多重非对称光纤及光纤光栅的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着众多类型光纤与光纤光栅的问世,单根光纤与光纤光栅对光波的调控能力几乎发挥到了极致,人们似乎只有通过复杂的光纤集成系统,才能实现对光波的进一步操控,然而,这显然与当前光纤器件微型化与集成化的发展趋势是相左的。按照新的物理观点,光纤技术在光波控制和光波信息交换等方面的内涵还远没有得到更深入的认识与挖掘,还有待于人们从不同的角度开展深入系统的研究。因此,本文基于空间调制理论和高频C02激光脉冲三维写制光栅技术,首次设计或研制出几种具有多重非对称特征的光纤与光纤光栅,并对其应用进行了相关研究和探索,为设计与研制具有灵活操控光波功能的新型光纤与光纤光栅提供了新理念和新方法。论文主要工作和研究成果如下:
     1.首次提出多重非对称光纤与光纤光栅的概念。根据光纤与光纤光栅的空间调制特征,首次较为系统的对光纤与光纤光栅的多重非对称性进行了分析和总结,丰富了现有光纤与光纤光栅的分类方法。
     2.首次较为系统的分析了非对称性对光纤导光性能的影响。分别从光纤横截面上纤芯的非对称性对纤芯模式导光特性的影响、包层的非对称性对局域包层模导光特性的影响、光纤轴向非对称性对超模模式间耦合特性的影响三个方面,对非对称光纤的导光特性进行了理论模拟和分析。
     3.通过选择性填充方法在一段保偏光子晶体光纤的非对称区域(两个大空气孔中)填入了折射率温敏匹配液,实现了光纤轴向和横截面的共同非对称填充调制,将填充后的光子晶体光纤内置于Sagnac环中,研制出一种新型温度传感器。提出的这种多重非对称填充方式,可以灵活调控光子晶体光纤内光波的传导特性,为新型光子晶体光纤调谐器件的研制提供了新思路和新方法。
     4.基于折射率匹配谐振耦合原理,设计-了一种带宽高达400nm的新型单偏振单模光子晶体光纤,该光纤具有可灵活调控纤芯模式和多个局域包层模式间耦合系数等特点。提出的设计方法,对新型光子晶体光纤的设计与研制具有重要的参考价值。
     5.首次提出一种双波段正交单偏振单芯光子晶体光纤,其两个正交偏振态分别支持1.31μm和1.55μm波段内光波的单偏振传输。这种新型双波段正交单偏振光纤具有独特的导光机制,为新型偏振光纤器件的研制以及解决光纤中偏振衰落问题提供了新理念和新方法。
     6.基于有限差分光束传播法设计了一种具有多重非对称结构的可调谐光纤耦合器。在1.40μm至1.70μm波段内,此种耦合器的输出分光比和工作波长可以灵活调节。此外,设计的光纤耦合器集成在一根长度仅为7.3mm的光纤中,这为光器件的全光纤化、微型化提供了新思路。
     7.首次设计并研制出一种具有折射率多重非对称调制结构的正交级联长周期光纤光栅。基于此新型光纤光栅,实现了一种构造简便、性能优异的二维弯曲矢量传感器,为单光纤光栅空间感测以及优化和提升光纤光栅调控光波的功能提供了新的实现途径。此外,基于此种光纤光栅的结构特征和弯曲传感特性,我们提出了一种三维正交传感坐标系,利用该坐标系可以方便的同时解调出弯曲方向和曲率大小。
     8.分析了倾斜长周期光纤光栅的多重非对称空间调制特性,建立了其理论分析模型。实验研究了倾斜长周期光纤光栅和超长周期光纤光栅的扭转传感特性,结果表明,倾斜长周期光纤光栅可用于新型扭转与温度双参数传感器的研制。
     9.设计了几种基于双偏芯和正-偏双芯光纤的多重非对称光纤光栅,把光纤的多重非对称空间调制与光纤光栅的多重非对称空间调制特性相结合,对其潜在应用进行了分析和探索,对新型功能集成光纤光栅的设计与研制具有极其重要的参考价值。
With the advent of many types of optical fiber and optical fiber grating, the ability to regulate and control the light waves almost play to the extreme for a single fiber and fiber grating, it seems that people only through complex fiber integrated system for achieving further manipulate light, however, this is clearly contrary to the development trend of miniaturization and integration for fiber optic device. In accordance with the new physical point of view, the meaning of the optical fiber technology in light control and light information exchange also far more in-depth understanding and mining, in-depth research has yet to be carried out from different angles. Therefore, based on the theory of three-dimensional spatial modulation and the grating writing technology by frequency CO2laser pulses, we designed or developed several multiple asymmetric optical fiber and optical fiber grating for the first time, and research and exploration of their application, to provide new ideas and new methods for designing or developing new optical fiber and fiber grating which with the flexibility to manipulate light waves. The main contents and research results are as follows:
     1. We firstly proposed the concept of multiple non-symmetrical optical fibers and optical fiber grating. According to the spatial modulation characteristics of the optical fiber and fiber grating, we firstly systematic analysis and summary the multiple non-symmetry of the optical fiber and the optical fiber grating, enriching the existing classification of fiber and fiber grating.
     2. We firstly systematic analysis the performance of the fiber-optic light guide by the multiple non-symmetry. Respectively, how the core asymmetry on the fiber cross section impact on the performance of the fiber-optic light guide; how the clad cladding asymmetry on the fiber cross section impact on the performance of the fiber-optic light guide; how the axial direction asymmetry impact on the performance of the fiber-optic light guide, to theoretical simulation and analysis on the characteristics of the asymmetric optical fiber.
     3. We populated temperature sensitive refractive index matching fluid in asymmetric region of polarization-maintaining photonic crystal fiber by the selectivity fill method, achieving of common asymmetric filling modulation for the axial direction and cross-sectional of fiber. We developed a new type of temperature sensor by putting the filled photonic crystal fiber in Sagnac loop. We could flexibly regulation of the conduction properties of the light in the photonic crystal fiber by the proposed multiple asymmetric filling method, it provided new ideas and new methods for developing new type photonic crystal fiber tuning device.
     4. A new type broadband single-polarization single-mode microstructure fiber based on index-matching coupling is proposed by using the full vector finite-element method. The single-polarization single-mode operation bandwidth reaches400nm. The fiber has a flexible regulation of the core mode and more local cladding mode coupling coefficient. The proposed design method has an important reference value for designing and developing the new microstructure fiber.
     5. We firstly proposed a dual-band orthogonal single polarization single-core microstructure fiber. The light located in the1.31-and1.55-μm bands propagates through orthogonal polarization states in the proposed fiber. For a propagation distance of20mm, the20-dB bandwidth for the same x-or y-polarized modes within the1.31-and1.55-μm wavelength bands could, respectively, reach20.5and45.3nm, which is much wider than that of a two-core PCF.
     6. Based on the finite difference beam propagation method, we designed a multiple a tunable fiber coupler with the asymmetric structure. The operating wavelength of such a coupler can be adjusted in1.40μm to1.70μm band, and the output splitting ratio of the coupler can be adjusted at any wavelength. In addition, the designed optical-fiber coupler is integrated in a fiber with only7.3mm length. This provides a new idea for the all-fiber optical and miniaturization devices.
     7. A novel bending vector sensor based on spatial cascaded orthogonal long period fiber gratings (SCO-LPFGs) written by high-frequency CO2laser pulses has been proposed, and two-dimensional bending vector sensing characteristics based on the simple SCO-LPFGs have been experimentally demonstrated. A three- dimensional orthogonal sensing coordinates is established, and furthermore both of curvature and bending-direction could be intuitively solved according to the coordinates. To some extent, these studies would be improve the practicability of fiber vector sensor due to its simple, low-cost, ease of fabrication, and simple, precise, intuitive interrogation method.
     8. We analyzed the spatial modulation characteristics of multiple asymmetric tilt long period fiber grating, established the theoretical analysis model. Experimental study the twist sensing characteristics of tilt long period fiber grating and tilt Ultra-long period fiber grating. The results show that, tilt long period fiber grating can be used to the new twist and temperature two-parameter sensor.
     9. We designed several asymmetric double eccentric and center-side double cores fiber-based multiple asymmetric fiber grating. We combined of fiber multiple asymmetric spatial modulation and fiber grating multiple asymmetric spatial modulation characteristics, and analysis and explore its potential application. It has the extremely important reference value for designing and developing the new functional integration fiber grating.
引文
[1]Jajszczyk A. What Is the Future of Telecommunications Networking [J]. IEEE Communications Magazine,1999,37(6):12-20.
    [2]Yi Chen, Mohammad T. Fatehi, Humberto J. La Roche, Jacob Z. Larsen, and Bruce L. Nelson. "Metro optical networking" [J]. Bell Labs technical journal,1999,4(1):163-86.
    [3]K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiber waveguide:application to reflection filter fabrication. Applied Physics Letters,1978,32(10):647-649.
    [4]G. Meltz, M. M. Morey, and W. H. Glenn. Formation of Bragg gratins in optical fibers by a transverse holographic method. Optics. Letters,1989,14(15):823-825.
    [5]K. O. Hill. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposeure through a phase mask. Applied Physics Letters,1993,62(10):1035-1037.
    [6]Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters,1996,21:1547-1549.
    [7]Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Opt. Lett., 1997,22:961-963.
    [8]Knight J C, Broeng J, Birks T A, et al., Photonic band gap guidance in optical fibers," Science, 1998,282:1476-1478.
    [9]Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air. Science,1999,285:1537-1539.
    [10]K, G. A. Hockham. Dielectric-fibre surface waveguides for optical frequencies [J]. Electrical Engineers, Proceedings of the Institution of,1966,113(7):1151-1158.
    [11]Gloge D. Optical power flow in multimode fibers [J]. Bell Syst Tech J,1972,51(8):1767-1783.
    [12]Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters,1987,58:2059-2062.
    [13]John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters,1987,58:2486-2489.
    [14]Knight J C, Broeng J, Birks T A, et al., Photonic band gap guidance in optical fibers," Science,1998,282:1476-1478.
    [15]T. T. Larsen, A. Bjarklev, et al., "Optical devices based on liquid crystal photonic bandgap fibres," Optics Express,2003,11:2589-2596.
    [16]A. Argyros, T. A. Birks, et al., "Photonic bandgap with an index step of one percent," Optics Express,2005,13:309-314.
    [17]A. Ortigosa-Blanch, J. C. Knight, et al., "Highly birefringent photonic crystal fibers," Optics Letters,2000,25:1325-1327.
    [18]T. P. Hansen, J. Broeng, et al., "Highly birefringent index-guiding photonic crystal fibers," IEEE Photonics Technology Letters,2001,13:588-590.
    [19]A. Ferrando and J. J. Miret, "Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers," Applied Physics Letters, vol.78, pp.3184,2001.
    [20]K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photonics Technology Letters, vol.15, pp.1384-1386,2003.
    [21]Yang Yue, Guiyun Kai, Zhi Wang et al., "Broadband Single-Polarization Single-Mode Photonic Crystal Fiber Coupler", IEEE Photonics Technology Letters, vol.18, no.19, 796-798.2006.
    [22]N. G. R. Broderick, T. M. Monro, et al., "Nonlinearity in holey optical fibers:measurement and future opportunities," Optics Letters, vol.24, pp.1395-1397,1999.
    [23]J. C. Knight, T. A. Birks, et al., "Large mode area photonic crystal fibre," Electronics Letters, vol.34, pp.1347-1348,1998.
    [24]N. A. Mortensen, M. D. Nielsen, et al., "Improved large-mode-area endlessly single-mode photonic crystal fibers," Optics Letters, vol.28, pp.393-395,2003.
    [25]J. Limpert, T. Schreiber, et al., "High-power air-clad large-mode-area photonic crystal fiber laser," Optics Express, vol.11, pp.818-823,2003.
    [26]W. N. MacPherson, M. J. Gander, et al., "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Optics Communications, vol.193, pp.97-104,2001.
    [27]B. J. Mangan, J. C. Knight, et al., "Experimental study of dual-core photonic crystal fibre," Electronics Letters, vol.36, pp.1358-1359,2000.
    [28]Z. Wang, G. Kai, Y. Liu et al., "Coupling and decoupling of dual-core photonic bandgap fibers", Optics Letters, vol.30,2542-2544,2005.
    [29]王志.“光子晶体光纤及功能器件的研究”,南开大学博士毕业论文,2005.
    [30]L. P. Shen, W. P. Huang, et al.. "Design of photonic crystal fibers for dispersion-related applications," Journal of Lightwave Technology, vol.21, pp.1644-1651,2003.
    [31]L. P. Shen, W. P. Huang, et al., "Design and optimization of photonic crystal fibers for broad-band dispersion compensation," IEEE Photonics Technology Letters, vol.15, pp. 540-542,2003.
    [32]J. C. Knight, J. Arriaga, et al., "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technology Letters, vol.12, pp.807-809,2000.
    [33]A. Ferrando, E. Silvestre, et al., "Designing the properties of dispersion-flattened photonic crystal fibers," Optics Express, vol.9, pp.687-697,2001.
    [34]K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Optics Express, vol.11, pp.1503-1509,2003.
    [35]G. Renversez, B. Kuhlmey, et al., "Dispersion management with microstructured optical fibers:ultraflattened chromatic dispersion with low losses," Optics Letters, vol.28, pp. 989-991,2003.
    [36]A. Ferrando, E. Silvestre, et al., "Nearly zero ultraflattened dispersion in photonic crystal fibers," Optics Letters, vol.25, pp.790-792,2000.
    [37]W. H. Reeves, J. C. Knight, et al., "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Optics Express, vol.10, pp.609-613,2002.
    [38]M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," Journal of Lightwave Technology, vol.19, pp.495-503,2001.
    [39]C. Zhang, G. Kai, Z. Wang et al., "Design of tunable bandgap guidance in high-index filled microstructure fibers", Journal of the Optical Society of America B:Optical Physics,2006, vol,23,782-786.
    [40]Chunshu Zhang, Guiyun Kai, Zhi Wang et al., "Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal", Optics Letters,2005,30(18):2372-2374.
    [41]张春书.“光子晶体光纤填充和光子晶体光纤光栅的研究”,南开大学博士论文,2006.
    [42]Chunshu Zhang, Guiyun Kai, Zhi Wang, Yange Liu, Tingting Sun, Shuzhong Yuan, and Xiaoyi Dong, "Tunable highly birefringent photonic bandgap fibers", Optics Letters,30(20): 703-705,2005.
    [43]Zhang Chun-Shu, Kai Gui-Yun, Wang Zhi, Liu Yan-Ge, Sun Ting-Ting, Liu Jian-Guo, Yuan Shu-Zhong and Dong Xiao-Yi, "Simulations of Effect of High-Index Materials on Highly Birefringent Photonic Crystal Fibres", Chinese Physics Letters,22(11):2858-2861,2005.
    [44]S. C. Wen, W. H. Su, et al., "Influence of higher-order dispersions and Raman delayed response on modulation instability in microstructured fibres," Chinese Physics Letters, vol. 20, pp.852-854,2003.
    [45]S. G. Li, L. T. Hou, et al., "Supercontinuum generation in holey microstructure fibres with random cladding distribution by femtosecond laser pulses," Chinese Physics Letters, vol.20, pp.1300-1302,2003.
    [46]S. G. Li, Y. L. Ji, et al., "Supercontinuum generation in holey microstructure fibers by femtosecond laser pulses," Acta Physica Sinica, vol.53, pp.478-483,2004.
    [47]Y. Zheng, Y. P. Zhang, et al., "Supercontinuum generation with 15-fs pump pulses in a microstructured fibre with random cladding and core distributions," Chinese Physics Letters, vol.21, pp.750-753,2004.
    [48]Y. F. Li, Q. Y. Wang, et al., "Dispersion calculation of photonic crystal fibers by the normalization technique," Acta Physica Sinica, vol.53, pp.1396-1400,2004.
    [49]S. G. Li, X. D. Liu, et al., "Numerical study on dispersion compensating property in photonic crystal fibers," Acta Physica Sinica, vol.53, pp.1880-1886,2004.
    [50]S. G. Li, X. D. Liu, et al., "Vector analysis of dispersion for the-fundamental cladding mode in photonic crystal fibers," Acta Physica Sinica, vol.53, pp.1873-1879,2004.
    [51]M. L. Hu, Q. Y. Wang, et al., "Birefringence phenomena in a random distributed microstructure fiber," Acta Physica Sinica, vol.53, pp.4248-4252,2004.
    [52]F. Muhammad, G. Stewart. D-shaped optical fibre design for methane gas sensing. Electronics Letters,1992,28(13):1205-1206.
    [53]V. Vali, D. B. Chang, I. F. Shin, et al. Fiber optic evanescent wave fuel gauge and leak detector using eccentric core fibers [M]. Google Patents.1994.
    [54]T. Yagi, N. Kuboki, Y. Suzuki, et al. Fiber-optic ammonia sensors utilizing rectangular cladding eccentric-core fiber. Optical Review,1997,4(5):596-600.
    [55]R. B. Dyott, J. R. Cozens, D. G. Morris. Preservation of polarization in optical-fiber waveguides with elliptical cores. Electron. Lett.,1979,15(13):380-382.
    [56]T. Katsuyama, H. Matsumura, T. Suganuma. Low-loss single-polarization fibers. Electron Lett.,1981,17(13):473-474.
    [57]N. Shibata, M. Tateda, S. Seikai. Polarization-mode dispersion measurement in elliptical core single-mode fibers by a spatial technique. IEEE J. Quantum Electron.,1982,18(1):53-58.
    [58]T. Katsuyama, H. Matsumura, T. Suganuma. Propagation characteristics of single-polariz-ation fibers. Appl. Opt.,1982,22(11):1748-1753.
    [59]N. Shibata, M. Tateda, S. Seikai et al. Birefringence and polarization-mode dispersion caused by thermal stress in single-mode fibers with various core ellipticities. IEEE J. Quantum Electron.,1983,19(8):1223-1227.
    [60]S. C. Tashleigh, M. J. Marrone. Polarization holding in elliptical-core birefringent fibers. IEEE J. Quantum Electron.,1982,18(10):1515-1523.
    [61]V. Ramaswamy, W. G. French, R. D. Standley. Polarization characteristics of noncircular core single-mode fibers. Appl. Opt.,1978,17(18):3014-3017.
    [62]K. Kitayama, S. Seikai, N. Uchida et al. Polarizaiton-maintaining single-mode fiber with azimuthally inhomogeneous index profile. Electron.Lett.,1981,17(12):419-420.
    [63]T. Hosaka, K. Okamoto, Y. Sasaki et al. Single-mode fibers with asymmetrical refractive-index pits on both sides of the core. Electron. Lett.,1981,17(5):191-193.
    [64]R. H. Stolen, V. Ramaswamy, P. Kaiser et al. Linear polarization in birefringent single-mode fibers. Appl. Phys. Lett.,1978,33(8):699-701.
    [65]V. Ramaswamy, I. P. Kaminow, P. Kaiser et al. Single polarization optical fibers:Exposed cladding technique. Appl. Phys. Lett.,1978,33(9):814-816.
    [66]V. Ramaswamy, R. H. Stolen, M. D. Divine et al. Birefringence in elliptically clad borosilicate single-mode fibers. Appl.Opt.,1979,18(24):4080-4084.
    [67]I. P. Kaminow, J. R. Simpson, H. M. Presby et al. Strain birefringence in single-polarization germanosilicate optical fibers. Electron. Lett.,1979,15(21):677-679.
    [68]S. C. Rashleigh, M. J. Marrone. Polarization-holding in a high-birefringence fiber. Electron. Lett.,1982,18(8):326-327.
    [69]T. Katsuyama, H. Matsumura, T. Suganuma. Low-loss single-polarization fibers. Appl.Opt,. 1983,22(11):1741-1747.
    [70]J. R. Simpson, R. H. Stolen, F. M. Sears et al. "A single-polarizaiton fiber". J. Lightwave Technol.,1983,1(2):370-373.
    [71]李秀娟,宋英趁.“六角芯高双折射光子晶体光纤”.光纤与电缆及其应用技术.2006,39(3):1-3.
    [72]Steel M J, Osgo od R M. "Polarization and dispersive properties of elliptical hole photonic crystal fibers". J. Lightwave Technol.,2001,19(4):495-503.
    [73]Zhang L, Yang C X. Photonic crystal fibers with squeezed hexagonal lattice. Opt. Express, 2004,12(11):2371-2376.
    [74]Chen M Y, Yu R J, Zhao A. P. Highly birefringent rectangular lattice pho tonic crystal fibres. J. Opt. A:Pure Appl. Opt.,2004,6(10):997-1000.
    [75]Chen M Y, Yu R J, Zhao A P. Confinement losses and optimization in rectangular lattice photonic crystal fibers. J. Lightwave Technol.2005,23 (9):2707-2712.
    [76]张亚妮.压缩六角点阵椭圆孔光子晶体光纤的低色散高双折射效应.物理学报,2010,59(6):4050-4055.
    [77]Chen M Y. "Polarization maintaining large mode area micro structured core optical fibers". J. Lightwave Technol.,2008,26(13):1862-1867.
    [78]Liwen Wang, Shuqin Lou, Weiguo Chen, and Honglei Li. "Design of a single-polarization single-mode photonic crystal fiber with a near-Gaussian mode field and wide bandwidth". Appl.Opt.,2010,49(32):6196-6200.
    [79]F. Zhang, M. Zhang, X. Y. Liu, and P. D. Ye, "Design of wideband single-polarization single-mode photonic crystal fiber," J. Lightwave Technol.2007,25,1184-1188.
    [80]Ashish M. Vengsarkar, Paul J. Lemaire, Justin. B. Judkins, et al. Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology,1996,14(1):58-65.
    [81]A. M.Vengsarkar, J. R. Pedrazzani, J. B. Judkins, et al. Long-Period Fiber Grating-based gain equalizers, optics Letters,1996.21(5):336-338.
    [82]D. D. Davis, T. K. Gaylord, E. N. Glytsis, et al. Long period fiber grating fabrication with focused CO2 laser pulses, Electronics Letters,1998,34(3):302-303.
    [83]D. D. Davis, T. K. Gaylord, E. N. Glytsis, et al. CO2 laser-induced long period fibre gratings: spectral characteristics, cladding modes and polarisation independence. Electronics. Letters., 1998,34(14):1416-1417.
    [84]DAVIS D, GAYLORD T, GLYTSIS E, et al. Long-period fibre grating fabrication with focused CO2 laser pulses. Electronics Letters,1998,34(3):302-303.
    [85]RAO Y-J, WANG Y-P, RAN Z-L, et al. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. Journal of Lightwave Technology,2003, 21(5):1320-1327.
    [86]VAN WIGGEREN G, GAYLORD T, DAVIS D, et al. Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings [J]. Electronics Letters, 2000,36(16):1354-1355.
    [87]Pengcheng Geng, Weigang Zhang, Shecheng Gao, Hao Zhang, Jieliang Li, Shanshan Zhang, Zhiyong Bai, and Li Wang. "Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber gratings", Optics Express, Vol.20, No.27,2012, 28557-28562.
    [88]魏石磊,张伟刚,范弘建,耿鹏程,尚佳彬,殷丽梅,薛晓琳.“高频CO2激光脉冲写制的倾斜长周期光纤光栅光谱特性研究”.光学学报,2011,31(8):0806006.
    [89]T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J.Webb, and I. Bennion, "Bending and orientational characteristics of long period gratings written in D-shaped optical Fiber," IEEE Trans. Instrum. Meas.2004,53(1),130-135.
    [90]L. Jin, W. Jin, and J. Ju, "Directional bend sensing with a CO2-laser-inscribed long period grating in a photonic crystal fiber," J. Lightwave Technol.2009,27(21),4884-4891.
    [91]Bjarklev A, Broeng J, Bjarklev A S. Photonic Crystal Fibres. Boston:Kluwer Academic Publishers,2003.
    [92]Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters,1997,22(13):961-963.
    [93]Knight J C, Birks T A, Russell P S J. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A.1998,15:748-752.
    [94]Li Y, Wang C, Hu M. A full vectorial effective index method for photonic crystal fibers: application to dispersion calculation. Optics Communications,2004,238(1-3):29-33.
    [95]Ferrando A, Silvestre E, Miret J J, et al. Full-vector analysis of a realistic photonic crystal fiber. Optics Letters,1999,24 (5):276-278.
    [96]Ferrando A, Silvestre E, Miret J J, et al. Vector description of higher order modes in photonic crystal fibres. J. Opt. Soc. Am. B,2000,17:1333-1340.
    [97]Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Optics Express,2001,8:173-190.
    [98]White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for microstructured optical fibers. I. Formulation. Journal of the Optical Society of America B-Optical Physics, 2002,19:2322-2330.
    [99]Kuhlmey B T, White T P, Renversez, et al. Multipole method for microstructured optical fibers. II. Implementation and results. Journal of the Optical Society of America B-Optical Physics,2002,19:2331-2340.
    [100]Knudsen E, Bjarklev A. Modelling photonic crystal fibres with Hermite-Gaussian functions. Optics Communications,2003,222(1-6):155-160.
    [101]Wang Z, Ren G B, Lou S Q, et al. Supercell lattice method for photonic crystal fibers. Optics Express,2003,11:980-991.
    [102]Thomas J W. Numerical Partial Differential Equations:Finite Difference Methods.北京:世界图书出版公司,1997.
    [103]Sadiku M.N.O. Numerical Techniques in Electromagnetics (2nd Edition), Boca Raton:CRC Press,2001.
    [104]Qiu M. Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. Microwave and Optical Technology Letters,2001,30(5):327-330.
    [105]Zhu Y, Chen Y, Huray P, et al. Application of a 2D-CFDTD algorithm to the analysis of photonic crystal fibers. Microwave and Optical Technology Letters,2002,35(1):10-14.
    [106]Zhu Z, Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers. Optics Express,2002,10(17):853-864.
    [107]Guo S, Wu F, Albin S, et al. Loss and dispersion analysis of microstructured fibers by finite-difference method. Optics Express,2004,12(15):3341-3352.
    [108]胡建伟,汤怀民.微分方程数值方法.北京:科学出版社.
    [109]Cucinotta A, Selleri S, Vincetti L, et al. Holey fiber analysis through the finite-element method, Photonics Technology Letters.2002,14(11):1530-1532.
    [110]Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:application to photonic crystal fibers. Journal of Quantum Electronics,2002,38(7):927-933.
    [111]Eggleton B J, Westbrook P S, White C A, et al. Cladding Mode Resonances in Air-Silica Microstructure Optical Fibers. Journal of Lightwave Technology,2000,18(8):1084-1100.
    [112]Saitoh K, Sato Y, Koshiba M. Coupling characteristics of dual-core photonic crystal fiber couplers. Optics Express,2003,11(24):3188-3195.
    [113]Kerbage C, Steinvurzel P, Reyes P, et al. Highly tunable birefringent microstructured optical fiber. Optics Letters,2002,27(10):842-844.
    [114]Alivizatos E G, Chremmos I D, Tsitsas N L, et al. Green's-function method for the analysis of propagation in holey fibers. Journal of the Opitcal Society of America A,2004,21(5): 847-857.
    [115]Guan N, Habu SJ, Takenaga K, et al. Boundary element method for analysis of holey optical fibers. Journal of Lightwave Technology,2003,21 (8):1787-1792.
    [116]Wang XY, Lou JJ, Lu C, et al. Modeling of PCF with multiple reciprocity boundary element method. Opt. Express,2004,12 (5):961-966.
    [117]Roberts P J, Shepherd T J. The guidance properties of multi-core photonic crystal fibres. Journal of Optics a-pure and applied optics,2001,3 (6):S133-S140.
    [118]Mohammed W S, Vaissie L, Johnson E G. Hybrid mode calculations for novel photonic crystal fibers. Optical Engineering,2003,42 (8):2311-2317.
    [119]Wang Z, Fu S Q Li L J, et al. Analysis of the guided modes in triangular photonic crystal fibers using a full-vectorial numerical method. Presented at APOC 2003:Asia-Pacific Optical and Wireless Communications:Optical Fibers and Passive Components,2003.
    [120]Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:Application to photonic crystal fibers. IEEE Journal of Quantum Electronics,2002,38 (7):927-933.
    [121]Yu C P, Chang H C. Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Opt. Express,2004,12 (25):6165-6177.
    [122]Mizrahi V, Sipe J. E. "Optical properties of photosensitive fiber phase gratings". Journal of Lightwave Technology,1993,11:1513-1517.
    [123]Erdogan T. Fiber grating spectra. Journal of Lightwave Technology,1997,15(8):1277-1294.
    [124]K. S. Lee and T. Erdogan. Fiber mode coupling in transmissive and reflective tilted fiber gratings. Appl. Opt.,2000,39 (9):1394-1404.
    [125]Do-Hyun Kim and Jin U. Kang. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express,2004, 12(19):4490-4495.
    [126]Wenwen Qian, Chun-Liu Zhao, Shaoling He, Xinyong Dong, Shuqin Zhang, Zaixuan Zhang, Shangzhong Jin, Jiangtao Guo, and Huifeng Wei. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Letters,2011,36(9): 1548-1550.
    [127]Chun-Liu Zhao, Zhiqiang Wang, Shuqin Zhang, Liang Qi, Chuan Zhong, Zaixuan Zhang, Shangzhong Jin, Jiangtao Guo, and Huifeng Wei. Phenomenon in an alcohol not full-filled temperature sensor based on an optical fiber Sagnac interferometer. Opt. Letters,2012, 37(22):4789-4791.
    [128]Yanyi Huang, Yong Xu, and Amnon Yariv. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Physics Letters,2004,85(22):5181-5184.
    [129]Messerly M J, Onstott J R, Mikkelson R C. A broad-band single polarization optical fiber. J Lightwave Technol,1991,9 (7):817-820.
    [130]Okamoto K. Single-polarization operation in highly birefringent optical fibers. Appl Opt, 1984,23(15):2638-2642.
    [131]张亚妮.“单偏振单模微结构聚合物光纤理论设计”.光子学报,2008,37(9):1800-1804.
    [132]张亚妮.“微结构聚合物光纤制备技术研究”.激光杂志,2006,29(5):13-15.
    [133]Kubota H, Kawanishi S, Koyanagi S et al. Absolutely single polarization photonic crystal fiber. IEEE Photon Techno. Lett.,2004,16(1):182-184.
    [134]王栋,陈琰.光子晶体光纤研究.信息技术,2010,10:18-23.
    [135]张智华,石一飞,卞保民.“混合导光机制光子晶体光纤双芯耦合研究”.光学学报,2010,30(1):228-232.
    [136]方宏,娄淑琴,郭铁英.“一种新结构高双折射光子晶体光纤”,光学学报,2007,27(2):202-206.
    [137]龚桃荣,延凤平,王琳.“高双折射光子晶体光纤特性分析”.中国激光,2008,35(4):559-562.
    [138]陈明阳,张永康.高双折射光子晶体光纤研究进展.半导体光电,2010,31(2):165-169.
    [139]Fini J M. Design of solid and microstructure fibers for suppression of higher order modes[J]. Opt. Express,2005,13(9):3477-3490.
    [140]Lee S G, Lee K N, Lee S B. Design of single-polarization single-mode photonic crystal fiber based on index-matching coupling[C]. OFC/NFOEC,2010.1-3.-
    [141]N. Florous, K. Saitoh, and M. Koshiba, "A novel approach for'designing photonic crystal fiber splitters with polarization-independent propagation characteristics", Opt. Express 2005, 13,7365-7373.
    [142]S. S. Zhang, W. G Zhang, P. C. Geng, X. L. Li, and J. Ruan, "Design of single-polarization wavelength splitter based on photonic crystal fiber", Appl. Opt.2011,50,6576-6783.
    [143]L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, "Polarization splitter based on a square-lattice photonic-crystal fiber" Opt. Lett.2006,31,441-443.
    [144]M. Y. Chen and Y. K. Zhang, "Improved design of polarization maintaining photonic crystal fibers", Opt. Lett.2008,33,2542-2544.
    [145]H. J. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fibre," Electron. Lett.2000,36(21),1763-1764.
    [146]X. F. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, "Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber," IEEE Photon. Technol. Lett.2010, 22(11),850-852.
    [147]T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J.Webb, and I. Bennion, "Bending and orientational characteristics of long period gratings written in D-shaped optical Fiber," IEEE Trans. Instrum. Meas.2004,53(1),130-135.
    [148]D. H. Zhao, X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, "Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber," Appl. Opt.2004,43(29),5425-5428.
    [149]F. M. Araujo, L. A. Ferreira, J. L. Santos and F. Farahi, "Temperature and strain insensitive bending measurement s with D-type fibre Bragg gratings," Meas. Sci. Technol.2001,12(7), 829-833.
    [150]L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, "Directional bend sensor based on re-grown tilted fiber Bragg grating," J Lightwave Technol.2010,28(18), 2681-2687.
    [151]T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D.J. Webb, and I. Bennion "Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors", Opt. Comm.,2008,281,5092-5096.
    [152]T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D.J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett.2005,41(2),59-60.
    [153]L. Jin, W. Jin, and J. Ju, "Directional bend sensing with a CO2-laser-inscribed long period grating in a photonic crystal fiber," J. Lightwave Technol.2009,27(21),4884-4891.
    [154]H. J. Patrick, C. C. Chang, and S. T. Vohra, "Long-period fiber gratings for structure bend sensing," Electron. Lett.1998,34(18),1773-1775.
    [155]Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightw. Technol. 2003,21(5),1320-1327.
    [156]T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Bending characteristics of fiber long-period gratings with cladding index modified by femtosecond laser," J. Lightw. Technol.2006,24(8),3147-3153.
    [157]Shanshan Zhang, Weigang Zhang, Shecheng Gao, Pengcheng Geng, and Xiaolin Xue. "Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper", Optics letters,2012,37(22):4480-4482.
    [158]M. J. Gander, D. Macrae, E. A. C. Galliot, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G Burnett, A. H. Greenaway, M. N. Inci, "Two-axis bend measurement using multicore optical fibre," Optics Communications,2000,182,115-121.
    [159]G M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, "Two axis bend measurement with Bragg gratings in multicore optical fiber," Opt. Lett.2003,28(6),387-389.
    [160]W. G Zhang, Y. Wang, D. S. Zhang, Y. G Liu, J. Zeng, G Y. Kai, Q. D. Zhao, and X. Y. Dong, "Real time sensing and measurement for two dimensional dynamics quantities using fiber grating," Acta Optica Sinica,2002,22(11),1323-1327.
    [161]Y. P. Wang, and Y. J. Rao. "A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously". IEEE sensor journal,2005,5(5),839-843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700