基于高速逆流过程、络合反应的萃取强化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萃取过程以其生产能力大、分离效率高、能耗低、便于快速连续和安全操作等一系列优点获得广泛应用。本文从物理、化学两个角度分别研究了两种强化萃取的方法:一种是利用高速逆流色谱中的多变行星式离心力场进行物理强化,该力场可以使高速逆流色谱中的两相进行剧烈混合与分层,从而使溶质在高速逆流色谱中得到充分的分配和高效率的分离;另一种是利用络合反应驱动力进行化学强化,对于强极性有机物或有机物盐分离具有较大的优越性。
     第一章对高速逆流过程和络合萃取两种方法的原理、特点进行了介绍,并重点介绍了高速逆流色谱的传质特性、溶剂系统的研究以及络合萃取技术的应用。
     第二章从传质动力学的角度研究了高速逆流色谱中的轴向扩散特性。以不溶于上相的KI为实验对象,测定了双相体系的轴向扩散系数并与单相体系的轴向扩散系数进行了比较。进而采用无因次准数法建立了轴向扩散系数的数学模型,该模型同时考虑了设备参数、操作转速、流速、溶剂物性对轴向扩散系数的混合效应。
     第三章从络合反应的角度研究了离子交换萃取在分离氨基葡萄糖盐酸盐中的应用。采用二(2-乙基已基)磷酸钠萃取目标物,研究了萃取温度、萃取剂初始浓度、被萃取剂初始浓度、pH值对分配系数的影响;建立了分配系数模型,并讨论了四种特殊情况下的分配系数表达式。
     第四章从相平衡的角度对液液两相体系的分配系数进行了初步探讨。以UNIFAC基团贡献法为基础,建立了分配系数计算方法,并用VC++开发了活度系数和液液平衡计算程序。并对部分天然产物的分配系数进行了计算。
     最后对本文的主要研究内容进行了归纳总结,对液液平衡分配系数和高速逆流过程水力学特性的进一步研究提出了一些建议。
Extraction is widely applied due to its great productivity,high separation efficiency,low energy consumption and continuous safe operation.Extraction intensification from physical and chemical aspects has been carried out in the dissertation,One intensification is to take advantage of a changeable synchronous planet centrifugal field in High-speed counter current chromatography(HSCCC) where two phases are subject to the repetitive processes of mixing and settling,and thus solutes can be separated with high efficiency.The other is to make use of the driving force from complexation reaction.This method has great advantages in the separation of strong-polar organic compounds with high selectivity and high efficiency.
     Chapter 1 gives a review about the theories and characteristics of high-speed countereurrent process and complexation extraction,mainly focusing on mass transfer behavior and solvent system of HSCCC as well as application ofcomplexation extraction.
     Chapter 2 deals with the axial dispersion coefficient in HSCCC from the angle of mass transfer.Experiments were implemented with KI which was not soluble in upper phases.Axial dispersion coefficients in dual phases were measured and a comparison was made with those in single phases.Moreover,a mathematical model based on dimensionless numbers was set up. The model describes the influences of apparatus parameters,rotation speed,velocity,solvent properties on the axial dispersion coefficients.
     Chapter 3 deals with ion-exchange extraction of glucosamine hydrochloride with sodium di-(2-ethylhexyl) phosphoric acid(D_2EHPNa) from the angle of complexation reaction.The effects of temperature,initial concentrations of D_2EHPNa and glucosamine hydrochloride and pH of aqueous solution on distribution coefficient were investigated.A mathematical model about distribution coefficient was proposed and four special cases were discussed.
     Chapter 4 deals with distribution coefficient liquid-liquid equilibrium.A calculation method about distribution coefficient was given based on UNIFAC model.A program concerning activity coefficient and liquid-liquid equilibrium was developed using VC++ and distribution coefficients of some natural products were calculated.
     Chapter 5 summarizes the main contents of the dissertation,and several research suggestions about distribution coefficient in liquid-liquid equilibrium and hydrodynamic behaviors in HSCCC were proposed.
引文
[1]戴猷元.新型萃取分离技术的发展及应用[M].北京:化学工业出版社,2007,3-4.
    [2]King C J.Separation Process Based upon Reversible Chemical Complexation//Handbook of Separation Process Technology.Rousseau R W,ed.Chap 15[M].New York:John Wiley& Sons,1987:760-774.
    [3]戴猷元,杨义燕,徐丽莲等.化工进展[J],1991(1):30-34.
    [4]时新刚,陈志伟,刘东武.高速逆流色谱应用研究进展[J].生命科学仪器,2009(8):3-6.
    [5]Eyal A M,Canari R.Oxidation of Polynuclear Aromatic Hydrocarbons in Water.2.UV Radiation and Ozonation in the Presence of UV Radiation[J].Industry Engineering Chemistry Research,1995,34(5):1067-1075.
    [6]苏海佳,徐丽莲,戴猷元.有机胺类稀溶液的络合萃取[J].化工学报,1997,48(6):713-719.
    [7]Ito Y.New continuous extraction method with a coil planet centrifuge[J].J Chromatogr,1981,207:161-169.
    [8]Ito Y.Efficient preparative countercurrent chromatography with a coil planet centrifuge[J].J Chromatogr,1981,214:122-125.
    [9]Ito Y,Sandlin J L,Bowers W G.High-speed preparative countercurrent chromatography(CCC) with a coil planet centrifuge[J].J Chromatogr,1982,244:247-258.
    [10]Ito Y.High-speed countercurrent chromatography[J].CRC Crit Rev Anal Chem,1986,17:65-143.
    [11]Ito Y.Experimental observations of the hydrodynamic behavior of solvent systems in high-speed countercurrent chromatography:part 1.a helical column subjected to two types of synchronous planetary motion[J].J Chromatogr,1984,301:377-386.
    [12]Ito Y,Bowman R L.Countercurrent chromatography with the flow-through coil planet centrifuge[J].J Chromatogr Sci,1973,11:284-291.
    [13]Conway W D.Countercurrent chromatography:Apparatus,Theory and Application[M].VCH,New York,1990.
    [14]刘迪,陈雪峰,宋晓宇.高速逆流色谱技术应用现状[J].食品与机械.2006,22(2):97-100.
    [15]J.H.塞恩费尔德,L.拉皮德斯著.赵维彭等译.化工过程数学模型理论[M].江苏:江苏科学技 术出版社,1981.
    [16]Whitham G B.Linear and Nonlinear Waves.New York:Wiley,1974([美]G B.惠瑟姆著.庄峰,岳曾元译.线性与非线性波[M].北京:科学出版社,1986.
    [17]Martin A J P,Synge R L M.A new form of chromatogram employing two liquid phases Biochemical.Journal[J].1941,35:1358.
    [18]Giddings J C.Nature of Gas Phase Mass Transfer in Gas Chromatography[J].Analytical Chemistry.1962,34(10):1186.
    [19]Giddings J C.Evidence on the Nature of Eddy Diffusion in Gas Chromatography from Inert (Nonsorbing) Column Data[J].Analytical Chemistry.1963,35(10):1338.
    [20]Van deemter J J,Zuiderweg F J,Klinkenberg A.Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography[J].Chemical Engineering Science.1956,5(6):271-289.
    [21]Van deemter J J.Second Informal Symposium of Gas Chromatography Discussion Group,Cambridge,September.1957.
    [22]John H.Knox.Band dispersion in Chromatograph-a new view of A-term dispersion[J].Journal of Chromatography A.1999,831:3-15.
    [23]Guan H,Sajonz P,Guiochon G.Biotechnol.Progr.(submitted).
    [24]Gallagher W,Woodward C.The concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor:A dynamic light scattering study of a small protein[J].Biopolymers,1989,28(11):2001-2024.
    [25]Gibbs S,Chu A,Lightfoot E,Root T.Ovalbumin diffusion at low ionic strength[J].The Journal of Physical Chemistry,1991,95(1):467.
    [26]Sajonz P,Zhong G,Guiochon G.Influence of the concentration dependence of the mass transfer properties on the chromatographic band profiles I.Apparent axial dispersion coefficient in frontal analysis[J].Journal of Chromatography A,1996,728:15-23.
    [27]Guiochon G,Golshan-Shirazi S,Katti A.Fundamentals of preparative and Nonlinear Chromatography [M].Academic res,New York.NY,1994.
    [28]Fedotov P.S,Spivakov B Y,Shkinev V M.Anal.Sci.2000,16:535.
    [29]Katasonova O N,Fedotov P S,Spivakov B Y,Filippov M N.J.Anal.Chem.2003,58:473.
    [30] Wei C, Yu T. Peak shape and dispersion behavior of solutes in counter-current chromatography with a single phase [J]. Journal of Chromatography A, 2009,1216:6789-679.
    [31] Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography [J]. J Chromatogr A, 2005,1065:145-168.
    [32] Kostanian AE. Modelling counter-current chromatography: a chemical engineering perspective [J]. J Chromatogr A, 2002, 973: 39-46.
    [33] Kostanian AE, Berthod A, Ignatova SN, Maryutina TA, Spivakov BY, Sutherland IA. Countercurrent chromatographic separation: a hydrodynamic approach developed for extraction columns [J]. J Chromatogr A, 2004,1040: 63-72.
    [34] Sutherland IA, de Folter J, Wood P. Modeling CCC using an eluting countercurrent distribution model [J].Liq Chromatogr Relat Technol, 2003,26:1449-1474.
    [35] de Folter J, Ian A. Sutherland. Universal counter-current chromatography modelling based on counter-current distribution [J]. Journal of Chromatography A, 2009,1216:4218-4224.
    [36] VanBuel M J, vanderWielen L A M, Luyben K. Effluent concentration profiles in centrifugal partition chromatography [J]. AIChE Journal, 1997,43:693-702.
    [37] Marchal L, Legrand J, Foucault A. Mass transport and flow regimes in centrifugal partition chromatography [J]. AIChE Journal, 2002,48: 1692-1704.
    [38] Ito Y. Principal, apparatus and methodology of high-speed countercurrent chromatography[M]. Ito Y, Conway W D ed. [s. 1.]: A Wiley-Inter-science Publication, 1995.37.
    [39] Conway W D, Ito Y. J. Evaluation of Nonaqueous Solvent Systems for Countercurrent Chromatography Using an HPLC Assay to Determine Partition Coefficients of a Mixture of Compounds [J]. Liq. Chromatogr., 1984,7: 291.
    [40] Oka F, Oka H, Ito Y. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography [J]. Journal of Chromatography A, 1991, 538(1): 99.
    [41] He C H, Zhao C X. Prediction of retention of the stationary phase retention for high-speed countercurrent chromatography [J]. AIChE J. 2007, 55: 1460-1471.
    [42] Tamada J A, Kertes A S, King C J. Ind Eng Chem Res, 1990, 30(6): 1335-1342.
    [43] Fuller E N, Ensley K, Giddings J C. Diffusion of halogenated hydrocarbons in helium: the effect of structure on collision cross sections[J].J Phys Chem,1969,75(11):3 679-3685.
    [44]魏凤玉,韦洪屹,崔鹏,庆卫星.磷酸三丁酯络合萃取对氨基酚的研究[J].化学工程,2006,34(5):8-11.
    [45]Janet A,Tamadat C,King J.Extraction of Carboxylic Acids with Amine Extractants.Chemical Interactions and Interpretation of Data[J].Ind.Eng.Chem.Res,1990,29,1327-1333 1327
    [46]Tamada J A,Kertes A S,King C J.Extraction of carboxylic acids with amine extractants.1.Equilibria and law of mass action modeling[J].Ind Eng Chem Res,1990,29(7):1319-1326.
    [47]Yang S T,White S A,Hsu S T.Extraction of carboxylic acids with tertiary and quaternary amines:effect of pH Extraction of carboxylic acids with tertiary and quaternary amines:effect of pH[J].Ind Eng Chem Res,1991,30(6):1335-1342.
    [48]Eyal A M,Canari R.pH Dependence of Carboxylic and Mineral Acid Extraction by Amine-Based Extractants:Effects of pKa,Amine Basicity,and Diluent Properties[J].Ind Eng Chem Res,1995,34(5):1067-1075.
    [49]Slfnlades S.,Tunlck A.A.,Koff F.W.Liquid Ion-Exchange Process for the Recovery of HHydroxylamine from Rasching Synthesis Mixtures[J].Ind.Eng.Chem.Process.Des.Dev.,1982(21):211-216.
    [50]张瑾,戴猷元.络合萃取的“摆动效应”及应用[J].现代化工,1999,19(3):8-11.
    [51]BanielA M,Blumberg R,Hajdu K.U S Patent,4275234.1981.
    [52]杨义燕,苏海佳,秦炜,李芮丽,戴猷元.络合萃取法处理工业苯胺废水[J].化工进展,1995,2:24-28.
    [53]Kertes A S,King C J,Extraction chemistry of fermentation products carboxylic acids[J].Bioeng.Biotechnol.1986,28:269.
    [54]王运东,李玉鑫,李振宇等.三烷基氧膦(TRPO)萃取有机羧酸的研究[J].高校化学工程学报,2001,15(2):174-178.
    [55]Yankov D.et al..Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane[J].Biochemical Engineering Journal,2004,21(1),63.
    [56]Hong Y K,Hong W H.Reactive extraction of lactic acid with mixed tertiary amine extractants[J].Biotechol.Technol.1999,13:915-918.
    [57]Juang R S,Huang R H.Equilibrium studies on reactive extraction of lactic acid with an amine extractant[J].Chem.Eng.J.1997,65:47-53.
    [58]Matsumoto M,Yuba S,Kondo K.Synergistic extraction of lactic acid with tri-n-octylamine and tri-n-butylphosphate[J].J.Chem.Eng.Jpn.1998,31:996.
    [59]Matsumoto M,Otono T,Kondo K.Synergistic extraction of organic acids with tri-n-octylamine and tri-n-butylphosphate[J].Separation and Purification Technology,2001,24:337-342.
    [60]Matsumoto M,Takahashi,Toru,Fukushima,Kenji.Synergistic extraction of lactic acid with alkylamine and tri-n-butylphosphate:effects of amines,diluents and temperature[J].Separation and Purification Technology,2003,33(1):89.
    [61]苏海佳,徐丽莲,戴献元.有机胺类稀溶液的络合萃取[J].化工学报,1997,12(6):713-719.
    [62]杨义燕,苏海佳,秦炜,李芮丽,戴猷元.络合萃取法处理工业苯胺废水[J].化工进展,1995,2:24-27.
    [63]吴方宁,张全英.络合萃取法对含胺类有机废水的处理[J].化工中间体,2005,7:10-12.
    [64]Teramoto M,Miyake Y,Matsuyama H,et al.ISEC' 90,1990,Ⅱ:1803-1808.
    [65]Haensel R,Halwachs W,Schugerl K.Reactive extraction of d,1-phenylalanine with trioctyl-methyl-ammonium chloride(TOMAC) as a carrier-Ⅲ.Equilibrium and mass transfer investigations[J].Chem Eng Sci,1986,41(7):1811-1815.
    [66]Nato T,Ohtake T,Matsumoto M,et al.Extraction Equilibria of Amino Acids with Quaternary Ammonium Salt[J].J Chem Eng Japan,1991,24:20-24.
    [67]罗世翊,邵文尧,王兆守,李清彪,卢英华.有机溶剂萃取分离L-苯丙氨酸[J].厦门大学学报,2007,46(4):529-533.
    [68]Bi P Y.,Dong H R,Yu H B,Chang L.A new technique for separation and purification of 1-phenylalanine from fermentation liquid:Flotation complexation extraction[J].Separation and Purification Technology,2008,63(2):487-491.
    [69]Dai YY,Qin W,Zhang J.Complexation Extraction Technique of Organic Compound[M].Beijing:Chemical Industry Press,2003,165,180.
    [70]Bi P Y,Li D Q,Dong H R.A novel technique for the separation and concentration of penicillin G from fermentation broth:Aqueous two-phase flotation[M].Separation and Purification Technology,2009, 69(2):205-209.
    [71]李德亮,秦炜,林屹,戴猷元.三烷基氧膦与二(2-乙基己基)磷酸协萃对氨基苯酚的研究和应用[M].化学工程,2004,32(2):1-5.
    [72]崔节虎,李德亮,张凌.二(2-乙基己基)磷酸络合萃取对氨基苯酚[M].光谱实验室,2005,22(2):307-312.
    [73]魏凤玉,韦洪屹,崔鹏,庆卫星.磷酸三丁酯络合萃取对氨基酚的研究[M].化学工程,2006,34(5):8-11.
    [74]Zhang J,Dai Y Y.Distribution Behavior of Aminobenzoic Acid by Extraction with Di(2-ethylhexyl)phosphoric Acid[J].Chinese J of Chem Eng,2000,8(4):300-303.
    [75]Liu Y S;Dai Y Y.Distribution behavior of amiobenzoic acids by exaction with Di(2-ethylhexyl)phosphoric acid and trioctylamine[J].Separation Science and Technology.2001,36(12):3473-3485.
    [76]Zhang J,Dai Y Y.Extraction of Aminobenzoic Acid with TOA and TBP[J].Tsinghua Sci& Tech,2002,7(1):52-55.
    [77]李振宇,杨义燕,戴猷元.三烷基胺(7301)络合萃取对氨基苯磺酸稀溶液[J]化工学报,2001,51(1):85-89.
    [78]Forrest C,Hughes MA.The separation of Zn from Cu by D2EHPA- an equilibrium study[M].Hydrometallurgy,1978,3:327-342.
    [79]Owusu G.Selective extractions of Zn and Cd from Zn-Cd-Co-Ni sulphate solution using di-2-ethylhexyl phosphoric acid extractant[J].Hydrometallurgy,1998,47:205-215.
    [80]Kongolo K,Mwema M D,A.N.Banza and E.Gock,Cobalt and Zinc recovery from copper sulphate solution by solvent extraction[J].Miner.Eng.2003,16:1371-1374.
    [81]Cheng C Y,Purification of synthetic laterite leach solution by solvent extraction using D2EHPA[J].Hydrometallurgy,2000,56:369-386.
    [82]Sole K C,Feather A M,Cole P M.Solvent extraction in southern Africa:an update of some recent hydrometallurgical developments[J].Hydrometallurgy,2005,78:52-78.
    [83]Darvishi D,Haghshenas D F,Keshavarz Alamdar Ei,Sadrnezhaad S K,Halali M.Synergistic effect of Cyanex 272 and Cyanex 302 on separation of cobalt and nickel by D2EHPA[J].Hydrometallurgy,2005,77:227-238.
    [84]Singh H,Mishra S L,Vijayalakshrni R.Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate[J].Hydrometallurgy,2004,73:63-70.
    [85]Francis T,Rao T P,Reddy M L P.Cyanex 471X as extractant for the recovery of Hg(Ⅱ) from industrial wastes[J].Hydrometallurgy,2000,57:263-268.
    [86]Preston J S,du Preez A C,Cole P M,Fox M H.The recovery of rare earth oxides from a phosphoric acid by-product.Part 3.The separation of the middle and light rare earth fractions and the preparation of pure europium oxide[J].Hydrometallurgy,1996,42:131-149.
    [87]Dayrell Pereira D,Sonia Denise Ferreira Rocha,Marcelo Borges Mansur.Recovery of zinc sulphate from industrial effluents by liquid-liquid extraction using D2EHPA(di-2-ethylhexyl phosphoric acid)[J].Separation and Purification Technology,2007,53:89-96.
    [88]Atanassova M,Lachkova V,Vassilev N,Varbanov S,Dukov I.Complexation of trivalent lanthanoid ions with 4-benzoyl-3-phenyl-5-isoxazolone and p-tert-butylcalixarene fitted with phosphinoyl pendant arms in solution during synergistic solvent extraction and structural study of solid complexes by IR and NMR[J].Polyhedron,2009(in press)
    [89]John H P,Tyman,Satinderjit K.Mehet.The separation and synthesis of lipidic 1,2-and 1,3-diols from natural phenolic lipids for the complexation and recovery of boron[J].Chemistry and Physics of Lipids,2003,126(2):177-199.
    [90]齐江.醇类稀溶液和石油产品中氮化物的络合萃取研究:[博士学位论文].北京:清华大学,1999.
    [91]齐江,戴猷元,己酸铁对乙醇稀溶液的络合萃取[J].应用化学,1999,16(1):107-109.
    [92]Arenson D R,Keres A S,King C J.Extraction of ethanol from aqueous solution with phenolic extractants[J].Industry Engineering Chemistry Res,1990,29(4):607-613.
    [93]刘颖,李改枝.磷酸三丁酯络合萃取邻甲苯酚的研究[J].内蒙古师范大学学报,2006,35(2):212-215.
    [94]陆嘉昂,宋慧敏,郭森,薛其福.磷酸三丁酯络合萃取含酚废水的应用研究[J].江苏化工,2008,36(4):34-36.
    [1]Mandava N B,Ito Y,Countercurrent Chromatography:Theory and Practice[M].Marcel Dekker,New York,1988.
    [2]Ito Y,Conway W D,High-speed Countercurrent Chromatography[M].Wiley-Interscience,New York,1996.
    [3]Berthod A.Countercurrent Chromatography.The Support-free Liquid Stationary Phase (Comprehensive Analytical Chemistry,vol.38)[M].Elsevier,Amsterdam,2002.
    [4]Bristow P A,Knox J H.Standardization of test conditions for high performance liquid chromatography columns[J].Chromatographia,1977,I0:279.
    [5]van Deemter J,Zuiderweg F,Klinkenber A.Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography[J].Eng.Sci.1956,5:271.
    [6]Arnold F H,Blanch H W,Wilke C R.Analysis of affinity separations Ⅱ:The characterization of affinity columns by pulse techniques[J].Chem.Eng.J.1985,30:B25-B36.
    [7]Arnold F H,Blanch HW,Wilke C R.Analysis of affinity separations:Ⅰ:Predicting the performance of affinity adsorbers[J].Chem.Eng.J.1985,30:B9-B23.
    [8]Knox J H.Band dispersion in chromatography-a new view of A-term dispersion[J].J.Chromatogr.A.1999,831:3.
    [9]Frey D D,Water R V,Zhang B B.Dispersion in stacked-membrane chromatography[J].Chromatogr.A.1992,603(1-2):43-47.
    [10]Shiosaki A,Goto M,Hirose T.Frontal analysis of protein adsorption on a membrane adsorber[J].J.Chromatogr.A.1994,679:1.
    [11]Kostanian A E,Ignatova S N,Maryutina T A,Spivakov B Ya,Sutherland I A.Countercurrent chromatographic separation:a hydrodynamic approach developed for extraction columns[J].J.Chromatogr.A.2004,1040:63.
    [12]van Buel M J,van der Wielen L A M,Luyben K Ch A M.Effluent concentration profiles in centrifugal partition chromatography[J].AIChE J.1997,43:693.
    [13]Goto M,Imamura T,Hirose T.Axal dispersion in liquid magnetically stabilized fluidized beds[J]. Journal of Chromatography A.1995,690:1.
    [14]Sherritt R G,Chaouki J,Mehrotra A K,Behie L A.Axial dispersion in the three-dimensional mixing of particles in a rotating drum reactor[J].Chemical Engineering Science.2003,58:401.
    [15]Rutgers R.Longitudinal mixing of granular material flowing through a rotating cylinder:Part Ⅱ.Experimental[J].Chemical Engineering Science.1965,20(12):1089.
    [16]Rao S,Bhatia S,Khakhar D.Axial transport of granular solids in rotating cylinders.Part 2:Experiments in a non-flow system Powder Technology[J].1991,67(2):153-162.
    [17]Ito Y.Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography[J].Journal of Chromatography A.2005,1065(2):145-168.
    [1]戴猷元.新型萃取分离技术的发展及应用[M].北京:化学工业出版社,2007,1:7.
    [2]苏海佳,徐丽莲,戴献元.有机胺类稀溶液的络合萃取[J].化工学报,1997,48(6):713-720.
    [3]Slfnlades S,Tunlck A A,Koff F W.Liquid Ion-Exchange Process for the Recovery of Hydroxylamine from Rasching Synthesis Mixture[J].Ind.Eng.Chem.Process Des.Dev.,1982,21:211-216.
    [4]谭世语,杨红,汤波[J].应用化学,2001,18(3):212-215。
    [5]杨义燕,苏海佳,秦炜.络合萃取法处理工业苯胺废水[J].化工进展,1995(2):24-27.
    [6]冯旭东.难降解有机废水的萃取置换研究[D].北京:清华大学,2001.
    [7]Koff F W,Slfnlades S,Tunlck A A.Ion-Exchange Process for the Recovery of Hydroxylamine from Rasching Synthesis Mixtures[J].Ind.Eng.Chem.Process Des.Dev.,1982,21:204-210.
    [8]Slfanlade S,Tunlck A A,Koff F W.Liquid Ion-Exchange Process for the Recovery of Hydroxylamine from Rasching Synthesis Mixtures[J].Ind.Eng.Chem.Process Des.Dev.1982,21:211-216.
    [9]房升.液液离子交换萃取法从Rasching合成液中分离硫酸羟胺:应用与相关基础研究[D].杭州:浙江大学,2009.
    [10]李运曼,唐明月,夏雯.D-氨基葡萄糖盐酸盐的抗肿瘤作用[J].中国天然药物,2003,1(4):237-239.
    [11]邵健,杨宇民.氨基葡萄糖-Cu(Ⅱ)配合物清除过氧化氢的研究[J].中国海洋药物,2003,95(5):32-34.
    [12]HOUPT J B,MoMILLAN R,WEINC.Effect of glucosamine hydrochloride in treatment of pain of osteoarthritis of the knee[J].J Rheumatol,1999,26(11):2423-2430.
    [13]韩宝芹,刘成圣,王绪敏.羧甲基壳聚糖、盐酸氨基葡萄糖及N-乙酰氨基葡萄对大鼠胰岛细胞生长及胰岛素分泌量的影响[J].中国生物医学工程学报,2004,23(2):187-191.
    [14]李慧,曹秀明,季宇彬.N-乙酰氨基葡萄糖及D-氨基葡萄糖盐酸盐研究进展[J].黑龙江医药,2007,20(2):118-120.
    [15]Purchase E R,Brown C E.Glucosamine hydrochloride.In:Organic synthesis,1946,16:36.
    [16]周培根,尤俞敏,戚晓俞.氨基葡萄糖盐酸盐的制备及其某些性质[J].水产学报,2000,24(1):76-80.
    [17]Cao L H,Dong W M,Jiang L S,Zhang X Q.Polymerization of 1,3-butadiene with VO(P204)2 and VO(P507)2 activated by alkylaluminum[J].Polymer,2007(48):2475-2480.
    [18]Genchev M,Manalov S,Zhekov S.Coordination reaction of Glucosamine with Cu(Ⅱ),Fe(Ⅲ),Co (Ⅱ) and Ni(Ⅱ)[J].Koord Khim,1984,10(2):168.
    [19]刘阳生,戴猷元,汪家鼎.磷酸萃取L-苯氨酸[M].化工学报,1999,50(3):289-295.
    [20]董丽,马素英,杨利敏,孙祥德.氨基葡萄糖与铜钴镍三种金属离子的配位性能研究[J].时珍国医国药,2008,19(4):836-837.
    [21]King C J.Separation Process Based upon Reversible Chemical Complexation// Handbook of Separation.Process Technology.Rousseau R W,ed.Chap 15.New York:John Wiley& Sons,1987:760-774.
    [22]戴猷元.新型萃取分离技术的发展及应用[M].北京:化学工业出版社,2007,1:17.
    [23]钱和生,李兰,薛红梅.氨基葡萄糖盐酸盐制备及溶解度研究[J].化学世界,1994,(2):75-78.
    [24]Aharon M,Canari E R.pH Dependence of Carboxylic and Mineral Acid Extraction by Amine-Based Extractants:Effects of PKa,Amine Basicity,and Diluent Properties.Ind.Eng.Chem.Res.,1995,34:1789-1798.
    [1] Ghasemi J, Saaidpour S. Quantitative structure-property relationship study of n-octanol-water partition coefficient of some of diverse drugs using multiple linear regression [J]. Analytica Chimica Acta, 2007, 10(4): 1-15.
    
    [2] Ruelle P, Ulrich W, Kesselring. The Hydrophobic effect 3. A key ingredient in predicting n-Octanol-Water partition coefficients [J]. Journal of Pharmaceutical Sciences, 1998, 87(8): 1015-1024.
    [3] Bodor N, Gabanyi Z, Wong C K. A new method for the estimation of partition coefficient [J]. Journal of the American Chemical Society, 1989, 111: 3783-3786.
    [4] Buchwald P, Bodor N. Octanol-Water partition of nonzwitterionic peptides: predictive power of a molecular size-based model [J]. Proteins Structure, Function and Genetics, 1998(30): 86-99.
    [5] Jantschi L, Bolboaca S D. Modeling the Octanol-Water partition coefficient of substituted phenols by the use of structure information [J]. International Journal of Quantum Chemistry, 2007, 107: 1736-1744.
    [6] Marrero J, Gani R. Group-Contribution-Based estimation of Octanol-water partition coefficient and aqueous solubility [J]. Industrial Engineering Chemical Resource. 2002(41): 6623-6633.
    [7] Hansch C, Leo A, Elkins D. Partition coefficients and their uses [J]. Chem. Rev. 1971, 71: 524.
    [8] Meylan W M, Howard P H. Atom/fragment contribution method for estimating octanol-water partition coefficients [J]. J. Pharm. Sci., 1995, 84: 83.
    [9] Alexksandr Y, Klopman G S. A structural analogue approach to the prediction of the octanol-water partition coefficient [J]. J. Chem. Inf. Model. 2006,46: 1598-1603.
    [10] Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AICHE, 1975,21: 1086.
    
    [11] Arbuckle W B. Estimating activity coefficients for use in calculating environmental parameters [J]. Environ. Sci. Technol, 1983, 17(9): 537-542.
    
    [12] Campbell J R, Luthy R G. Prediction of aromatic solute partition coefficients using the UNIFAC group contribution model [J]. Environ. Sci. Technol, 1985(19): 980:985.
    [13] Banerjee S, Howard P H. Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients [J]. Environ. Sci. Technol, 1988,22: 839-841.
    [14]Kuramochi H,Noritomi H,Hoshino D,Kato S,Nagahama K.Application of UNIFAC models to partition coefficients of biochemicals between water and n-octanol or n-butanol[J].Fluid Phase Equilib,1998,144:87-95.
    [15]Kuramochi H,Ohsako M,Maeda K,Sakai S.Prediction of physico-chemical properties for PCDDs/DFs using the UNIFAC model with an alternative approximation for group assignment[J].Chemosphere,2002,49:135-142.
    [16]Fredenslund A,Gmehling J,Michelsen M L,Rasmussen P,Prausnitz J M.Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients[J].Ind.Eng.Chem.Process Des.Dev,1977,16(4):450.
    [17]董新法,方利国,陈砺.物性估算原理及计算机计算[M].北京:化学工业出版社,2006.
    [18]Hansen H K,Coto B,Kuhlmann B.UNIFAC with Linearly Temperature-Dependent Group-Interaction Parameters[M].SEP9212,Institute for Kemiteknik,DTH:Lyngby,1992.
    [19]Magnussen T,Rasmussen P,Fredenslund A.UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria[J].Ind.Eng.Chem.Process Des.Dev.1981(20):331-339.
    [20]Larsen B L,Rasmussen P,Fredensund A.A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing[J].Ind.Eng.Chem.Res.1987,26,2274.
    [21]Weidlich U,Gmehling J.A Modified UNIFAC Model.1.Prediction of VLE,hE,and γ~∞[J].Ind.Eng.Chem.Res,1987,26:1372-1381.
    [22]Gmehling J,Li J,Schiller M.A Modified UNIFAC Model.2.Present Parameter Matrix and Results for Different Thermodynamic Properties[J].Ind.Eng.Chem.Res,1993,32:178.
    [23]Bastos J C,Soares M E,Medina A G.Infinite Dilution Activity Coefficients by UNIFAC Group Contribution[J].Ind.Eng.Chem.Res,1988,27:1269.
    [24]Kikic I,Alessi P,Rasmussen P,Fredenslund A.On the Combinatorial Part of the UNIFAC and UNIQUAC Models[J].Can.J.Chem.Eng.,1980,58:253
    [25]Hopper H H,Michel S S,Prausnitz J M.Correlation of Liquid-Liquid Equilibria for Some Water-Organic Liquid Systems in the Region 20-250℃[J].Ind.Eng.Chem.Res,1988,27:2182-2187.
    [26]Efthimia A,Tritopoulou,Georgia D,Pappa.Modeling of Liquid-Liquid Phase Equilibria in Aqueous Solutions of Poly(ethylene glycol) with a UNIFAC-Based Model[J].Ind.Eng.Chem.Res,2003,42:5399-5408.
    [27]Elbro H S,Fredenslund A,Rasmussen P.A New Simple Equation for the Prediction of Solvent Activities in Polymer Solutions[J].Macromolecules,1990,23:4707.
    [28]Bondi A.Physical Properties of Molecular Crystals,Liquids and Glasses[M].Wiley:New York,1968.
    [29]Pappa G D,Voutsas E C,Tassios D P.Liquid-Liquid-Phase Equilibrium in Polymer-Solvent Systems:Correlation and Prediction of the Polymer Molecular Weigh and Pressure Effect[J].Ind.Eng.Chem.Res,2001,40:4651.
    [30]Kouskoumvekaki I A,Michelsen M L,Kontogeorgis G M.An improved entropic expression for polymer solutions[J].Fluid Phase Equilibria,2002,202:325.
    [31]Sheng Y J,Panagiotopoulos A Z,Tassios D P.Activity Coefficients in Nearly Athermal Model Polymer/Solvent Systems[J].AICHE J,1995,41:2306.
    [32]Zhang S J,Hiak Ti,Hongo M,Kojima K.Prediction of infinite dilution activity coefficients in aqueous solutions by group contribution models.A critical evaluation[J].Fluid Phase Equilibria,1998,144:97-112.
    [33]Weidlich U,Gmehling J.A modified UNIFAC model.1.prediction of VLE,hE,and r~∞[J].Ind.Eng.Chem.Res.,1987,26:1372-1381.
    [34]Lohmann J,Joh R,Gmehling J.From UNIFAC to modified UNIFAC(Dortmund)[J].Ind.Eng.Chem.Res.,2001,40:957-964.
    [35]Wittig R,Lohmann J,Gmehling J.Vapor-Liquid equilibria by UNIFAC group contribution.6,revision and extension[J].Ind.Eng.Chem.Res.2003,42:183-188.
    [36]Balslev K,Abildskow J.UNIFAC parameters for four new groups[J].Ind.Eng.Chem.Res.,2002,41:2047-2057.
    [37]Lohmann J,Gmehling J.Modified UNIFAC(Dortmund):Reliable model for the development of thermal separation processes[J].Journal of Chemical Engineering of Japan,2001,34:43-54.
    [38]Prausnitz J M,Lichtenthaler U N,de Azevedo E G著.陆小华,刘洪来译.多流体相平衡的分子热力学[M].北京:化学工业出版社,2006,第三版,165-167.
    [39]Prausnitz J M,Anderson T A,Grens E A,Eckert CA,Hsieh,OLonnell J P.Computer Calculation for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria[M].Prenrice-Hall,Englewood Cliffs,N.J.,1980.
    [40]Sorensen J M,Arlt W.DECHEMA Chemistry Data Series,DECHEMA,VOL.V,Part 1,[M]. Frankfurt,1979.
    [41]Bay K,Wanko H,Ulrich J.Absorption of Volatile Organic Compounds in Biodiesel Determination of Infinite Dilution Activity Coefficients by Headspace Gas Chromatography[J].Chemical Engineering Research and Design,2006,84(A 1):22-28.
    [42]Wang P,Dwarakanath W.Partition coefficients for alcohol tracers between nonaqueous-phase liquids and water from UNIFAC-solubility method[J].Advances in Water Resources,1998,21:171-181.
    [43]Campbell J R,Luthy R G.Prediction of Aromatic Solute Partition Coefficients Using the UNIFAC Group Contribution Model[J].Environ.Sci.Technol.1985,19:980-985.
    [44]Arbuckle W B.Estimating Activity Coefficients for Use in Calculating Environmental Parameters[J].Environ.Sci.Technol,1983,17:537-542.
    [45]Yang C H,Tang Q F,Liu J H,Zhanga Z J,Liub W Y.Preparative isolation and purification of phenolic acids from Smilax china by high-speed counter-current chromatography[J].Separation and Purification Technology 2008,61:474-478.
    [46]Peng J Y,Yang G J,Fan G R,Wu Y T.Preparative isolation and separation of a novel and two known flavonoids from Patrinia villosa Juss by high-speed counter-current chromatography[J].Journal of Chromatography A,2005,1092:235-240.
    [47]Wu H K,Su Z,Yang Y,Ba H,Aisa H A.Isolation of three sesquiterpene lactones from the roots of Cichorium glandulosum Boiss.et Huet.by high-speed counter-current chromatography[J].Journal of Chromatography A,2007,1176:217-222.
    [48]Lin S T,Sandler S I.Multipole Corrections To Account for Structure and Proximity Effects in Group Contribution Methods Octanol-Water Partition Coefficients[J].J.Phys.Chem.A,2000,104:7099-7105.
    [49]Lin S T,Sandler S I.Prediction of Octanol-Water Partition Coefficients Using a Group Contribution Solvation Model[J].Ind.Eng.Chem.Res.1999,38:4081-4091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700