玉米中伏马菌素免疫学快速筛检方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伏马菌素(Fumonisins)主要是由串珠镰刀菌、多育镰刀菌等产生的一类真菌毒素,至今已经发现的伏马菌素及其衍生物已达20余种,其中最为主要的是B族伏马菌素中的伏马菌素B1(FB1)、伏马菌素B2(FB2)和伏马菌素B3(FB3)。FB1主要污染的食品(或饲料)是玉米及其制品,且广泛发生于世界各地。伏马菌素属于2B类致癌物质,很多动物实验已经证明其具有致癌性,有调查显示伏马菌素与人类的食管癌具有相关性。由于伏马菌素对人和动物健康的严重危害性,其在食品卫生领域中越来越受到人们的重视。目前,伏马菌素的检测方法主要有液相色谱法、液相色谱-质谱联用法、免疫学检测法等。由于仪器分析方法样品处理相对复杂、成本高,限制了应用的推广。而免疫学方法具有灵敏度高、特异性好、样品处理简单、成本较低等优点,尤其适合大量样品的快速筛检。本实验在制备伏马菌素完全抗原及单克隆抗体的基础上,建立了玉米样品中伏马菌素的间接竞争ELISA(ic-ELISA)、胶体金免疫层析(GICA)和间接竞争化学发光酶免疫测定(ic-CLEIA)快速免疫学筛检方法,以期为进一步研究伏马菌素快速检测试剂产品奠定基础,满足实际检测的需求。
     本文采用戊二醛法将小分子半抗原FB1分别与卵清蛋白(OVA)、牛血清蛋白(BSA)偶联制备检测抗原和免疫抗原,SDS-PAGE电泳及紫外扫描法鉴定偶联成功。常规免疫和快速免疫两种方式免疫BALB/c鼠,常规方法融合并筛选杂交瘤细胞。获得3株稳定分泌伏马菌素单克隆抗体的杂交瘤细胞株,并优选了其中的4B3细胞株,小鼠腹水诱生法制备单克隆抗体。该单克隆抗体为IgG1亚类,辛酸-硫酸铵法纯化后单克隆抗体浓度为2.19 mg/mL,纯度为85.95%。抗体亲和常数为5.21×109 L/mol、效价为1:2.56×106。4B3抗体与FB2、FB3的交叉反应率分别为198%和59%;与脱氧雪腐镰刀菌烯醇、玉米赤霉烯酮、T2毒素、桔青霉素、赭曲霉素A、黄曲霉素B1的交叉反应率均小于10%。
     利用该单克隆抗体建立了伏马菌素间接竞争ELISA检测方法,优化后的检测条件为:抗原包被浓度为0.5μg/mL,包被条件为37℃2 h;抗体工作浓度为1:30 000; 37℃竞争反应45 min;酶标二抗工作浓度1:5 000,作用时间37℃60 min;底物作用时间37℃避光25 min;间接竞争ELISA方法的线性回归方程为:y = -41.499x + 89.715,相关系数(R2)为0.981,线性范围为1.56 ng/mL~50 ng/mL,最低检出限为1.30 ng/mL;玉米加标回收实验结果表明,该方法总的平均回收率为(94.73±4.54)%、批内变异系数为8.31%、批间变异系数为8.54%;对14个玉米实际样品进行了检测,5个样品未检出FB1、6个样品中FB1的含量小于1 mg/kg、3个样品中FB1的含量在1 mg/kg~2 mg/kg之间。
     柠檬酸三钠还原法制备20 nm的胶体金溶液,与伏马菌素单克隆抗体合成金标探针,组装了简易胶体金免疫层析试纸条,优化了试纸条各项参数,试纸条裸眼可视检出限为2.5 ng/mL、最佳判定浓度为30 ng/mL,试纸条稳定性可达6个月以上。加标样品测定结果显示,甲醇:水(70:30,v/v)提取的玉米样品,可直接稀释5倍后上样检测,检测结果与标准品曲线相符。14个玉米样品测定结果显示,3个样品中伏马菌素浓度不低于0.75 mg/kg;10个样品中伏马菌素含量小于0.25 mg/kg;1个样品中伏马菌素浓度在0.25 mg/kg~0.75 mg/kg之间。
     利用该单克隆抗体建立了伏马菌素间接竞争化学发光酶免疫检测法,优化后的检测条件为:包被抗原25 ng/mL,4℃过夜;抗体使用浓度为1:100 000,37℃45 min;酶标二抗工作浓度1:10 000,37℃60 min;现配化学发光底物溶液,室温避光10 min。标准曲线方程为:logit (y) = 1.079 5 - 2.299 8 log (x),相关系数(r)为-0.998 2,线性范围为0.32 ng/mL~25 ng/mL,最低检出限为0.32 ng/mL。玉米加标回收实验表明,该方法总的平均回收率为(100.15±9.55)%、批内变异系数为7.90%、批间变异系数为8.12%。对14个玉米实际样品进行了检测,其中5个样品未检出FB1、6个样品中FB1的含量小于1 mg/kg、3个样品中FB1的含量在1 mg/kg~2 mg/kg之间。
     利用LC-MS/MS检测方法,乙腈/水提取、伏马菌素TC-F120专用净化柱净化处理样品,对玉米样品中的伏马菌素进行了测定并与前述建立的免疫学方法进行了比较分析。LC-MS/MS方法验证结果表明,免疫学检测方法分析结果与LC-MS/MS分析结果相符。所建立的胶体金免疫层析法、间接竞争ELISA检测方法和化学发光酶免疫检测法可以用于玉米样品中伏马菌素的快速筛检。
Fumonisins (FBs), as a group of mycotoxins, are mainly produced by Fusarium moniliforme, Fusarium proliferatum, etc. There are more than 20 kinds of derivatives of mycotoxins. FB1, FB2 and FB3, are the most toxic and prevalent. FB1 usually be found in maize and maize-based food or animal feed. FBs are one kind of the possible carcinogen. The carcinogenicity of FBs have been proved in many animals, and some surveys have showed that the FBs might relate to esophageal cancer in humans. Because the serious threat of FBs to human and animal, More attention has been paid in the field of food hygiene. Currently, several analytical methods have been reported for FBs determination in food samples, including high performance liquid chromatography (HPLC), liquid chromatography–mass spectrometry (LC-MS) and immunological methods, etc. For the need of expensive equipment and complex sample preparation, the application of these methods by using large instrument were limited. Because the immunological methods were sensitive, specific, cheap and simple (sample processing), they were fit for the rapid screening of large numbers of samples. In this study, a indirect competitive ELISA (ic-ELISA), colloidal gold immunochromatographic assay (GICA) and chemiluminescent enzyme-linked immunosorbent assay (CLEIA) were developed to analyze FB1. These results would be contributed to the progress of rapid screening methods for FBs.
     In this study, the glutaraldhyde was used to conjugate FB1 to ovalbumin for the detection antigen and bovine serum albumin for the immunogen. The conjugates FB1-OVA and FB1-BSA were analyzed by SDS-polyacrylamide gelelectrophoresis and UV scanning method. Routine immunization protocol and quickly immunization protocol were adopted to immunize BALB/c mice, the hybridomas were screened after the cell fusion. Three hybridomas which stable secrete the antibodies against FBs have been selected and the hybridoma named 4B3. The subclass of the McAb was IgG1, the concentration was 2.19 mg/mL, the ELISA titers was 1: 2.56×106, and the affinity constant was 5.21×109 L/mol of the McAb. The cross-reactivities with FB2 and FB3 was 198% and 59%, respectively, and all cross-reactivities (CRs) with DON, ZEN, T-2, CIT, Och-A and AFB1 were lower than 10%.
     An ic-ELISA method for detection FB1 using the McAb have been established and optimized. The optimized concentration of antigen added to microtiter plates was 0.5μg /mL at 37℃for 2 h. The working concentration of the McAb in the competition condition was 1:30 000 at 37℃for 45 min. The reaction time of HRP secondary antibody and OPD substrate solution were at 37℃for 1 h and 25 min, respectively. The linear regression equation of the ic-ELISA was y = -41.499 x + 89.715, with the correlation coefficient (R2) of 0.981. The linear range was 1.56 ng/mL - 50 ng/mL with the lowest detection limit of 1.30 ng/mL. Recovery experiment of spiked corn samples showed that the total average recovery, coefficient of variation, and inter-assay coefficient of the method were (94.73±4.54)%, 8.31% and 8.54%, respectively. 14 corn samples was tested for FB1 using the ic-ELISA. In these samples, the FB1 was not detected in 5 samples, less than 1 mg/kg in 6 samples, between 1 mg/kg and 2 mg/kg in 3 samples.
     The nanoparticle-monoclonal antibody probes for FB1 have been synthesized using the 20 nm colloidal gold particles prepared by sodium citrate reduction and the simple colloidal gold immunochromatographic test strip have been assembled. The visible detection limit of the test strip was 2.5 ng/mL and optimal decidable concentration was 30 ng/mL (the test line was disappeared). The stability of the test strip was up to 6 months. When the spiked corn samples were extracted by methanol: water (70:30, v/v) and diluted for 5 times, the results were consistent with the standard curve. The corn samples were detected with the test strip. The results show, the concentration of FB1 was higher than 0.75 mg/kg in 3 samples, was less than 0.25 mg/kg in 10 samples and was between 0.25 mg/kg - 0.75 mg/kg in 1 sample.
     An ic-CLEIA method for detection FB1 using the McAb have been established and optimized. The optimized concentration of antigen added to polystyrene white flat bottom micro-plate was 25 ng /mL at 4℃overnight. The concentration of the McAb in ic-CLEIA was 1:100 000 at 37℃for 45 min. The working concentration and time of goat anti-mouse IgG-HRP were 1:10 000, at 37℃for 60 min. The chemiluminescent substrate solution was at room temperature away from light for 10 min. The standard curve equation of the ic-CLEIA was logit (y) = 1.079 5 - 2.299 8 log (x) with the correlation coefficient (r) of -0.998 2. The linear range of 0.32 ng/mL - 25 ng/mL and the lowest detection limit of 0.32 ng/mL. The total average recovery, coefficient of variation, and inter-assay coefficient of the method were (100.15±9.55)%, 7.90% and 8.12% in detection of spiked corn samples, respectively. Of the 14 corn samples, the FB1 was not detected in 5 samples, was less than 1 mg/kg in 6 samples and was between 1 mg/kg and 2 mg/kg in 3 samples.
     After extracted with acetonitrile/water and purified by TC-F120 SPE columns, the FB1 was detected by LC-MS/MS method in corn samples. The results from the immunoassays were compared with those of LC-MS/MS method, which indicated that the results between the immunological detection methods and LC-MS/MS method were consistent. The developed three immunological detection methods including GICA, ic-ELISA and ic-CLEIA can be used for rapid screening FBs in corn.
引文
[1]刘书宇,杨美华.伏马菌素的研究进展[J]安.徽农业科学, 2009(24): 11397-11399.
    [2] Laurent, D N, Platzer, N, Kohler, F, et al. Macrofusin and micromonilin: two new mycotoxins isolated from corn infected by Fusarium moniliforme[J]. Microbiologie Aliment Nutrition, 1989. 7: 9-16.
    [3] Gelderblom, W C, Jaskiewicz, K, Marasas, W F, et al. Fumonisins--novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme[J]. Applied and Environmental Microbiology, 1988. 54(7): 1806-1811.
    [4]崔国庭,侯玉泽,向进乐.伏马菌素研究进展[J]粮.食与油脂, 2006(9): 40~42.
    [5] Ross, P F, Rice, L G, Osweiler, G D, et al. A review and update of animal toxicoses associated with fumonisin-contaminated feeds and production of fumonisins by Fusarium isolates[J]. Mycopathologia, 1992. 117(1-2): 109-114.
    [6] Rheeder, J P, Marasas, W F, Vismer, H F. Production of fumonisin analogs by Fusarium species[J]. Applied and Environmental Microbiology, 2002. 68(5): 2101-2105.
    [7] Cawood, M E, Gelderblom, W C A, Vleggaar, R, et al. Isolation of the fumonisin mycotoxins: A quantitative approach[J]. Journal of Agricultural and Food Chemistry, 1991. 39(11): 1958-1962.
    [8] Musser, S M, Gay, M L, Mazzola, E P, et al. Identification of a new series of fumonisins containing 3-hydroxypyridine[J]. Journal of Natural Products, 1996. 59(10): 970-972.
    [9] Seo, J A, Lee, Y W. Natural occurrence of the C series of fumonisins in moldy corn[J]. Applied and Environmental Microbiology, 1999. 65(3): 1331-1334.
    [10] Sydenham, E W, Shephard, G S, Thiel, P G. Liquid chromatographic determination of fumonisins B1, B2, and B3 in foods and feeds[J]. Journal of Aoac International, 1992. 75: 313-318.
    [11] Scott, P M. Fumonisins[J]. International Journal of Food Microbiology, 1993. 18(4): 257-270.
    [12] Poling, S M, Plattner, R D, Weisleder, D N. N-(1-Deoxy-D-fructos-1-yl) fumonisin B1, the initial reaction product of fumonisin B1 and D-glucose. Journal of Agricultural and Food Chemistry[J], 2002. 50: 1318-1324.
    [13] Howard, P C, Churchwell, M I, Couch, L H, et al. Formation of N-(carboxymethyl)fumonisin B1 following the reaction of fumonisin B1 with reducing sugars[J]. Journal of Agricultural and Food Chemistry, 1998. 46: 3546-3557.
    [14] World Health Organization. Environmental Health Criteria 219: Fumonisin B1[M]. Geneva:WHO. 2000.
    [15] Eppley, R M. Preparatory isolation of mycotoxins from solid phase fungal cultures[J]. Methods in Molecular Biology, 2001. 157: 25-29.
    [16] Visconti, A, Doko, M B, Bottalico, C, et al. Stability of fumonisins (FB1 and FB2) in solution[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 1994. 11(4): 427-431.
    [17] Jackson, L S, Hlywka, J J, Senthil, K R, et al. Effects of Time, Temperature, and pH on the Stability of Fumonisin B1 in an Aqueous Model System[J]. Journal of Agricultural and Food Chemistry, 1996. 44(3): 906-912.
    [18] Trucksess, M W, Diaz-Amigo, C. Encyclopedia of Environmental Health-Mycotoxins in Foods[M]. 2011, Elsevier: Burlington. 888-897.
    [19] Sohn, H B, Seo, J A, Lee, Y W. Co-occurrence of Fusarium mycotoxins in mouldy and healthy corn from Korea[J]. Food Additives and Contaminants, 1999. 16(4): 153-158.
    [20] Almeida, A P, Fonseca, H, Fancelli, A L, et al. Mycoflora and fumonisin contamination in Brazilian corn from sowing to harvest[J]. Journal of Agricultural and Food Chemistry, 2002. 50(13): 3877-3882.
    [21]王金昌,王小红,杨一兵,等.伏马菌素的毒害及脱毒防控技术的研究进展[J]江.西科学, 2009(1): 76~80.
    [22]金海涛,陈道付,李绍钰.伏马菌素的毒性作用研究[J]饲.料工业, 2007(20): 55~57.
    [23] Floss, J L, Casteel, S W, Johnson, G C, et al. Developmental toxicity of fumonisin in Syrian hamsters[J]. Mycopathologia, 1994. 128(1): 33-38.
    [24] Buck, W A. Mortality in broiler chicks on feed amended with a Fusarium proliferatum culture or with purified fumonisin B1 and moniliformin,106th AOAC, Cincinnati. 1992.
    [25] Li, Y C, Ledoux, D R, Bermudez, A J, et al. Effects of fumonisin B1 on selected immune responses in broiler chicks[J]. Poultry Science, 1999. 78(9): 1275-1282.
    [26] Howard, P C, Couch, L H, Patton, R E, et al. Comparison of the toxicity of several fumonisin derivatives in a 28-day feeding study with female B6C3F(1) mice[J]. Toxicology and applied pharmacology, 2002. 185(3): 153-165.
    [27] Abbax, H K, Gelderblom, W C A, Cawood, M E, et al. Biological activities of fumonisins, mycotoxins from Fusarium moniliforme, in jimsonweed (Datura stramonium L.) and mammalian cell cultures[J]. Toxicon, 1993. 31(3): 345-353.
    [28] McKenzie, K S, Sarr, A B, Mayura, K, et al. Oxidative degradation and detoxification of mycotoxins using a novel source of ozone[J]. Food and Chemical Toxicology, 1997. 35(8): 807-820.
    [29] Lemke, S L, Ottinger, S E, Ake, C L, et al. Deamination of Fumonisin B1 and BiologicalAssessment of Reaction Product Toxicity[J]. Chemical Research in Toxicology, 2000. 14(1): 11-15.
    [30] Voss, K A, Bacon, C W, Meredith, F I, et al. Comparative subchronic toxicity studies of nixtamalized and water-extracted Fusarium moniliforme culture material[J]. Food and Chemical Toxicology, 1996. 34(7): 623-632.
    [31] Ross, P F, Nelson, P E, Owens, D L, et al. Fumonisin B2 in cultured Fusarium proliferatum, M-6104, causes equine leukoencephalomalacia[J]. Journal of Veterinary Diagnostic Investigation, 1994. 6(2): 263-265.
    [32] Rheeder, J P, Marasas, W F O, Thiel, P G, et al. Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkeim[J]. Phytopathology, 1992. 83: 353-357.
    [33] Sydenham, E W, Shephard, G S, Thiel, P G, et al. Fumonisin contamination of commercial corn-based human foodstuffs[J]. Journal of Agricultural and Food Chemistry, 1991. 39(11): 2014-2018.
    [34] Chu, F S, Li, G Y. Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the People's Republic of China in regions with high incidences of esophageal cancer[J]. Applied and Environmental Microbiology, 1994. 60(3): 847-852.
    [35] Zhang, H, Nagashima, H, Goto, T. Natural occurrence of mycotoxins in corn, samples from high and low risk areas for human esophageal cancer in China[J]. Mycotoxins, 1997(1): 29-35.
    [36] Jaskiewicz, K, van Rensburg, S J, Marasas, W F O, et al. Carcinogenicity of Fusarium moniliforme culture material in rats[J]. Journal of the National Cancer Institute, 1987. 78: 321-325.
    [37]王海涛,魏慧娟,马吉林,等.食管癌高发区玉米中伏马菌素B1的检测[J]肿.瘤防治研究, 1999(3): 168-170.
    [38] Ueno, Y, Iijima, K, Wang, S D, et al. Fumonisins as a possible contributory risk factor for primary liver cancer: a 3-year study of corn harvested in Haimen, China, by HPLC and ELISA[J]. Food and Chemical Toxicology, 1997. 35(12): 1143-1150.
    [39] Wang, E, Norred, W P, Bacon, C W, et al. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme[J]. Journal of Biological Chemistry, 1991. 266(22): 14486-14490.
    [40] Gelderblom, W, Snyman, S. Mutagenicity of potentially carcinogenic mycotoxins produced by fusarium moniliforme[J]. Mycotoxin Research, 1991. 7(2): 46-52.
    [41] Norred, W P, Plattner, R D, Vesonder, R F, et al. Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes[J]. Food and Chemical Toxicology, 1992. 30(3): 233-237.
    [42] Voss, K A, Riley, R T, Norred, W P, et al. An overview of rodent toxicities: liver and kidneyeffects of fumonisins and Fusarium moniliforme[J]. Environmental Health Perspectives, 2001. 109 (Suppl 2): 259-266.
    [43] Tolleson, W H, Melchior, W B, Morris, S M, et al. Apoptotic and anti-proliferative effects of fumonisin B1 in human keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma cells[J]. Carcinogenesis, 1996. 17(2): 239-249.
    [44] Myburg, R B, Dutton, M F, Chuturgoon, A A. Cytotoxicity of fumonisin B1, diethylnitrosamine, and catechol on the SNO esophageal cancer cell line[J]. Environmental Health Perspectives, 2002. 110(8): 813-815.
    [45] Stevens, V L, Tang, J. Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor[J]. Journal of Biological Chemistry, 1997. 272(29): 18020-18025.
    [46] Wang, W, Jones, C, Ciacci-Zanella, J, et al. Fumonisins and Alternaria alternata lycopersici toxins: sphinganine analog mycotoxins induce apoptosis in monkey kidney cells[J]. Proceedings of the National Academy of Sciences, 1996. 93(8): 3461-3465.
    [47] Delongchamp, R R, Young, J F. Tissue sphinganine as a biomarker of fumonisin-induced apoptosis[J]. Food Additives and Contaminants, 2001. 18(3): 255-261.
    [48] Desai, K, Sullards, M C, Allegood, J, et al. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis[J]. Biochimica Biophysica Acta, 2002. 1585(2-3): 188-192.
    [49] Riley, R T, Enongene, E, Voss, K A, et al. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis[J]. Environmental Health Perspectives, 2001. 109 Suppl 2: 301-308.
    [50] Kodell, R L, Young, J F, Delongchamp, R R, et al. A mechanistic approach to modelling the risk of liver tumours in mice exposed to fumonisin B1 in the diet[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2001. 18(3): 237-253.
    [51] Enongene, E N, Sharma, R P, Bhandari, N, et al. Disruption of sphingolipid metabolism in small intestines, liver and kidney of mice dosed subcutaneously with fumonisin B1[J]. Food and Chemical Toxicology, 2000. 38(9): 793-799.
    [52] Garren, L, Galendo, D, Wild, C P, et al. The induction and persistence of altered sphingolipid biosynthesis in rats treated with fumonisin B1[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2001. 18(9): 850-856.
    [53] Shepharda, G S, Van Der Westhuizena, L, Sewrama, V. Biomarkers of exposure to fumonisin mycotoxins: A review[J]. Food Additives and Contaminants. Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2007. 24(10): 1196-1201.
    [54] Van der Westhuizen, L, Brown, N L, Marasas, W F, et al. Sphinganine/sphingosine ratio in plasma and urine as a possible biomarker for fumonisin exposure in humans in rural areas of Africa[J]. Food and Chemical Toxicology, 1999. 37(12): 1153-1158.
    [55] Abnet, C C, Borkowf, C B, Qiao, Y L, et al. Sphingolipids as biomarkers of fumonisin exposure and risk of esophageal squamous cell carcinoma in China[J]. Cancer Causes & Control, 2001. 12(9): 821-828.
    [56] Van der Westhuizen, L. Fumonisin exposure biomarkers in humans consuming maize staple diets[D]. University of Stellenbosch, South Africa. 2011.
    [57] Dantzer, W R, Hopper, J, Mullin, K, et al. Excretion of (14)C-fumonisin B(1), (14)C-hydrolyzed fumonisin B(1), and (14)C-fumonisin B(1)-fructose in rats[J]. Journal of Agricultural and Food Chemistry, 1999. 47(10): 4291-4296.
    [58] Martinez-Larranaga, M R, Anadon, A, Diaz, M J, et al. Toxicokinetics and oral bioavailability of fumonisin B1[J]. Veterinary and human toxicology, 1999. 41(6): 357-362.
    [59] Van der Westhuizen, L, Shephard, G S, van Schalkwyk, D J. The effect of a single gavage dose of fumonisin B1 on the sphinganine and sphingosine levels in vervet monkeys[J]. Toxicon, 2001. 39(2-3): 273-281.
    [60] Merrill, A H, Morgan, E T, Nikolova-Karakashian, M, et al. Sphingomyelin hydrolysis and regulation of the expression of the gene for cytochrome P450[J]. Biochemical Society transactions, 1999. 27(4): 383-387.
    [61] Spotti, M, Maas, R F M, Nijs, C M d, et al. Effect of fumonisin B1 on rat hepatic P450 system[J]. Environmental Toxicology and Pharmacology, 2000. 8(3): 197-204.
    [62] Magan, N, Olsen, M. Mycotoxins in Food - Detection and Control[M]: Woodhead Publishing, 2004.
    [63] Voss, K A, Meredith, F I, Bacon, C W. Effect of baking and frying on the in vivo toxicity to rats of cornmeal containing fumonisins[J]. Journal of Agricultural and Food Chemistry, 2003. 51(18): 5546-5551.
    [64] Bansal, J, Pantazopoulos, P, Tam, J, et al. Surveys of rice sold in Canada for aflatoxins, ochratoxin A and fumonisins[J]. Food Addit Contam Part A: Chem Anal Control Expo Risk Assess, 2011. 28(6): 767-774.
    [65]邢淑婕,刘开华.啤酒中伏马菌素B_1的ELISA检测[J]中.国酿造, 2008(18): 83~86.
    [66] Hlywka, J J, Bullerman, L B. Occurrence of fumonisin B1 and B2 in beer[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 1999. 16(8): 319-324.
    [67]廖兴广,张秀丽,王爱月,等.河南省粮食中伏马菌素、杂色曲霉素和烟曲霉震颤素污染状况研究[J]中.国公共卫生学报, 1999(1): 46~47.
    [68]颜燕,张玉琴,李瑞英,等.山东省主粮中几种真菌的污染状况及菌株产毒能力调查[J].中国公共卫生, 1999(5): 382.
    [69]何树森,辛汉川,刘金秀,等.四川省部分地区主粮中杂色曲霉菌及其毒素的污染调查[J]卫.生研究, 1998(S1): 65.
    [70]孙武长,刘桂华,杨红,等.粮食中真菌及真菌毒素污染调查[J]中.国公共卫生, 2005(12): 1532.
    [71]王志刚,李秀芳,童哲,等.粮食中伏马菌素污染及产生源相关性研究[J]中.国卫生检验杂志, 2001(01): 9-13.
    [72] WHO International Agency for Research on Cancer. Toxins derived from Fusarium moniliforme: Fumonisins B1 and B2, and fusarin C, Monographs on the Evaluation of Carcinogenic Risks to Humans[R]. 1993, IARC. 445-466.
    [73] Food and Drug Administration. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds; Final Guidance Contains Nonbinding Recommendations[EB/OL]. URL http://www.fda.gov/Food/GuidanceComplianceRegula-toryInformation/GuidanceDocuments/ChemicalContaminantsandPesticides/ucm109231.htm. 2001.
    [74] FAO/WHO, CCLAC. Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. Proposed Draft Maximum Levels for Fumonisins in Maize and Maize-Products and Associated Sampling Plans (4th Session)[EB/OL]. URL http://www.cclac.org/english/committees/cf_e.php [CX/CF 10/4/8, 26-30 April 2010]. 2010.
    [75] Visconti, A, Boenke, A, Solfrizzo, M, et al. European intercomparison study for the determination of the fumonisins content in two maize materials[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 1996. 13(8): 909-927.
    [76] Duvick, J. Prospects for reducing fumonisin contamination through genetic modification of maize, in International Conference on the Toxicology of Fumonisin[C]. 1999: Arlington, Virginia. 24.
    [77] Munkvold, G P, Hellmich, R L, Showers, W B. Reduced Fusarium Ear Rot and Symptomless Infection in Kernels of Maize Genetically Engineered for European Corn Borer Resistance[J]. Phytopathology, 1997. 87(10): 1071-1077.
    [78] Munkvold, G P, Hellmich, R L, RICE, L G. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids[J]. St. Paul, MN, ETATS-UNIS: American Phytopathological Society, 1999.
    [79]檀丽萍,刘阳,邢福国.玉米及其制品中伏马菌素的去除方法[J]粮.食与饲料工业,
    [80]张浩,侯红漫,刘阳,等.伏马菌素检测方法的研究进展[J]中.国粮油学报, 2007(4): 137~142.
    [81]张笑,侯红漫,刘阳,等.食品中伏马菌素的污染及污染控制[J]食.品研究与开发, 2006(3): 127~129.
    [82] Solfrizzo, M, Avantaggiato, G, Carratu, M R, et al. The use of biomarkers to assess the in vivo effect of activated carbon on fumonisins fed through diets contaminated with Fusarium moniliforme[J]. Revue De Medecine Veterinaire, 1998(149): 667-671.
    [83] Harrison, L R, Colvin, B M, Greene, J T, et al. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme[J]. Journal of Veterinary Diagnostic Investigation, 1990. 2(3): 217-221.
    [84] Bullerman, L B. Occurrence of Fusarium and fumonisins on food grains and in foods[J]. Advances in Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy, 1996. 392: 27-38.
    [85] Sydenham, E W, Stockenstrom, S, Thiel, P G, et al. Potential of Alkaline Hydrolysis for the Removal of Fumonisins from Contaminated Corn[J]. Journal of Agricultural and Food Chemistry, 1995. 43(5): 1198-1201.
    [86] Park, D L, Rua, S M, Mirocha, C J, et al. Mutagenic potentials of fumonisin contaminated corn following ammonia decontamination procedure[J]. Mycopathologia, 1992. 117(1): 105-108.
    [87] Dombrink-Kurtzman, M A, Dvorak, T J, Barron, M E, et al. Effect of nixtamalization (Alkaline cooking) on fumonisin-contaminated corn for production of masa and tortillas[J]. Journal of Agricultural and Food Chemistry, 2000. 48(11): 5781-5786.
    [88] Castelo, M M, Jackson, L S, Hanna, M A, et al. Loss of Fuminosin B1 in Extruded and Baked Corn-Based Foods with Sugars[J]. Journal of Food Science, 2001. 66(3): 416-421.
    [89] Seefelder, W, Hartl, M, Humpf, H U. Determination of N-(Carboxymethyl)fumonisin B1 in Corn Products by Liquid Chromatography/Electrospray Ionization–Mass Spectrometry[J]. Journal of Agricultural and Food Chemistry, 2001. 49(5): 2146-2151.
    [90] Visconti, A, Solfrizzo, M, Doko, M B, et al. Stability of fumonisins at different storage periods and temperatures in gamma-irradiated maize[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 1996. 13(8): 929-938.
    [91] Bullerman, L B, Bianchini, A, Hanna, M A, et al. Reduction of fumonisin B1 in corn grits by single-screw extrusion. Journal of Agricultural and Food Chemistry, 2008. 56(7): 2400-2405.
    [92] Marín, S, Sanchis, V, Sanz, D, et al. Control of growth and fumonisin B1 production by Fusarium verticillioides and Fusarium proliferatum isolates in moist maize with propionate preservatives[J]. Food Additives and Contaminants Part a-Chemistry Analysis ControlExposure & Risk Assessment, 1999. 16(12): 555-563.
    [93] Devegowda, G, Murthy, T N K, Reddy, B N霉.菌毒素问题的生物解决途径[J]湖.南饲料, 2005(03): 17~21.
    [94] Beekrum, S, Govinden, R, Padayachee, T, et al. Naturally occurring phenols: a detoxification strategy for fumonisin B1[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2003. 20(5): 490-493.
    [95] Duvick, J. Prospects for reducing fumonisin contamination of maize through genetic modification[J]. Environmental Health Perspectives, 2001. 109(Suppl 2): 337-342.
    [96] Rottinghaus, G E, Coatney, C E, Minor, H C. A rapid, sensitive thin layer chromatography procedure for the detection of fumonisin B1 and B2[J]. Journal of Veterinary Diagnostic Investigation, 1992. 4(3): 326-329.
    [97] Dawlatana, M, Coker, R, Nagler, M, et al. A normal phase HPTLC method for the quantitative determination of fumonisin B<sub>1</sub> in rice[J]. Chromatographia, 1995. 41(5): 187-190.
    [98] Preis, R A, Vargas, E A. A method for determining fumonisin B1 in corn using immunoaffinity column clean-up and thin layer chromatography/densitometry[J]. Food Additives and Contaminants, 2000. 17(6): 463-468.
    [99]杨静,哈益明,王锋.伏马菌素分析方法研究进展[J]河.南工业大学学报(自然科学版), 2008(4): 89~94.
    [100] Plattner, R D, Ross, P F, Reagor, J, et al. Analysis of corn and cultured corn for fumonisin B1 by HPLC and GC/MS by four laboratories[J]. Journal of Veterinary Diagnostic Investigation, 1991. 3(4): 357-358.
    [101] Plattner, R D, Weisleder, D, Shackelford, D D, et al. A new fumonisin from solid cultures of Fusarium moniliforme[J]. Mycopathologia, 1992. 117(1-2): 23-28.
    [102] Shephard, G S. Chromatographic determination of the fumonisin mycotoxins[J]. Journal of Chromatography A, 1998. 815(1): 31-39.
    [103] Shephard, G S, Sydenham, E W, Thiel, P G, et al. Quantitative Determination of Fumonisins B1 and B2by High-Performance Liquid Chromatography with Fluorescence Detection[J]. Journal of Liquid Chromatography, 1990. 13(10): 2077-2087.
    [104]王颖,朱彤霞. HPLC法检测食管癌高发区林县井头村玉米中的腐马素B_1(FB_1)[J].中国农业大学学报, 2002(1): 9~13.
    [105]林维宣,田苗,王玫,等.单克隆免疫亲和柱-高效液相色谱法测定玉米中伏马毒素B_1、B_2[J]冷.饮与速冻食品工业, 2002(2): 22~24.
    [106]白清云,廖楠,沈跃,等.高效液相色谱法定量测定玉米中腐马素毒素(Fumonisins)[J]农.业环境保护, 2002. 21(6): 512~515.
    [107]郑铁松,钟文辉.高效液相色谱法测定食品中的伏马菌素[J]食.品科学, 2004(3): 135~138.
    [108]林维宣,裴轶君,董伟峰.固相萃取-高效液相色谱法测定玉米中伏马毒素B_1[J]大.连轻工业学院学报, 2004(1): 15~17.
    [109]权英,王硕,韩英素,等.高效液相色谱法检测玉米中的伏马毒素B_1和B_2[J]食.品与发酵工业, 2005(8): 87~90.
    [110]马丽艳,袁长梅,石文婷,等.高效液相色谱法测定膨化玉米制品中的伏马菌素FB_1和FB_2[J]上.海农业学报, 2010(1): 88~91.
    [111] Ndube, N, van der Westhuizen, L, Green, I R, et al. HPLC determination of fumonisin mycotoxins in maize: A comparative study of naphthalene-2,3-dicarboxaldehyde and o-phthaldialdehyde derivatization reagents for fluorescence and diode array detection. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2011. 879(23): 2239-2243.
    [112]权伍英,谷晶.伏马菌素检测方法研究进展[J]中.国卫生检验杂志, 2010(4): 948~950.
    [113] Commission Decision 2002/657/EC, Implementing Council Directive 96/23/EC. Concerning the performance of analytical methods and the interpretation of results[J]. Official J European Communities. 2002. 8-361.
    [114] Seefelder, W, Gossmann, M, Humpf, H U. Analysis of Fumonisin B1 in Fusarium proliferatum-Infected Asparagus Spears and Garlic Bulbs from Germany by Liquid Chromatography?Electrospray Ionization Mass Spectrometry[J]. Journal of Agricultural and Food Chemistry, 2002. 50(10): 2778-2781.
    [115] Royer, D, Humpf, H U, Guy, P A. Quantitative analysis of Fusarium mycotoxins in maize using accelerated solvent extraction before liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry[J]. Food Additives and Contaminants, 2004. 21(7): 678-692.
    [116] Faberi, A, Foglia, P, Pastorini, E, et al. Determination of type B fumonisin mycotoxins in maize and maize-based products by liquid chromatography/tandem mass spectrometry using a QqQlinear ion trap mass spectrometer. Rapid Communications in Mass Spectrometry, 2005. 19(2): 275-282.
    [117] Paepens, C, De Saeger, S, Van Poucke, C, et al. Development of a liquid chromatography/tandem mass spectrometry method for the quantification of fumonisin B1, B2 and B3 in cornflakes[J]. Rapid Communications in Mass Spectrometry, 2005. 19(14):
    [118] Musser, S M, Plattner, R D. Fumonisin Composition in Cultures of Fusarium moniliforme, Fusarium proliferatum, and Fusarium nygami. Journal of Agricultural and Food Chemistry, 1997. 45(4): 1169-1173.
    [119] Rice, L G, Ross, P F, Dejong, J, et al. Evaluation of a liquid chromatographic method for the determination of fumonisins in corn, poultry feed, and Fusarium culture material. Journal of Aoac International, 1995. 78(4): 1002-9.
    [120] Bartok, T, Szecsi, A, Szekeres, A, et al. Detection of new fumonisin mycotoxins and fumonisin-like compounds by reversed-phase high-performance liquid chromatography/electrospray ionization ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2006. 20(16): 2447-2462.
    [121] Sewram, V, Mshicileli, N, Shephard, G S, et al. Production of Fumonisin B and C Analogues by Several Fusarium Species. Journal of Agricultural and Food Chemistry, 2005. 53(12): 4861-4866.
    [122] S?rensen, L K, Elb?k, T H. Determination of mycotoxins in bovine milk by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography B, 2005. 820(2): 183-196.
    [123] Gazzotti, T, Zironi, E, Lugoboni, B, et al. Analysis of fumonisins B1, B2 and their hydrolysed metabolites in pig liver by LC-MS/MS[J]. Food Chemistry, 2011. 125(4): 1379-1384.
    [124]刘承兰,许文娜, Kofoet, A,等.液相色谱-电喷雾串联质谱法测定食品中的伏马菌素[J]分.析化学, 2005(11): 1619~1622.
    [125]潘红锋,任一平,赖世云,等.应用串联液质技术检测玉米中伏马菌毒素的研究[J]中.国卫生检验杂志, 2009(3): 467~470.
    [126] Ren, Y, Zhang, Y, Han, S, et al. Simultaneous determination of fumonisins B1, B2 and B3 contaminants in maize by ultra high-performance liquid chromatography tandem mass spectrometry[J]. Analytica Chimica Acta, 2011. 692(1-2): 138-145.
    [127] Maragos, C M. Detection of the mycotoxin fumonisin B1 by a combination of immunofluorescence and capillary electrophoresis[J]. Food and Agricultural Immunology, 1997. 9(3): 147-157.
    [128]朱丹成.毛细管区带电泳法测定氨苄青霉素的含量[J]安.徽医药, 2001(4): 304~305.
    [129] Azcona-Olivera, J I, Abouzied, M M, Plattner, R D, et al. Production of Monoclonal Antibodies to the Mycotoxins Fumonisins B1, B2 and B3[J]. Journal of Agricultural and Food Chemistry, 1992. 40: 531-534.
    [130] Yeung, J M, Prelusky, D B, Savard, M E, et al. Sensitive Immunoassay for Fumonisin B1 inCorn[J]. Journal of Agricultural and Food Chemistry, 1996. 44(11): 3582-3586.
    [131] Barna-Vetró, I, Szabó, E, Facekas, B, et al. Development of a Sensitive ELISA for the Determination of Fumonisin B1 in Cereals[J]. Journal of Agricultural and Food Chemistry, 2000. 48(7): 2821-2825.
    [132] Bird, C B, Malone, B, Rice, L G, et al. Determination of total fumonisins in corn by competitive direct enzyme-linked immunosorbent assay: Collaborative study[J]. Journal of Aoac International, 2002. 85(2): 404-410.
    [133]郭云昌,刘秀梅,刘江.伏马菌素B_1免疫检测方法的研究[J]卫.生研究, 1999(4): 238~240.
    [134]江涛,宫慧之,李凤琴,等.抗伏马菌素B_1单克隆抗体的制备及试剂盒的研制[J]卫.生研究, 2006(2): 209~212.
    [135]许金俊,陈飞,秦爱建, et al.抗伏马菌素B1单克隆抗体的制备与特性鉴定[J]细.胞与分子免疫学杂志, 2007(10): 956-958.
    [136]陈飞,邵景东.伏马菌素B1间接竞争ELISA检测方法的建立和应用[J]江.苏农业科学, 2007(06): 278-281+350.
    [137]宫慧芝,计融,杨军,等.伏马菌素B_1单抗制备及其ELISA方法的研究[J]中.国医科大学学报, 2008(05): 629-630.
    [138]刘师文,何庆华,邹龙,等.谷物中伏马菌素B_1酶联免疫分析法的建立[J]食.品科学, 2010(18): 350~354.
    [139]王雨晨.伏马毒素B1单克隆抗体的制备及多种免疫学检测方法的建立[D]上.海:上海交通大学. 2011.
    [140] Quan, Y, Zhang, Y, Wang, S, et al. A rapid and sensitive chemiluminescence enzyme-linked immunosorbent assay for the determination of fumonisin B1 in food samples[J]. Analytica Chimica Acta, 2006. 580(1): 1-8.
    [141]权英,詹月华,张根华,等.谷物中伏马毒素B_1化学发光酶免疫检测[J]中.国公共卫生, 2011(05): 552-553.
    [142] Wang, S, Quan, Y, Lee, N, et al. Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay[J]. Journal of Agricultural and Food Chemistry, 2006. 54(7): 2491-2495.
    [143] Shiu, C M, Wang, J J, Yu, F Y. Sensitive enzyme-linked immunosorbent assay and rapid one-step immunochromatographic strip for fumonisin B1 in grain-based food and feed samples[J]. Journal of the Science of Food and Agriculture, 2010. 90(6): 1020-1026.
    [144] Molinelli, A, Grossalber, K, Krska, R. A rapid lateral flow test for the determination of total type B fumonisins in maize[J]. Analytical and Bioanalytical Chemistry, 2009. 395(5):1309-1316.
    [145]张珏,朱岚,陈蕴,等.伏马毒素B_1时间分辨荧光免疫分析超微量检测方法的建立[J]环.境与健康杂志, 2009(12): 1112~1115.
    [146] Thompson, V S, Maragos, C M. Fiber-Optic Immunosensor for the Detection of Fumonisin B1[J]. Journal of Agricultural and Food Chemistry, 1996. 44(4): 1041-1046.
    [147] Mullett, W, Lai, E P, Yeung, J M. Immunoassay of fumonisins by a surface plasmon resonance biosensor[J]. Analytical Biochemistry, 1998. 258(2): 161-167.
    [148]左小霞,高志贤,曹巧玲.伏马菌素B_1检测的免疫芯片技术研究[J]中.国卫生检验杂志, 2008(4): 597~598.
    [149] De Girolamo, A, Solfrizzo, M, von Holst, C, et al. Comparison of different extraction and clean-up procedures for the determination of fumonisins in maize and maize-based food products[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2001. 18(1): 59-67.
    [150] Stack, M E. Analysis of fumonisin B1 and its hydrolysis product in tortillas[J]. Journal of Aoac International, 1998. 81(4): 737-740.
    [151] Lukacs, Z, Schaper, S, Herderich, M, et al. Identification and determination of fumonisin FB1, FB2 in corn and corn products by high-performance liquid chromatography-electrospray-ionization tandem mass spectrometry (HPLC-ESI-MS-MS)[J]. Chromatographia, 1996. 43(3): 124-128.
    [152] Jackson, L S, Katta, S K, Fingerhut, D D, et al. Effects of Baking and Frying on the Fumonisin B1 Content of Corn-Based Foods[J]. Journal of Agricultural and Food Chemistry, 1997. 45(12): 4800-4805.
    [153] Sulyok, M, Berthiller, F, Krska, R, et al. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize[J]. Rapid Communications in Mass Spectrometry, 2006. 20(18): 2649-2659.
    [154] Lawrence, J F, Niedzwiadek, B, Scott, P M. Effect of temperature and solvent composition on extraction of fumonisins B1 and B2 from corn products[J]. Journal of Aoac International, 2000. 83(3): 604-611.
    [155] Kim, E K, Scott, P M, Lau, B P, et al. Extraction of fumonisins B1 and B2 from white rice flour and their stability in white rice flour, cornstarch, cornmeal, and glucose[J]. Journal of Agricultural and Food Chemistry, 2002. 50(12): 3614-3620.
    [156] De Girolamo, A, Pascale, M, Visconti, A. Comparison of methods and optimisation of the analysis of fumonisins B1 and B2 in masa flour, an alkaline cooked corn product. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment,2011. 28(5): 667-675.
    [157] Shier, W T. The fumonisin paradox : A review of research on oral bioavailability of fumonisin B[1], a mycotoxin produced by Fusarium moniliforme[M]. Monticello, NY, ETATS-UNIS: Dekker, 2000.
    [158] Kim, E K, Scott, P M, Lau, B P Y. Hidden fumonisin in corn flakes[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2003. 20(2): 161-169.
    [159] Sydenham, E W, Shephard, G S, Thiel, P G, et al. Liquid chromatographic determination of fumonisins B1, B2, and B3 in corn: AOAC-IUPAC Collaborative Study[J]. Journal of Aoac International, 1996. 79(3): 688-696.
    [160] Faberi, A, Foglia, P, Pastorini, E, et al. Determination of type B fumonisin mycotoxins in maize and maize-based products by liquid chromatography/tandem mass spectrometry using a QqQlinear ion trap mass[J]spectrometer. Rapid Communications in Mass Spectrometry, 2005. 19(2): 275-282.
    [161] Tardieu, D, Auby, A, Bluteau, C, et al. Determination of Fumonisin B1 in animal tissues with immunoaffinity purification[J]. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 2008. 870(1): 140-144.
    [162] Ware, G M, Umrigar, P P, Carman, A S, et al. Evaluation of Fumonitest Immunoaffinity Columns[J]. Analytical Letters, 1994. 27(4): 693 - 715.
    [163] Fazekas, B, Koncz-Tar, A, Toth-Hajdu, E, et al. Reusability of immunoaffinity columns for determination of fumonisins in maize[J]. Journal of Natural Toxins, 1999. 7(6): 259-263.
    [164] Spanjer, M C, Rensen, P M, Scholten, J M. LC-MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs[J]. Food Additives & Contaminants: Part A - Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008. 25(4): 472-489.
    [165] Carabias-Martinez, R, Rodriguez-Gonzalo, E, Revilla-Ruiz, P, et al. Pressurized liquid extraction in the analysis of food and biological samples[J]. Journal of Chromatography A, 2005. 1089(1-2): 1-17.
    [166] D'Arco, G, Fernandez-Franzon, M, Font, G, et al. Analysis of fumonisins B(1), B(2) and B(3) in corn-based baby food by pressurized liquid extraction and liquid chromatography/tandem mass spectrometry[J]. Journal of Chromatography A, 2008. 1209(1-2): 188-194.
    [167]王希春,何成华,刘海明,等.真菌毒素的污染、危害及其检测技术[J]畜.牧与兽医, 2009(08): 104~107.
    [168] Engvall, E, Jonsson, K, Perlmann, P. Enzyme-linked immunosorbent assay. II. Quantitativeassay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochimica et biophysica acta, 1971. 251(3): 427-34.
    [169]余礼碧,张坐奎,张伯玲,等.生物素—亲和素系统检测食品中黄曲霉毒素B_1的研究[J]中.国卫生检验杂志, 1991(2): 90~93.
    [170]马智鸿,黄飚,屠蔷,等.应用生物素-链霉亲和素的酶联免疫吸附法检测谷物中的玉米赤霉烯酮[J]安.徽农业科学, 2009(15): 6849~6851.
    [171] Halmann, M, Velan, B, Sery, T. Rapid identification and quantitation of small numbers of microorganisms by a chemiluminescent immunoreaction[J]. Applied and Environmental Microbiology, 1977. 34(5): 473-477.
    [172]胡娜,刘仁荣,常军,等.赭曲霉毒素A化学发光免疫分析技术的建立[J]食.品科技, 2010(7): 300~302.
    [173]邱云青,王伟,李凤琴.化学发光酶免疫分析法检测食品中赭曲霉毒素[J]食.品科学, 2010(24): 432~435.
    [174] Fang, L Q, Chen, H, Ying, X T, et al. Micro-plate chemiluminescence enzyme immunoassay for aflatoxin B1 in agricultural products[J]. Talanta, 2011. 84(1): 216-222.
    [175] Faulk, W P, Taylor, G M. An immunocolloid method for the electron microscope[J]. Immunochemistry, 1971. 8(11): 1081-3.
    [176] Beggs, M, Novotney, M, Sampetro, S. A self-performing chromatographic immunoassay for the qualitative determination of human chorionic gonadotrophin (HCG) in rurine and serum. Clinical Chemistry[J], 1990(36): 1084-1085.
    [177] Zheng, M Z, Richard, J L, Binder, J. A review of rapid methods for the analysis of mycotoxins[J]. Mycopathologia, 2006. 161(5): 261-273.
    [178] Sun, X L, Zhao, X L, Tang, J, et al. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1[J]. International Journal of Food Microbiology, 2005. 99(2): 185-194.
    [179] Shim, W B, Yang, Z Y, Kim, J S, et al. Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin B1 in grain and feed samples[J]. Journal of microbiology and biotechnology, 2007. 17(10): 1629-1637.
    [180]邓省亮,赖卫华,许杨.胶体金免疫层析法快速检测黄曲霉毒素B_1的研究[J]食.品科学, 2007(2): 232~236.
    [181]赖卫华,熊勇华,陈高明,等.应用胶体金试纸条快速检测赭曲霉毒素A的研究[J]食.品科学, 2005(5): 204~207.
    [182] Wang, X H, Liu, T, Xu, N, et al. Enzyme-linked immunosorbent assay and colloidal gold immunoassay for ochratoxin A: investigation of analytical conditions and sample matrix onassay performance[J]. Analytical and Bioanalytical Chemistry, 2007. 389(3): 903-911.
    [183] Liu, B H, Tsao, Z J, Wang, J J, et al. Development of a monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip[J]. Analytical chemistry, 2008. 80(18): 7029-7035.
    [184] Kolosova, A Y, De Saeger, S, Sibanda, L, et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol[J]. Analytical and Bioanalytical Chemistry, 2007. 389(7-8): 2103-2107.
    [185]许艳丽,鲍蕾,吴振兴,等.免疫胶体金技术及其在真菌毒素检测中的应用[J]中.国酿造, 2010(7): 13~17.
    [186] Parker, C O, Lanyon, Y H, Manning, M, et al. Electrochemical immunochip sensor for aflatoxin M1 detection[J]. Analytical chemistry, 2009. 81(13): 5291-5298.
    [187] Ammida, N H S, Micheli, L, Piermarini, S, et al. Detection of Aflatoxin B1 in Barley: Comparative Study of Immunosensor and HPLC[J]. 2006. 39(8): 1559-1572.
    [188] Tan, Y, Chu, X, Shen, G L, et al. A signal-amplified electrochemical immunosensor for aflatoxin B-1 determination in rice[J]. Analytical Biochemistry, 2009. 387(1): 82-86.
    [189] Alarcon, S H, Palleschi, G, Compagnone, D, et al. Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat[J]. Talanta, 2006. 69(4): 1031-1037.
    [190] Piermarini, S, Volpe, G, Micheli, L, et al. An ELIME-array for detection of aflatoxin B1 in corn samples[J]. 2009. 20(4): 371-375
    [191] Liu, Y, Qin, Z H, Wu, X F, et al. Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode[J]. Biochemical Engineering Journal, 2006. 32(3): 211-217.
    [192] Sun, A L, Qi, Q A, Dong, Z L, et al. An electrochemical enzyme immunoassay for aflatoxin B<sub>1</sub> based on bio-electrocatalytic reaction with room-temperature ionic liquid and nanoparticle-modified electrodes[J]. Sensing and Instrumentation for Food Quality and Safety, 2008. 2(1): 43-50.
    [193] Owino, J H O, Ignaszak, A, Al-Ahmed, A, et al. Modelling of the impedimetric responses of an aflatoxin B1 immunosensor prepared on an electrosynthetic polyaniline platform[J]. Analytical and Bioanalytical Chemistry, 2007. 388(5): 1069-1074.
    [194] Radi, A E, Mu?oz-Berbel, X, Lates, V, et al. Label-free impedimetric immunosensor for sensitive detection of ochratoxin A[J]. Biosensors and Bioelectronics, 2009. 24(7): 1888-1892.
    [195] Jin, X, Chen, L, Jiang, J, et al. Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1[J]. BiosensBioelectron, 2009. 24(8): 2580-2585.
    [196] Vidal, J C, Duato, P, Bonel, L, et al. Use of polyclonal antibodies to ochratoxin A with a quartz-crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors[J]. Analytical and Bioanalytical Chemistry, 2009. 394(2): 575-82.
    [197]徐霞,叶尊忠,吴坚,等.表面等离子体共振免疫传感器在蛋白质检测中的应用及其研究进展[J]分.析化学, 2010(7): 1052~1059.
    [198] Daly, S J, Keating, G J, Dillon, P P, et al. Development of surface plasmon resonance-based immunoassay for aflatoxin B(1)[J]. Journal of Agricultural and Food Chemistry, 2000. 48(11): 5097-5104.
    [199] Schnerr, H, Vogel, R, Niessen, L. A Biosensor-based Immunoassay for Rapid Screening of Deoxynivalenol Contamination in Wheat[J]. Food and Agricultural Immunology, 2002. 14(4): 313-321.
    [200] Maragos, C M, Busman, M. Rapid and advanced tools for mycotoxin analysis: a review[J]. Food additives & contaminants. Part A, 2010. 27(5): 688-700.
    [201] Smith, D S, Eremin, S A. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules[J]. Analytical and Bioanalytical Chemistry, 2008. 391(5): 1499-1507.
    [202] Chun, H S, Choi, E H, Chang, H J, et al. A fluorescence polarization immunoassay for the detection of zearalenone in corn[J]. Analytica Chimica Acta, 2009. 639(1-2): 83-89.
    [203] Park J.H., C D H, Lee I.S. Application of fluorescence polarization immunoassay for the screening of ochratoxin A in unpolished rice[J]. Journal of Life Sciences, 2006. 16: 1006-1013.
    [204] Lippolis, V, Pascale, M, Visconti, A. Optimization of a fluorescence polarization immunoassay for rapid quantification of deoxynivalenol in durum wheat-based products[J]. Journal of Food Protection, 2006. 69(11): 2712-2719.
    [205]胡娜,徐玲.真菌毒素检测方法研究进展[J]食.品科学, 2007(08): 563~565.
    [206] Tudos, A J, Lucas-van den Bos, E R, Stigter, E C. Rapid surface plasmon resonance-based inhibition assay of deoxynivalenol[J]. Journal of Agricultural and Food Chemistry, 2003. 51(20): 5843-5848.
    [207] Zhou, Y, Zhang, Y Y, Shen, Q F, et al. Development of a novel antibody probe useful for domoic acid detection[J]. Biosensors and Bioelectronics, 2009. 24(10): 3159-3163.
    [208]董志伟,王琰.抗体工程[M]北.京:北京医科大学出版社,2002(第二版), 2002.
    [209] Fasciglione, G F, Marini, S, Bannister, J V, et al. Hapten-carrier interactions and their role in the production of monoclonal antibodies against hydrophobic haptens[J]. Hybridoma, 1996. 15(1): 1-9.
    [210] Baier, W, Loleit, M, Fischer, B, et al. Generation of antibodies directed against the low-immunogenic peptide-toxins microcystin-LR/RR and nodularin[J]. International Journal of Immunopharmacology, 2000. 22(5): 339-353.
    [211] Moran, E, O'Keeffe, M, O'Connor, R, et al. Methods for generation of monoclonal antibodies to the very small drug hapten, 5-benzimidazolecarboxylic acid[J]. Journal of Imunological Methods, 2002. 271(1-2): 65-75.
    [212] Erhard, M H, Schmidt, P, Zinsmeister, P, et al. Adjuvant effects of various lipopeptides and interferon-gamma on the humoral immune response of chickens[J]. Poultry Science, 2000. 79(9): 1264-1270.
    [213] Fukuda, S, Nagahara, A, Kikuchi, M, et al. Preparation and characterization of anti-fumonisin monoclonal antibodies[J]. Bioscience Biotechnology and Biochemistry, 1994. 58(4): 765-767.
    [214]邢淑婕,刘开华.伏马菌素B_1人工抗原的构建[J]信.阳农业高等专科学校学报, 2010(2): 129-131.
    [215]肖理文,袁耀萍,郗日沫,等.四环素人工抗原的合成与鉴定[J]细.胞与分子免疫学杂志, 2008(4): 419-421.
    [216] Commission of the European Communities, 1881/2006/EU. Setting maximum levels for certain contaminants in foodstuffs[EB/OL]. URL:http://eur-lex.europa.eu/LexUriServ/ LexUriServ.do?uri=CELEX:32006R1881:EN:NOT. 2006.
    [217]刘元嫄,高利利,程金平,等.软骨藻酸间接竞争ELISA检测方法的研究[J]环.境化学, 2011(06): 1192-1196.
    [218]刘沙洲,桑小雪,欧阳华学,等.新霉素ELISA检测方法的建立[J]食.品科学, 2011(14): 227-231.
    [219]郭柏雪,生威,余桂春,等.直接竞争酶联免疫分析方法检测猪肉中的沙丁胺醇[J]食.品工业科技, 2011(06): 388-390.
    [220]杨利国,胡少昶,魏平华,等.酶免疫测定技术[M]南.京:南京大学出版社,1998(第一版), 1998.
    [221] GE Healthcare, formerly Amersham Biosciences. Antibody Purification Handbook[M/OL]. URL:http://www.biocompare.com/ProductDetails/1072625/Antibody-Purification-Handbook.html.
    [222] Ren, S, Wang, X, Lin, Z, et al. Development of a high-throughput, indirect antibody immobilization format chemiluminescence enzyme immunoassay (CLEIA) for the determination of progesterone in human serum[J]. Luminescence, 2008. 23(3): 175-181.
    [223]沙栩正,王仁芝,邹应全.增强化学发光酶免疫分析中鲁米诺系统的研究[J]军.事医学科学院院刊, 2008(04): 399-400.
    [224]温涛.催乳素化学发光免疫分析技术的研究[D]吉.林:吉林大学. 2007.
    [225] Zhao, L X, Lin, J M, Li, Z J, et al. Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17 beta-estradiol in wastewater[J]. Analytica Chimica Acta, 2006. 558(1-2): 290-295.
    [226] Lin, Z, Wang, X, Li, Z J, et al. Development of a sensitive, rapid, biotin-streptavidin based chemiluminescent enzyme immunoassay for human thyroid stimulating hormone[J]. Talanta, 2008. 75(4): 965-972.
    [227]应永飞,朱聪英,韦敏珏,等.液相色谱-串联质谱法测定饲料中14种霉菌毒素及其类似物[J]分.析化学, 2010(12): 1759-1764.
    [228]张晓飞,岳延涛,杨美华,等.色谱-质谱联用技术在真菌毒素检测中的研究进展[J].贵州农业科学, 2009(12): 109-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700