特性的分析判断了渡槽结构模型的合理性。
     最后对渡槽内的水体应用任意拉格朗日一欧拉法进行了流固动力耦合的非线性描述,将渡槽的支撑点与非支撑点分别考虑,建立了渡槽结构一致地震输入模型和多点地震输入模型,分析了强地震作用下渡槽内水体的大幅晃动,渡槽结构的不同支撑点的输入具有时间差效应的多点输入问题对渡槽结构的影响。分析结果表明:1、结构与流体之间的相互作用就会使结构产生类似于TLD(调谐液体阻尼器)的效应。这样渡槽内的水体能给结构提供更大的阻尼,改善结构的能量耗散,与空槽模型相比能够明显的减小结构的最大位移。2、不同波速的多点地震输入都对大跨度渡槽的动力响应有着明显的影响,不同的输入使得槽内的水体晃动幅度减小,但结构中的应力分布却明显增大,主要是各支撑点地震输入时间间隔变化,导致跨端截面底面中心两端点的相对位移变化,地震波速越小时,引起的应力变化越大,由于渡槽是一种重要的输水建筑物,当相邻跨处两渡槽横截面相对位移过大时,会造成伸缩缝止水橡胶带的破裂,从而大量漏水,危及渡槽的安全。在渡槽设计时应充分考虑这一因素对渡槽的影响。
     本文考虑不同的过水深度并建立一致地震输入模型和多点地震输入模型,分析结果表明:1、随着渡槽内水体增加时,渡槽结构跨中截面的最大位移是先减小后增大;当槽内无水时,跨中截面的位移值最大;这因为计算模型考虑了流体、固体之间的相互作用,当输入的地震波速越小,结构两端所受到激励间隔的时间就越长,结构与流体之间的相互作用就会使结构产生阻尼效应。这样渡槽内的水体能给结构提供更大的阻尼,改善结构的能量耗散,能够明显的减小结构的最大位移;2、随着渡槽内水体增加时,渡槽结构跨端截面的最大位移是随之增大;这是由于随着水位的增加,渡槽结构的上部质量增大,从而使作用槽体上地震作用增大的缘故;当槽内无水时,跨中截面的位移值最小;这是因为渡槽结构的槽体与槽墩采用铰接的处理的方法,地震动时结构和流体相互作用降低了渡槽结构的动力响应;所以通过以上分析可知,在对像渡槽这种大跨结构进行抗震分析时,应该考虑不同过水深度在地震作用下对结构所产生的影响。
This thesis discusses the large-amplitude sloshing water of the large-scale flume that is under strong earthquake and fluid-solid dynamic coupling effect which caused by interaction of flume's sloshing water and sidewall. This paper also studies the travelling wave effect under different situation such as long-span flume's supporting points standing on different types of ground and multi-support point excitation. At the end, it comes with some meaningful conclusions that providing a reference for the study of aseismatic design of large-scale flume.
     First of all, it takes the Trifunac method of Frequency Integral for O-axis modification about time-history curves of earthquake's acceleration, which avoids baseline drifting caused by accumulated integration error when calculating time-hisory of speed and displacement. It makes preparation for taking time-history analysis of flume.
     After that, it takes analysis of dynamic characteristics of flume, which contains some essential parameters of natural frequency and mode of vibration. Natural frequency is not only the index of structural dynamic properties but also the basis of judging whether the structure would be in resonance. It assesses the rationality of flume's structural model through analyzing the characteristics of natural frequency.
     It takes Lagrange-Euler method to describe the water in the flume that is under fluid-solid dynamic coupling as nonlinearity. Then, considers supporting and non-supporting points for consideration respectively and creates flume model of uniform and multiple-support excitation. It analyses the large-amplitude sloshing water in the aqueduct and multi-support excitation's time difference effect on flume.It shows that:First, the interaction of structure and fluids could make the structure produce an effect that is similar to TLD. As a result, the water in the flume could afford more damping force and improve the efficiency of energy dissipation. So compared with empty flume model, it can reduce maximum displacement obviously. Secondly, Multi-support input with different speed waves has obvious effect on long-span flume's dynamic response, and different inputs reduce the sloshing amplitude but increase the stress distribution on the structure. The mainly reason about relative displacements'change of cross-section's both ends of the bottom is that interval of multi-input is changed. The stress change that caused by earthquake increases along with the decreases of the earthquake wave speed. Flume is a crucial conveyance structure, the rubber waterproofing strap of two flumes' cross section will be torn up when relative displacement is too large. And this will cause severely leaking that would endanger the safety of flume. Consequently, this factor should be taken full account of in designing.
     Investigations of different water depth through single-support earthquake input models and multi-support earthquake models have been conducted in this research, the result has shown that firstly, as the water body increases in the flume, the maximum displacement of mid-span section in the plume declined first then increased subsequently, and the displacement of mid-span section of the plume reaches its maximum value when there is no water body in the flume. This is mainly because the interaction effect of fluid and solid was taken into consideration in the simulating model, which the excitation intervals received between two ends of the structure became longer as the decrease of the input earthquake wave speed, that the interaction between system and the fluid induced a damping effect to the system, thereafter the water body in the flume provided more damping onto the system, ameliorating the energy dissipation of the whole system, which significantly reduced the maximum displacement of the system. Secondly, as the water body increases in the flume, the maximum displacement of mid-span section in the plume declined first then increased subsequently also caused by the reason that as the water level increases, the weight of the upper part of the flume raises, that enhanced the earthquake effect on the functional flume. The displacement value of mid-span section of the flume drop to its minimum value when there is no water in the flume, that is because the flume and its slot buttress are connected using the method of hinge joint, which diminish the dynamic response of the plume by the co-action effect of the system and the fluid. From all discussed above, a conclusion can be obtained that when analyzing the anti-seismic issue for high-span system like flumes, the influence on such system during earthquake under different water depth should be taken into consideration.
引文
[1]肖祥.世纪构想:南水北调大工程.中国减灾报,2000年5月9日第3版
    [2]陈厚群.南水北调工程抗震安全性问题.中国水利水电科学研究院学报,2003,1(1):17-22
    [3]中华人民共和国水利部.《水工建筑物抗震设计规范》(SDJ10—78)[S].北京,中国电力出版社。1978
    [4]中华人民共和国水利部.《水工建筑物抗震设计规范》(DL5073—2000)[S].北京,中国电力出版社。2000
    [5]何建涛.大型渡槽流体与固体的动力耦合分析[D].西安理工大学,2007
    [6]赵光恒.结构动力学[M].北京:中国水利水电出版社,1995:144-147
    [7]Housner G W.Dynamic Pressure on Accelerated Containers [J].Bull Seism Soc. Am,1957,47(3):15-35
    [8]岳宝增,李笑天.ALE有限元法的研究和应用[J].力学与实践,2002,24(2):7-11
    [9]Westergarrd. Water Pressure on Dams during Earthquakes.Trans.1933,98:418-433.
    [10]田野正.地震里对重力坝的影响[J].水利译丛,1957,67(3).
    [11]小泙清真.不规则地震力所引起坝上的动水压力[J].水利译丛,1958,7(9).
    [12]Gpeanspan J E. Fluid-solid interaction [A].The Winter Annual Meeting of the ASME[C]. Pittsbergh, Pennsylvania,1967.
    [13]Bishop RED, Price W G. Hydroelasticity of ships [M].Cambridge:Cambrideg University Press,1979.
    [14]郑哲敏.平板在流体作用下的振动[J].力学学报,1958,2(1):11-16.
    [15]郑哲敏.等悬臂梁宰一侧受有液体作用下的振动[J].力学学报,1959,3(2):111-119.
    [16]O.C.Zienkiewicz. Hydrodynamic Pressure Due to earthquakes [J]. Water Power,1964,16(9).
    [17]张升明.流体的可压缩性对弹性结构振动的影响[J].水动力学研究与发展,1994,9(4)
    [18]J.I.Bustamante etal.Presion Hidrodinamic a Preassy depositos [J].Boletin Sociedad Mexicanadde Ingenieria Sismics,1963,1(2).
    [19]Newmark.地震工程学原理[M].中国建筑工业出版社,1986
    [20]刘云贺.储液池的抗震问题探讨[J].地震工程与工程振动,2005,25(1):149-154.
    [21]G. W. Housner. The Dynamic Behavior of Water Tanks[J]. Bulletin of the Seismological Of America, 53(2):381-387,1963.
    [22]刘云贺,胡宝柱,闰建文等.Huosner模型在渡槽抗震计算中的适用性[J].水利学报,2002.9:94-99
    [23]Oden,J.T.Finite element analogue of Navier-Stokes equations.J.Engrg.Mech.Div.ASCE.96(EM4),1970, 529-534.
    [24]Greaves,D.M.,Borthwork,A.G.L.,Wu,G.X.and Taylor,R.Eatock.A moving boundary finite element method for fully nonlinear wave simulations.Journal of Ship Research.1997,41(3):181-194.
    [25]Nakayama,T and Washizu,K.Nonlinear analysis of sloshing of liquid motion in a container subjected to forced pitching oscillation.Int.J.Numer.Mech.Fluids,1980,15:1207-1220.
    [26]Nakayama,T.and Washizu,K.The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems.Int.J.Numer.Mech.Fluids.1981,17:1631-1646.
    [27]Jamet,P.and Bonnerot,R.Numerical Solution of the Eulerian Equation of Compressible Flow by a Finite Element Method which Follows the Free Boundary and the Interface.J.comput.Phys.1975.18:21-45.
    [28]Tezduyar,T.E.,Behr,M and Liou,J.A new strategy for finite element computations involving moving boundaries and interfaces---the deforming-spatial-domain/space-time procedure:computation of free-surface flows,two-liquid flows and flows with drifting cylinders.Computer Methods in Applied Mechanics and Engineering.1992,94:353-371.
    [29]Behr,M.and Tezduyar,T.E.Finite element solution strategies for large-scale flow simulation.computer Methods in Applied Mechanics and Engineering.1994,112:3-24.
    [30]李遇春.大型渡槽抗震计算理论研究[D].武汉:武汉水利电力大学,1998,12
    [31]尚春雨.带自由面水体的结构地震反应分析方法及应用[D],上海交通大学,2008
    [32]王建军.快堆主容器流固耦合问题的数值分析[D].北京:清华大学工程力学系,1998
    [33]陈夫尧.分层流体和大晃动流固耦合问题的动力分析[D].北京:清华大学工程力学系,1995
    [34]蔡国琰,曲乃泗,赖国璋.贮液罐结构水弹性抗震分析.大连工学院学报.1979,3:86-100
    [35]王永学.任意容器液体晃动问题的数值模拟[D].大连理工大学博士.
    [36]居荣初,曾心传.弹性结构与液体的偶联振动理论[M].北京:地震出版社,1983
    [37]李遇春,楼梦麟.排架式渡槽流—固耦合动力特性分析[J].水利学报,2000(3):31-37
    [38]Huerta A and Liu W K.Viscous flow with large free surface motions.Compt.Meths.Appl.Mech.Engrg. 1988,69,277-324
    [39]Muta K,Kasai Y,and Nakahara M,Experimental tests for suppression effects of water restraint plates on sloshing of a water pool.ASMEJ.of pressure vessel Tech.1988,110,240-252
    [40]Brebbia C A. The Boundary element method for engineers Pentech Prers.1978
    [41]Hirt C W and Harlow F H.Ageneral corrective-procedure for the numerical solution of initial-value problem.Comp.Phy.1967,2,114-119
    [42]曾江红,王照林.粘性流体大幅晃动的ALE有限元模拟.强度与环境,1996,3,22-27
    [43]Donea,J,Fasolli-Stwalla, Giuliani,S,Halleux,J.P.and Jones,A.V.An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid structure interaction problems.In Proceedings of the SMIRT-5 Conf. Berlin,1979:1-10.
    [44]Y K Cheung.结构分析的有限条法[M].北京:人民交通出版社,1985.
    [45]卢耀梓,卡申斯.桥梁工程中的有限条法[M].北京:人民交通出版社,1985.
    [46]王博,寇磊,徐建国等.大型渡槽有限条法动力建模研究[J].世界地震工程,2007,23(1):73-79
    [47]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983.115-154.
    [48]谢耕,动力子结构法及流固耦合间题数值方法的研究[D],清华大学工学博士论文,1989.
    [49]周敏,贮液容器的非线性动力分析[D],清华大学工学博士论文,1989.
    [50]R.W.克拉夫.J.彭津.王光远等译.结构动力学[M].科学出版社.1983:103-115
    [51]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [52]王焕定等.结构力学[M].高等教育出版社.2000:192-193
    [53]E.L.Wilson, A.Der Kiureghian and Bayo.A Replacement for the SRSS Method in Seismic Analysis. Earthquake Engineering&Structural Dynamics.1981 9:187-192
    [54]王博,徐建国.大型渡槽对多点地震输入的反应[J].水利学报.2000 9 9.55-60
    [55]苏成,陈海斌.多点激励下大跨度桥梁的地震反应[J].华南理工大学学报(自然科学版).2008.11,101-107
    [56]田利,李宏男等.多点激励下输电塔—线体系的侧向地震反应分析[J].中国电机工程学报.2008.6,108-114
    [57]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析[J].土木工程学报.2008.2,35-41
    [58]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报.2001.10,29.10,1213-1218
    [59]冯领香,魏建国,白永兵,徐晓.渡槽结构多点输入的抗震分析[J].河北农业大学学报.2007.3,30.2,104-107
    [60]邵岩,赵兰浩,李同春.考虑流固耦合的渡槽动力计算方法综述[J].人民黄河,2005,27(11):55-56
    [61]CHUNG T J.流体动力学的有限元分析.张二骏,等译[M].北京:电力工业出版社,1980.
    [62]朱伯芳.有限单元法原理与应用[M],第二版,北京:中国水利水电出版社,1998.56-112
    [63]铁摩辛柯等.胡人礼译.工程中的振动问题[M].北京:人民铁道出版社.1987
    [64]包世华,周坚.薄壁杆件结构力学[M].北京:中国建筑工业出版社,1991
    [65]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983:115-123
    [66]杨海霞,章青,邵国建计算力学基础[M].南京:河海大学出版社,2001:111-127
    [67]张雄,陆明万,王建军.任意拉各朗日-欧拉描述法研究进展[J].计算力报.1997,14(1):91—102.
    [68]刘志红,黄玉盈.任意的拉-欧边界元法解大晃动问题[J].振动工程学报,1993,6:10-19.
    [69]曾江红.多腔充液自旋系统动力学与液体晃动三维非线性数值研究[D],北京:清华人学工程力学系.1996.
    [70]王建军,李其汉,陆明万.自由液面流体流动问题的数值分析研究[J],计算力学学报.2003年2月第20卷第1期101-108
    [71]王辉.大型水轮机振动分析及粘性流体与弹性结构耦合的有限元格式[D].清华人学博士论文,1997.
    [72]李遇春,楼梦麟.强震下流体对渡槽槽身的作用[J].水利学报.2000年3月,46-53.
    [73]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    [74]R.Dobry, G.Gazetas. Simple method for dynamic stiffness and dam ping of floating pile groups[J],Geoteehnique,38(4):557-574.
    [75]G.Gazetas,R.Dobry. Horizontal response of piles in layered soil[J].J Geoteehnigue Div, ASCE, 1984,110(1):20-40.
    [75]S.Ahmad,P.K.Benerjel. Multi-domain boundary elementmethod for the dimensional problems elastic dynamics [J].Int.J.Numer.Methods in Eng.1988,26(4):891-991.
    [76]D.Bernal,YouseffA. A hybrid time-frequency domain formulation for nonlinearSoil-structure interaction[J].Earthquake engineering and structural dynamics.1998,27(6):670-685.
    [77]M.lguehiJ.E.Lueo. Dynamic response of flexible rectangular foundations [J].Earthquake Engineering and Structural Dynamics,1981,10(3):239-249.
    [78]王其政.结构耦合动力学[M],北京:宇航出版社,1999
    [79]彭云枫.渡槽抗震与抗风研究[M].武汉大学.2005.05
    [80]A.H.Barbat. Active control of nonlinear base-isolated buildings. Journal of the Engineering Mechanics,121(6):675-684,1995
    [81]A.K.Chopra. Hydrodynamic pressures on dams during earthquakes. Journal of the Engineering Mechanics Division,ASCE,93(EM6):205-223,1967
    [82]A.K.Chopra. Earthquake behavior of reservoir-Dam systems. Journal of the Engineering Mechanics, ASCE,96(EM4):443-454,1970
    [83]A.K.Chopra. Earthquake Analysis of Concrete Gravity Dams Including Dam water foundation rock Interaction. Earthquake Engineering and Structural mamics,9:363-383,1981
    [84]A.K.Chopra. Earthquake Behavior of Reservoir-Dam systems, Journal of the Engineering Mechanic division ASCE,94:1475-1500,1968
    [85]A.K.Vaish and A.K.Chopra. Earthquake Finite Element Analysis of Structure-Foundation systems. Journal of Engineering Mechanics Division,ASCE,100:110-1116,1974
    [86]A.Kareem and W.J.Sun. Stochastic Response of Structures with Fluid-Containing Appendages.11 9(3):389-408,1987
    [87]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期发展[J].力学进展.2001,31(3):350-360
    [88]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219
    [89]梁嘉庆,叶继红.多点输入下大跨度空间网格结构的地震响应分析[J].东南大学学报,2003,33(5):625-630
    [90]丁阳,王波.大跨度空间网格结构在地震行波作用下的响应[J].地震工程与工程振动,2002,22(5):71-76
    [91]刘枫,肖从真,徐自国,等.首都机场3号航站楼多维多点输入时程地震反应分析[J].建筑结构学报,2006,27(5):56-63
    [92]李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(2):68-76
    [93]刘天云,刘光廷,薛颖.地震多点激励结构随机分析方法[J].世界地震工程,2001,17(4):88-92.
    [94]苗家武.大型桥梁抗震多点激励反应谱方法应用研究与程序试验[D].上海:同济大学桥梁工程系 1999.
    [95]郑史雄,奚绍中,杨建忠.大跨度刚构桥的地震反应分析[J].西南交通大学学报.第32卷,第6期.1997年12月
    [96]李光辉.大跨度连续刚构桥空间地震反应分析[D].西南交通大学硕士学位论文,2005
    [97]廖振鹏.工程波动理论(第二版)[M].北京:科学出版社,2004
    [98]沈聚敏,周锡元等.抗震工程学[M].北京:中国建设工业出版社,2000
    [99]胡聿贤.地震工程学(第二版) [M].北京:地震出版社,2006
    [100]R.W克拉夫,J.彭津著,王光远等译.结构动力学(第二版)[M].北京:高等教育出版社,2006
    [101]林皋.中国地震工程研究进展(第一版)[M].北京:地震出版社,1992:104-105
    [102]郭长城.建筑结构振动计算[M].北京:中国建筑工业出版社,1982
    [103]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980
    [104](美)爱德华·L·威尔逊著,结构静力与动力分析——强调地震工程学的物理方法(原著第四版)[M].北京:中国建筑工业出版社,2006
    [105]朱镜清.结构抗震分析原理[M].北京:地震出版社,2002
    [106]姚谦峰,苏三庆.地震工程[M].西安:陕西科学技术出版社,2001
    [107]王艳华,寇磊,王博.渡槽结构地震反应分析地震波选取研究[J].水利与建筑工程学报,2008,12,(6)38-39
    [108]张永亮.大型渡槽结构振动特性分析研究[J].甘肃科技,2005,21(1):97-99
    [109]吴轶,莫海鸿,杨春.U形渡槽水体大幅晃动的ALE有限元模拟.华南理工大学学报(自然科学版)[J],2003,31(9):90-93
    [110]张俊发,刘云贺,王颖等.渡槽-水体系统的地震反应分析[J].西安理工大学学报.1999,15(4):46-51
    [111]张俊发,刘云贺,王克成。设置叠层橡胶支座梁式渡槽的地震响应分析[J].水利学报,1999,30(1):50-54
    [112]张俊发,刘云贺,王克成.铅芯橡胶减震技术在渡槽中的应用[J].水利学报,1999,30(10):31-35
    [113]刘云贺,俞茂宏,王克成.流体-固体瞬态动力耦合有限元分析研究.水利学报,2002,33(2):85-89
    [114]吴轶,莫海鸿,杨春.大型矩形渡槽-水耦合体系的动力性能分析.地震工程与工动,2004,24(4):137-142
    [115]吴轶,莫海鸿,杨春.排架-渡槽-水三维耦合体系地震响应分析.水利学报,2005,36(3):280-285
    [116]北村春幸著,裴星洙,廖红建,张立译.基于性能设计的建筑振动解析[M].西安:西安交通大学出版社[M],2004
    [117]胡汛训.地震动输入及动力人工边界的数值模拟方法研究[D].南京:河海大学,2007
    [118]古宾[苏].水力发电站[M].北京:水利电力出版社,1983.
    [119]Fox.R.L.Optimization Methods for Engineering Design Addison-Wesley Publishing Company 1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700