葡萄SVP-like MADS-box、MADS12基因的克隆与植物表达载体的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄是世界上最重要的果树之一,其种植面积和产量都在世界前列。研究花发育的机理对果树栽培、育种工作的发展以及促进果品生产都具有重要的意义。
     本试验以藤稔葡萄的花序为试材,应用电子克隆技术从葡萄EST数据库中拼接到两个MADS-box基因,并用RT-PCR方法扩增得到了该基因的编码区全长序列,分别命名为VvSVP和VvMADS12。结果如下:
     VvSVP基因序列编码区全长684 bp,编码227个氨基酸残基,与PtMADS1、MdJOINTLESS、PkMADS、SVP分别有84.1%、81.7%、78.9%和74.9%的同源性。该序列具有MADS-box基因典型的MADS-box和K-box结构域。系统发育分析同样将VvSVP基因归入MADS-box基因家族的STMADS11进化系。电子表达谱分析显示,该基因在葡萄的芽、叶片、花序及果实中表达,在花、花梗、茎、根中不表达,推测该基因与葡萄花序及果实发育有关。将VvSVP mRNA与基因组序列比对发现,VvSVP基因由8个外显子,7个内含子组成,与SVP基因的结构不完全相同。
     VvMADS12基因序列编码区全长630 bp,编码209个氨基酸残基,与PdMADS-box、AmDEFH7、MODEFH7、SlTDR8、CsMADS-box、PrMADS-box、ZmMADS15分别有70%、63%、62%、60%、66%、45%和50%的同源性。该序列具有MADS-box基因典型的MADS-box和K-box结构域。系统发育分析将VvMADS12基因归入MADS-box基因家族的TM3进化系。分析VvMADS12 mRNA的表达谱,结果表明:VvMADS12基因在葡萄的花序、花梗、茎中表达,在花、果实、叶、根中没有检测到,说明VvMADS12与葡萄花序发育有关。将VvSVP mRNA与基因组序列比对发现,VvSVP基因由8个外显子,7个内含子组成。成功构建了VvSVP和VvMADS12基因的植物双元表达载体。
Grape is one of the most important fruit trees in the world, its culture area and total yields are advanced in the world. it is a great significance to study the mechanism of flower development on fruit trees cultivation, breeding and promoting the development of fruit production.
     A SHORT VEGETATIVE PHASE (SVP) homologue was isolated from Vitis vinifera x V. labrusca'Fujiminori'inflorescence by bioformatic analysis and RT-PCR. It is 684 bp, coding a polypeptide of 227 amino acids, named as VvSVP. Homology analysis showed that the deduced VvSVP protein was highly homologous to the MADS-box genes, PMADS1, MdJOINTLESS、PkMADS、SVP, the identity are 84.1%、81.7%、78.9% and74.9%, respectively. Phylogenetic analysis also indicated that VvSVP belongs to the STMADS11 lineage in MADS-box gene family. Expression pattern analysis showed that VvSVP expressed in buds, leaves, inflorescenes, fruits, but not expressed in flowers, pedicels, stems and roots. Blast of VvSVP with a shotgun genome sequence indicated that VvSVP genome is consist of 8 exons and 7 introns, the number and length of exon is not the same as SVP.
     Electronic VvMADS12 homologue was isolated from Vitis vinifera×V. labrusca 'Fujiminori'inflorescence by bioformatic analysis and RT-PCR. It is 630 bp, coding a polypeptide of 209 amino acids, named as VvMADS12. Homology analysis showed that the deduced VvMADS12 protein was highly homologous to the MADS-box genes, Pd MADS-box、AmDEFH7、MODEFH7、SlTDR8、CsMADS-box、PrMADS-box、ZmMADS15the identity are 70%、63%、62%、60%、66%、45%、and50%, respectively. Phylogenetic analysis also indicated that VvMADS12 belongs to the TM3 lineage in MADS-box gene family. Expression pattern analysis showed that VvMADS12 expressed in buds, leaves, inflorescenes, fruits, but not expressed in flowers, pedicels, stems and roots. Blast of VvMADS12 with a shotgun genome sequence indicated that VvMADS12 genome is consist of 8 exons and 7 introns.
     We constructed plant overexpression vector of VvSVP and VvMADS12.
引文
[1]崔永兰,张露等.植物MADS盒基因研究进展[J].中国生物工程杂志.2003.9(23):51-52
    [2]雍伟东,种康,许智宏等.高等植物开花时间决定的基因调控研究[J].科学通报,2000,45(5):455-466
    [3]Sessions A, Yanofsky M F, Weigel D. Patterning the floral meristem [J]. Semin. Cell Dev. Biol.,1998,9(2):221-226
    [4]宗成文.葡萄花发育相关基因的克隆与表达特性研究.南京农业大学博士学位论文.2007.10,江苏南京
    [5]王彬,吴先军,谢兆辉等.花器官发育的ABC模型研究进展.农业生物技术科学[J].2003.11(5):78-82
    [6]Gnter Theien. Development of floral organ identity:stories from the MADS house[J]. Current Opinion in Plant Biology.2001,4:75-85
    [7]Carpenter R, Coen E S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus[J]. Genes. Dev.,1990,4(9):1483-1493
    [8]Bowman J L. Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis [J]. Development,1991,112(1):1-20
    [90]Coen E S, Meyerowitz E M. The war of the whorls:genetic interactions controlling flower development [J]. Nature,1991,353(6339):31-37
    [10]Mandel M A, Gustafson-Brown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1 [J]. Nature,1992,360(6401):273-277
    [11]Jofuku K D, den B B, Van M M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell,1994,6(9):1211-1225
    [12]Yang Y, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA [J]. Plant J.,2003,33(1):47-59
    [13]Goto K, Meyerowitz E M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA [J]. Genes Dev.,1994,8(13):1548-1560
    [14]Yanofsky M F, Ma H, Bowman J L, et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors [J]. Nature,1990,346(6279):35-39
    [15]Huijser P, Klein J, Lonnig W E, et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus [J]. EMBO J.,1992, 11(4):1239-1249
    [16]Sommer H, Beltran J P, Huijser P, et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:the protein shows homology to transcription factors [J]. EMBO J.,1990,9(3):605-613
    [17]Schwarz-Sommer Z, Hue I, Huijser P, et al. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens:evidence for DNA binding and autoregulation of its persistent expression throughout flower development [J]. EMBO J.,1992,11(1):251-263
    [18]Trobner W, Ramirez L, Motte P, et al. GLOBOSA:a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis [J]. EMBO J.,1992,11(13): 4693-4704
    [19]Bradley D, Carpenter R, Sommer H, et al. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum [J]. Cell,1993,72(1): 85-95
    [20]Davies B, Motte P, Keck E, et al. PLENA and FARINELLI:redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development [J]. EMBO J.,1999,18(14):4023-4034
    [21]Colombo L, Franken J. Koetjie E et al.The petunie MADS box gene FBP11 determines ovule identity[J]. Plant Cell,1995,7:1859-1868
    [22]Angenent GC,Colombo L.olecular control of ovule development[J].Trends Plant Sci,1996,1:228-232
    [23]Theissen G. Development of floral organ identity:stories from the MADS house [J]. Curr.Opin.Plant Biol.,2001,4(1):75-85
    [24]Ferrario S, Immink R G, Angenent G C. Conservation and diversity in flower land [J]. Curr. Opin. Plant Biol.,2004,7(1):84-91
    [25]Theissen G, Saedler H. Floral quartets [J]. Nature,2001,409(6819):469-471
    [26]Alvarez-Buylla E R, Liljegren S J, Pelaz S, et al. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes [J]. Plant J.,2000,24(4): 457-466
    [27]Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants [J]. Mol. Phylogenet Evol.,2003,29(3):464-489
    [28]Kaufmann K. Melzer R, Theissen G. MIKC-type MADS-domain proteins:structural modularity, protein interactions and network evolution in land plants [J]. Gene,2005,347(2): 183-198
    [29]Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development [J]. Gene,2003,316:1-21
    [30]Norman C, Runswick M, Pollock R, et al. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element [J]. Cell,1988,55(6): 989-1003
    [31]Pollock R, Treisman R.Human SRF-related proteins:DNA-binding properties and potential regulatory targets.Genes Dev.,1991,5:2327-2341
    [32]Koum-H, Nadeau E T, Grayhack E J. Multiple phOsphorylated forms of the Saccaromyces Cerevisiae Mcml protein include an isoform induced in resposee to high salt concentrations[J]. Molec Cell Biol,1997,17:819-832
    [33]Kempin S A, Savidge B., and Yanofsky M.F.,1995, Molecular basis of the cauliflower phenotype in A rabidopsis, Science,267:522-525
    [34]Carmona M J, Ortegan, Garcia-Marota F. Isolation and molecular characterization of a new vegetative MADS-box gene from Solanum tuberosum L.[J]. Planta,1998,207:181-188
    [35]Kang S-G, Hannapel L D J. Nucleotide sequences of novel potato(Solanum tuberosum J.)MADS-box cDNAs and their expression in vegetative organs[J]. Gene,1995,166:329-330
    [36]Angenent T G C, FankenJ, Busscher R M, et al. A novel class of MADS-box gene is involved in ovule development in petunia[J]. Plant Cell,1995,7:1569-1582
    [37]Schneitz K. The molecular and genetic control of ovule development [J]. Curr Opinion Plant Biol,1999,2:13-17
    [38]Gu Q, Ferrandi Z C, Yanofsky M F, et al.The Fruitfull MADS-box gene mediate cell differentiation during arabidopsis fruit development[J]. Development,1998,125:1509-1517
    [39]Buchner P, Boutin J-P. A MADS-box transcription factor of the API/Ag19 subfamily is also expressed in the seed coat of pea(pisum sativum)during development[J]. Plant Mol Biol,1998, 38:1253-1255
    [40]Heck G R, Perry S E, Nichols K W, et al. AGL15, a MADS domain protein expressed in developing embryos[J]. Plant Cell,1995,7:271-282
    [41]王光清,胡建广,赵相山等.水稻愈伤组织形态发生中的MADS盒基因的差异表达[J].植物学报,1997,39(11):1035-1041
    [42]Lozanor, Angosto T, Gomez P, et al. Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-box genes[J]. Plant Physiol, 1998,117:91-100
    [43]Purugganan M D, Rounsley S D, Schmidt R J, et al. Molecular evolution of flower development:diversification of the plant MADS-box regulatory gene family[J]. Genetics,1995, 140:345-356
    [44]Rounsley S D, Ditta G S, Yanofsky M F. Diversity roles for MADS-box gene in Arabidopsis development[J]. Plant Cell,1995,7:1259-1269
    [45]Mandel M A, Gustafson-Brown C. Molecular characterization of the Arabidopsis floral homeotic gene APETALA-1 [J]. Nature,1992,360:273-277
    [46]Bonhome F, Sommer H, Bernier G, et al. Characterization of SaMADSD from Sinapis alba suggests a dual function of the gene:in inflorescence development and floral organogenesis[J]. Plant Mol Biol,1997,34:573-582
    [47]Richard G H I, David J H, Silvia F, et al. A petunia MADS-box gene involved in the transition from vegetative to reproductive development[J]. Development,1999,126:5117-512
    [48]Ng M, Yanofsky M F. Function and evolution of the plant MADS-box gene family [J]. Nat. Rev. Genet.,2001,2(3):186-195
    [49]Theissen G, Kim J T, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes [J]. J. Mol. Evol.,1996,43(5):484-516
    [50]Zahn L M, Leebens-Mack J H, Arrington J M, et al. Conservation and divergence in the AGAMOUS subfamily of MADS-box genes:evidence of independent sub- and neofunctionalization events [J]. Evol. Dev.,2006,8(1):30-45
    [51]Zahn L M, Leebens-Mack J, DePamphilis C W, et al. To B or Not to B a flower:the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms [J]. J. Hered.,2005, 96(3):225-240
    [52]Parenicova L, de F S, Kieffer M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world [J]. Plant Cell,2003,15(7):1538-1551
    [53]Gu Q, Ferrandiz C, Yanofsky M F, et al. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development [J]. Development,1998,125(8):1509-1517
    [54]Litt A, Irish V F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:implications for the evolution of floral development [J]. Genetics,2003, 165(2):821-833
    [55]Aoki S, Uehara K, Imafuku M, et al. Phylogeny and divergence of basal angiosperms inferred from APETALA3-and PISTILLATA-like MADS-box genes [J]. J. Plant Res.,2004,117(3): 229-244
    [56]Kramer E M, Dorit R L, Irish V F. Molecular evolution of genes controlling petal and stamen development:duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages [J]. Genetics,1998,149(2):765-783
    [57]Kim S, Yoo M J, Albert V A, et al. Phylogeny and diversification of B-function MADS-box genes in angiosperms:evolutionary and functional implications of a 260-million-year-old duplication [J]. American Journal of Botany,2004,91(12):2102-2118
    [58]Munster T, Wingen L U, Faigl W, et al. Characterization of three GLOBOSA-like MADS-box genes from maize:evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. [J]. Gene,2001,262:1-13
    [59]Kramer E,M, Jaramillo M A, Di S V. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms [J]. Genetics,2004,166(2):1011-1023
    [60]Kotilainen M, Elomaa P, Uimari A, et al. GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida [J]. Plant Cell,2000, 12(10):1893-1902
    [61]Uimari A, Kotilainen M, Elomaa P, et al. Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene [J]. Proc.Natl. Acad. Sci. USA.,2004,101(44):15817-15822
    [62]段远霖,李维明,吴为人等.植物MADS-box基因的研究进展.福建农林大学学报(自然科学版)[J].2003,3:107-109
    [63]胡丽芳,金志强,徐碧玉MADS-box基因在果实发育、成熟过程中的作用.分子植物育种[J].2005,3:415-420
    [64]Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus [J]. Science,2002,296(5566):343-346
    [65]Sung SK, Yu GH, Nam J, Jeong DH, An G. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple[J]. Planta.2000,3(4):519-528
    [66]Zhang L, Xu Y, Ma R. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica) [J]. J Genet Genomics.2008,6.35(6):365-372
    [67]Tani E, Polidoros AN, Flemetakis E, Stedel C, Kalloniati C, Demetriou K, Katinakis P, Tsaftaris AS. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit[J].Plant Physiol Biochem. 20098;47(8):690-700
    [68]Zhang B, Su X, Zhou X. A MADS-box gene of Populus deltoides expressed during flower development and in vegetative organs [J]. Tree Physiol.2008,6;28(6):929-934
    [69]Boss P K, Vivier M, Matsumoto S, et al. A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development [J]. Plant Mol.Biol.,2001,45(5):541-553
    [70]Boss P K, Thomas M R. Association of dwarfism and floral induction with a grape 'green revolution'mutation [J]. Nature,2002,416(6883):847-850
    [71]Fan H Y, Hu Y. Tudor M, et al. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins [J]. Plant J.,1997,12(5): 999-1010
    [72]Sreekantan L, Thomas M R. VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis [J]. Functional Plant Biology,2006,33(12):1129-1139
    [73]王冬冬,朱延明,李勇,等.电子克隆技术及其在植物基因工程中的应用[J].东北农业大学学报,2006,37(3):403-408
    [74]Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees [J]. Plant Molecular Biology Reporter,1993,11:113-116
    [75]Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants [J]. Mol. Phylogenet Evol.,2003,29(3):464-489
    [76]Manning K.Isolation of nucleic acids from plants by differental solvent precipitation[J].Analytical Biochemistry,1991,195:45-50
    [77]沙伟,郑海洋,柴华等.玉米RNA提取方法的比较研究[J].玉米科学,2009,17(2):145-148
    [78]黄雪梅,张守涛,杨超等.玉米花粉总RNA提取方法的比较和分析[J].河南农业科学,2009(4):34-35
    [79]张今今,王越进,王西平等.葡萄总RNA提取方法的研究[J].果树学报,2003,20(3):178-181
    [80]Hartmann U, Hohmann S, Nettesheim K, et al. Molecular cloning of SVP:a negative regulator of the floral transition in Arabidopsis[J]. Plant J,2000,21:351-360
    [81]Lee JH, Yoo SJ, Park SH, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes & development.2007,21(4):397-402
    [82]张华莉,邓吴,张瑞芳等.人类TECEB基因的电子克隆[J].遗传学报,2003,30(4):317-320
    [83]陈军方,任正隆,孔秀荚等.小麦中雄性不育同源序列的分离、鉴定及表达分析[J].遗传学报,2005,32(6):566-570
    [84]刘庆坡,冯英,董辉.水稻线粒体丝氨酸羟甲基转移酶基因的电子克隆[J].生物信息学,2005,3(1):5.9
    [85]马海明,柳小春,施启顺.猪CDC16基因的电脑克隆[J].生物信息学,2006,4(4):150-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700