由乙酰乙酰芳胺烷基化衍生物构建几种天然产物母核结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,在目前有机合成化学向绿色化学和节约型化学方向发展的趋势下,如何利用便宜、易得的化学化工原料高效的合成对人类有用的化合物是化学工作者在实验设计、实施过程中需要考虑的主要问题。乙酰乙酰芳胺及其衍生物是重要的有机合成试剂,在染料工业及有机合成中有相当广泛的应用。经过百年的研究,乙酰乙酰芳胺及其衍生物化学也已经发展到日臻完美的地步,发展乙酰乙酰芳胺及其衍生物的高效的、原子经济性的合成化学值得期待。
     本论文主要论述了乙酰乙酰芳胺及其衍生物在有机合成中的崭新应用,详细阐述了以易于制备的乙酰乙酰芳胺烷基化衍生物通过分子内串联反应分别制备几类具有重要应用价值的并杂环类天然产物母核结构的方法,并对其机理进行了深入细致的研究。我们认为这些研究成果可以为合成其它并杂环化合物提供更合理、更有效的设计方案奠定基础。在具体的研究过程中,我们主要完成了以下两项工作:1)通过催化剂、溶剂、反应温度等条件的筛选、优化确定了最佳的反应条件并且在优化条件下合成了几个系列的并杂环类化合物。2)深入细致的研究了反应的机理,为了合成其它并杂环类化合物提供依据。
     传统的并杂环合成往往需要多步完成,不但周期长而其产品的总产率会因反应步骤的增加而降低。通过官能团修饰的乙酰乙酰芳胺衍生物一步合成有重要应用价值的天然产物母核结构具有挑战性。
     我们的实验设计及合成优点如下:
     (1)原料易得、价格便宜:乙酰乙酰芳胺类化合物是重要的化学化工原料,合成简单,价格便宜,储存和运输都很方便。
     (2)官能化衍生物易于制备:制备的一系列烷基化的乙酰乙酰芳胺是以具有活泼亚甲基的乙酰乙酰胺类化合物、碱、卤代烷为原料一锅合成的。条件相当温和,易于控制烷基化产物,产率较高,分离和储存都很容易。
     (3)反应选择性好,产率高:从实验结果可以确定以官能化衍生物为原料的并杂环化合物的合成表现出了很好的化学选择性和区域选择性,且产率高。
     (4)高原子经济性:我们从一类简单、易得的合成前体出发,高原子经济性的构筑多种并杂环分子体系尤其是杂环并喹啉类化合物。原料中几乎所有原子都保留在产物中,只有副产物水生成,达到最大的原子经济性。
     (5)为合成其他并杂环提供理论指导:我们充分利用了乙酰乙酰芳胺烷基化衍生物分子内官能团的高选择性成键方式来实施一步、高效的多米诺反应,构建并杂环衍生物。该方法可能提供一种合成并杂环类化合物的通用新合成方法。并为合成其它并杂环类化合物提供依据。
It is well-known that the green chemistry and chemical-saving are direction of the current organic synthetic chemistry. How to use cheap, readily available reagent to facile and efficient synthesis of useful compounds for humans is a major problem, which needs to be considered for chemical workers in the experimental design and the implementation process. Acetoacetarylamides and its derivatives are important reagents in organic synthesis. They have more active sites and a wide range of applications, especially in the dye industry and pharmaceutical chemistry. Acetoacetarylamides and their derivatives chemistry have also been more perfect than ever in a century of research, so developing efficient and atom-economy chemistry is worth the wait.
     This paper mainly discusses the new applications of acetoacetarylamides and its derivatives in organic synthesis, including their preparation and reactions of common derivatives, and also detailed the preparation of several important core of natural products by the intramolecular tandem reaction of readily available acetoacetarylamide alkylated derivatives on the basis of the literature and our previous work, these mechanisms were also in-depth study. We believe that these findings can be theoretical guidance for the synthesis of other heterocyclic compounds. During the specific research process, we mainly have completed the following two tasks: 1) we determined the optimizing conditions through screening of the catalyst, solvent, temperature etc., and several series heterocyclic compounds were synthesized under optimal conditions. 2) In order to provide a theoretical support for synthesis of other heterocyclic compounds, the reaction mechanisms were in-depth studied
     The traditional synthesis of fused-heterocyclic compounds are often require multi-step, not only needs a long time and the total yield of the products increases due to multi-step reaction. It is quite a challenging task for the synthesis of the core structure of valuable natural products by functionalized acetoacetarylamide derivatives. In contrast, the advantages of our synthesis are:
     (1) Ready-made, low-cost raw materials: Acetoacetarylamides are important chemical raw materials, synthetic simple, cheap, and very convenient for transport and storage.
     (2) Easy preparation of functionalized derivatives: Preparation of the series of alkylated acetoacetarylamides is one-pot protocol by using acetoacetamides, alkali and haloalkanes under mild conditions. the reaction is easy to control and the product yield is satisfactory, easy separation and storage.
     (3) High selectivity and high yield: The reaction showed high chemical selectivity, regioselectivity and high yield during the fuseheterocyclic synthesis process via functionalized derivatives of acetoacetarylamide.
     (4) High atom economy: we obtained some of heterocyclic moleculars by high atom economy from a series of simple functionalized derivatives of acetoacetarylamide. All the atoms of raw materials are almost retained in the product, the only by-product is water. We achieved the greatest atom economy.
     (5) Provide theoretical guidance to synthesize other heterocycles: We have made full use of functional groups of alkylated derivatives of acetoacetarylamide to build fuseheterocyclic derivatives by domino reaction with highly regioselective. This method may provide a novel and common methods for synthesis of heterocyclic compounds. And aslo, it can provide a theoretical basis for the synthesis of other heterocyclic compounds.
引文
[1] Meyer R H, Meger K H,über das Gleichgewicht desrnotroper Verbindungen in verschiedenen L?sungsmitteln [J]. Ber, 1914, 47(1): 826-832.
    [2] a) Sen D N, Umapathy P, Studies on Acetoacetanilide & Some of Its Metal chelates [J]. Indian J Chem, 1968, 6(9): 516-520. b) Syamal A, Fricks D H, Pantaleo D C, et al. Coodination Compounds of Niobium(V) and Tantalum(V) Chloroalkoxides With Ligands Related toβ-diketones [J]. J Less-Common Metals, 1969, 19(2): 141-149. c) Shan S K, Patel M R, Mankad B N, Infrared & Ultraviolet Spectraviolet Studies on Acetoacetarylamides & Their Sodium Compouds [J]. Indian J Chem, 1970, 8(7): 607-609.
    [3] Knorr L, Synthetische Versuche mit dem Acetessigester [J]. Justus Liebig's Annalen der Chemie, 1886, 236(1-2): 69-115.
    [4] Meyer R H,über den Zusammenhang zwischen Konstitution und Gleichgewicht bei keto-enol-desmotropen Verbindungen. (über Keto-Enol-Tautomerie. VI) [J]. Ber, 1912, 45(3): 2843-2864.
    [5] a) Nakpathom M, Hinks D, Freeman H S, Synthesis and evaluation of organic pigments. 4. New monoarylide and diarylide pigments [J]. Dyes and Pigments, 2001, 48(2): 93-106. b) Wang S R, Liu X F, Xiao J Q, et al. A study on the application behaviors of latent pigment derived from CI Pigment Yellow 151 [J]. Dyes and Pigments, 2004, 61(2): 99-102. c) Harikrishnan U, Menon S K, The synthesis, characterization and spectral properties of crown ether based disazo dyes [J]. Dyes and Pigments, 2008, 77(2): 462-468.
    [6] Kaupp G, Metwally M A, Amer F A, et al. Quantitative Gas-Solid Diazotization of 3-Aminopyrazolo[3,4-b]pyridine Derivatives and Azo Dye Syntheses by Means of Solid-Solid Reactions [J]. Eur J Org Chem, 2003, 1545-1551.
    [7] a) Campbell K N, Tipson R S, Elderfield R C, et al. Synthesis of Ethyl Quininate [J]. J Org Chem, 1946, 11, 803-811. b) Singh B K N, Fernandes P S, Synthesis and biological activity of substituted quinolines derived from 4-aminophenyl-2H-1,2,3-triazole [J]. Indian J Heterocycl Chem, 2003, 13(1): 19-24. c) Tale R H, Sagar A D, Santan H D, et al. 3-Nitrobenzeneboronic Acid as an Efficient and Environmentally Benign Catalyst for the Selective Transesterification ofβ-Keto Esters [J]. Synlett, 2006, 3, 415-418. d) Hanna M A, Al-Sarawy A A, Rashed I G, et al. Novel sulphoarylazo 4-pyrazolone-based tartrazine dye analogues [J]. Phosphorus Sulfur Silicon Relat Elem, 2004, 179(6): 1209-1226. e) Bandgar B P, Uppalla L S, Sadavarte V S, Chemoselective Transesterification ofβ-Keto Esters under Neutral Conditions using NBS as a Catalyst [J]. Synlett, 2001, 11, 1715-1718. f) Suri O P, Satti N K, Suri K A, Microwave Induced Acetoacetylation of Hetaryl and Aryl Amines [J]. Synth Commun, 2000, 30(20): 3709-3718. g) Witzeman J S, Nottingham W D, Transacetoacetylation with tert-butyl acetoacetate: synthetic applications [J]. J Org Chem, 1991, 56(5): 1713-1718.
    [8] a) Marull M, Lefebvre O, Schlosser M, An Improved Access to 4-Trifluoromethyl-2(1H)-quinolinones: The Watering Protocol [J] Eur J Org Chem, 2004, (1): 54-63. b) Katritzky A R, Huang T B, Voronkov M V, et al. Polycyclic heteroaromatics from reactions of acylbenzotriazoles with aryl isocyanates [J]. J Org Chem, 2000, 65(23): 8069-8073. c) Zaragoza F, Remarkable substituent effects on the chemoselectivity of rhodium(II) carbenoids derived from N-(2-diazo-3-oxobutyryl)-L-phenylalanine esters [J]. Tetrahedron, 1995, 51(32): 8829-8834. d) Carling R W, Leeson P D, Moore K W, et al. 3-Nitro-3,4-dihydro-2(1H)-quinolones. Excitatory amino acid antagonists acting at glycine-site NMDA and (RS)-.alpha.-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors [J]. J MedChem, 1993, 36(22): 3397-4308. e) Rigo B, Studies on Pyrrolidinones. Synthesis of N-Acylpyroglutamic Acids Having Bactericide and Fungicide Properties [J]. J Heterocycl Chem, 1988, 25(1): 59-63.
    [9] a) Yamamoto Y, Onishi S, Azuma Y, A New Method for Preparation of N-Acetoacetyl-carboxamides [J]. Synthesis, 1981, 2, 122-124. b) Davis S E, Rauckman B S, Chan J H, et al. 2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 11. Quinolylmethyl analogs with basic substituents conveying specificity [J]. J Med Chem, 1989, 32(8): 1936-1942. c) Galeazzi R, Mobbili G, Orena M, Thermodynamic vs. kinetic control in the stereoselective intramolecular conjugate addition of amide enolates leading to chiral trans-3,4-disubstituted pyrrolidin-2-ones [J] Tetrahedron, 1999, 55(13): 4029-4042. d) Synthesis of Enantiopure Pyrrolo[3,4-c]Pyrazole Derivatives via Intramolecular Cycloaddtion of Homo-chiral Nitrilimines [J]. Synth Commun, 2001, 31(24): 3799-3806.
    [10] a) Andreichikov Y S, Gein L F, Gein, V L, Sythesis of 2,2,6-Trisubstituted 1, 3-Dioxen-4-ones [J]. Khimiya Geterotsiklicheskikh Soedinenii, 1979, 9, 1280. b) Mohri K, Oikawa Y, Hirao K, Neldrum's Acid in Organic Synthesis 3. Synthesis of 2-Substituted Indoles From Phenylhydroxylamine [J]. Heterocycles 1982, 19, 515-520. c) Mohri K, Oikawa Y, Hirao K, et al. Meldrum's Acid in Organic Synthesis. VI. Synthesis of 2-Substituted Indoles from Acyl Meldrum's Acids and Phenylhydroxylamine via [3, 3] Sigmatropic Rearrangement [J]. Chem Pharm Bull, 1982, 30(9): 3097-3105. d) Sato M, Ogasawara H, Komatsu S, et al. Synthesis ofβ-Ketocarboxamide Derivatives Using 2,2-Dimethyl-2H,4H-1, 3-dioxin-4-ones [J]. Chem Pharm Bull, 1984, 32(10): 3848-3856. e) Clemens R J, HyattJ A, Acetoacetylation with 2,2,6-trimethyl-4H-1, 3-dioxin-4-one: a convenient alternative to diketene [J]. J Org Chem, 1985, 50(14): 2431-2435. f) Sato M, Ogasawara H, Takayama K,et al. A Novel Synthetic Method of Lactams From 1, 3-Dioxin-4-ones via Intramolecular Ketene Trapping [J]. Heterocycles, 1987, 26(10): 2611-2614. g) Andreichikov Y S, Gein, V L, Kozlov A P, et al. Interaction of 2,2-dimethyl-6-aryl-1, 3-dioxin-2-ones with Aromatic-Amines and Ortho-Phenylenediamine [J]. Zhurnal Organicheskoi Khimii, 1988, 24(1): 210-217. h) Himbert G, Ruppmich M, Eine Wagner-Meerwein-Umlagerung als Zwischenschritt bei der Dihydroindolon-Bildung aus 2-Diazo-acetoacetaniliden [J]. Angewandte Chemie, 1990, 102(1): 69-70. i) Sakaki J, Kobayashi S, Sato M, et al. Synthesis of 1, 3-Dioxin-4-ones and Their Use in Synthesis. XVIII.: Synthesis of Azetidin-2-ones from 1, 3-Dioxin-4-ones via 3-Hydroxycarboxamides [J]. Chem Pharm Bull, 1989, 37(11): 2952-2960. j) Siek P C, Cheol Y H, Bok C E, Aminolysis of 5-Acyl-2,2-dimethyl-1, 3-dioxane-4,6-diones (Acyl Meldrum's Acids) as a Versatile Method for the Synthesis ofβ-Oxo Carboxamides [J]. Synthesis, 1992, (12): 1213-1214. k) Beier N, Labitzke E, Mederski W W K R, Synthesis of 7-ethyl-1,2-dihydroquinolin-2-ones as angiotensin receptor II antagonists [J]. Heterocycles, 1994, 39(1): 117-131. l) Sharma G V M, Ilangovan A, Narayanan V L, et al. First synthesis of aza-calanolides-a new class of anti-HIV active compounds [J]. Tetrahedron, 2002, 59(1): 95-99. m) Miriyala B, Williamson J S, An efficient and rapid synthesis ofβ-carboxamide derivatives using 2,2-dimethyl-2H,4H-1, 3-dioxin-4-ones by microwave irradiation [J]. Tetrahedron Lett, 2003, 44(43): 7957-7959. n) Huggins M T, Barber P S, Florian D, et al. Short, Efficient Syntheses of Pyrrole–Amides [J]. Synth Commun, 2008, 38(23): 4226-4239.
    [11] Veronese A C, Callegari R, Salah S A A, Tin (IV) Chloride-Promoted Reactions of p-dicarbonyl Compounds with Nitriles. Synthesis of Aminopyridines and Aminoquinolines [J]. Tetrahedron Lett, 1990, 31(24): 3485-3488.
    [12] a) Ali M I, Hammouda H A, Reactions with Benzothiazoles. I. Action of Amines on 3-Hydroxy -1H-benzo[d]pyrido[2,1-b]thiazol-1-one and its derivatives [J]. Journal fuer Praktische Chemie (Leipzig), 1979, 321(2): 331-335. b) Ferri R A, Pitacco G, Valentin E, Nucleophilic Behaviour of l-substituted Morpholino Ethenes [J].Tetrahedron, 1978, 34(16): 2537-2543.
    [13] Hendi S B, Hendi M S, Wolfe J F, A new synthesis ofβ-keto amides via reaction of ketone lithiumenolates with isocyanates [J]. Synth Commun, 1987, 17(1): 13-18.
    [14] a) Aznar F, Valdés C, Cabal M, Enamines in solid-phase: synthesis and reactivity towards electrophiles [J]. Tetrahedron Lett, 2000, 41(30): 5683-5687. b) Yoshimitsu T, Matsuda K, Nagaoka H, Radical Fixation of Functionalized Carbon Resources:α-sp3C?H Carbamoylation of Tertiary Amines with Aryl Isocyanates [J]. Org Lett, 2007, 9(24): 5115-5118.
    [15] Babudri F, Ciminale F, Nunno D L, Florio S, Organometallic induced self-condensation of carboxamides [J]. Tetrahedron, 1982, 38(4): 557-561.
    [16] Hussain S M, El-Reedy A M, El-Sherabasy S A, Reactions of Acetoacetanilides-A Century of [J]. J Heterocycl Chem, 1988, 25(1): 9-22.
    [17] a) Hurst W G, Thorpe J F, CIV.—The formation of chlorinated amines by the reduction of nitro-compounds [J]. J Chem Soc, 1915, 107, 934-941. b) Kermack W O, Muir W, Attempts to extend the Mannich reaction to derivatives of 4-methylquinoline and 2:4-dinitrotoluene [J]. J Chem Soc, 1933, 300-302. c) Marais J L C, Backeberg O G, The nitration of 2-hydroxy-4:6-dimethylquinoline and the preparation of some related compounds [J]. J Chem Soc, 1950, 2207-2211. d) Chang J, Kim B J, Park C R, et al. Synthesis and Polymerization Mechanism of Bisacetoacetamides [J]. J Polym Sci Part A Polym Chem, 2001, 39, 1456-1462.
    [18] Mukaiyama T, Tokizawa M, Nohira H, et al. Novel Method for the Preparation of Organic Isocyanates [J]. J Org Chem, 1961, 26(11): 4381-4384.
    [19] Reisch V J, Niemeyer D, Isocyanate durch photolyse vonβ-ketos?ureamiden [J]. Tetrahedron Lett, 1968, 9(29): 3247-3248.
    [20] a) Meerwein V H, Eine neue Methode zur Ketonspaltung vonβ-Ketons?ureestern [J]. Ann Chem, 1913, 398(2): 242-250. b) Kato T, Yamamoto Y, Studies on Ketene and its Derivatives. X. Reaction of Diketene with Schiff Base [J]. Chem Pharm Bull, 1965, 13(8): 959-962.
    [21] Searles A L, Kelly R J, The Preparation ofα,α-Dialkylacetoacetanilides and Their Reaction with Sulfuric Acid [J]. J Am Chem Soc, 1956, 78(10): 2242-2246.
    [22] Jacini G, The Reaction of Ethyl Acetoacetate with p-Aminoacetanillde [J]. Gazz Chim Ital, 1941, 71(1): 53.
    [23] a) Chaolin H O, Hunter L, The associating effect of the hydrogen atom. Part IV. Salicyl- and acetoacet-anilides [J]. J Chem Soc, 1939, 484-489. b) Wolf L, Wetzel K, Untersuchungenüber Komplexverbindungen der -Ketos?ureamid-Reihe [J]. Chem Ber, 1957, 90(6): 1007-1023. c) Dudek E P, Barber M, High Resolution Mass Spectroscopic Studies of Metal Chelates [J]. J Inorg Chem, 1966, 5(3): 375-378. d) Irngartinger H, Altreuther A, Sommerfeld T, et al. Pyramidalization in Derivatives of Bicyclo[5.1.0]oct-1(7)-enes and 2,2,5,5-Tetramethylbicyclo[4.1.0]hept-1(6)-enes [J]. Eur J Org Chem, 2000, (24): 4059-4070. e) El-Boraey H A, El-Tabl A S, Supramolecular copper(II) complexes with tetradentate ketoenamine ligands [J]. Polish J Chem, 2003, 77(12): 1759-1775. f) Ummathur M B, Krishnankutty K, 9-Aryl-1,5-bis(N-phenylamino)-4,8-nonadiene-1, 3,7-triones and their metal complexes [J]. Polish J Chem, 2008, 82(5): 963-971.
    [24] a) Sen D N, Umapathy P, Monochloro-+Dichloro-acetoacetanilide Complexes of Titanium(4) [J]. Indian J Chem, 1966, 4(10): 454. b) Awasarkar P A, Gopinathan S, Gopinathan C, Organoxytitanium and Organotin Derivatives of Dibasic Tetradentate Chelating Disulphides [J]. Synth React Inorg Met Org Chem, 1985, 15(2), 133-147.
    [25] Danishefsky S, Chao K H, Schulte G, Synthesis of 3,4-Dihydro-3,3,4-trichloroquinolin-2(1H)-ones and Their Conversion to Indeno[1,2,3-de]quinolin-2(3H)-ones [J]. J Org Chem, 1985, 50(23): 4652-4655.
    [26] El-Asmy A A, Khalifa M E, Hassanian M M, Synthesis of mono and binuclear complexes of alpha-oximinoacetoacetanilide-4-phenylthiosemicarbazone [J]. Synth React Inorg Met Org Chem, 2001, 31(10): 1787-1801.
    [27] a) Deepa K P, Aravindakshan K K, Synthesis and characterization of metal complexes of N-methyl-and N-ethylacetoacetanilide semicarbazones [J]. Synth React Inorg Met Org Chem, 2001, 31(1): 43-56. b) Raman N, Kulandaisamy A, Shunmugasundram A, et al. Synthesis, spectral, redox and antimicrobial activities of Schiff base complexes derived from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide [J]. Transition Met Chem, 2001, 26(1-2): 131-135. c) Deepa K P, Aravindakshan K K, Suhara F, Synthesis, characterization and antifungal studies of metal complexes of benzoyl- and salicylylhydrazones of N-methylacetoacetanilide [J]. Asian J Chem, 2001, 13(2): 513-523. d) Krishnankutty K, Ummathur M B, Metal complexes of 1-phenylamino-7-phenyl-4,6-heptadiene-1, 3-dione and its Schiff's base [J]. J Indian Chem Soc, 2006, 83(7): 663-667.
    [28] Sen D N, Umapathy P, Isomerism of Tris-(Acetoacetanilido)-Chromium(3) [J]. Indian J chem, 1966, 4(10): 455.
    [29] Hooker J, Hinks D, Freeman H, Synthesis, properties and application of four new 1:2 aluminium-complexed azo dyes [J]. Coloration Technology, 2003, 119(1): 41-47.
    [30] a) Huang F, Wua Y, Gua D, et al. Synthesis of blue-violet light wavelength metal (II)-azo complexes and their absorption and thermal properties [J]. Mater Lett, 2004, 58(20): 2461-2465. b) Krishnankutty K, Ummathur M B, Metal complexes of unsaturated beta-ketoanilides [J]. J Indian Chem Soc, 2006, 83(9): 883-887.
    [31] a) Deepa K, Aravindakshan K K, Synthesis and Characterization of Transition Metal Complexes ofα-Bromo- andω-Bromoacetoacetanilide Semicarbazones [J]. Synth React Inorg Met Org Chem, 2004, 34(3): 429-442. b) Raman N, Joseph J, Rajasekaran K, Studies on the interaction of transition metal complexes of the Schiff base derived from anthranilic acid and acetoacetanilide with DNA [J]. Polish J Chem, 2007, 81(2): 149-159. c) Raman N, Synthesis and spectral characterization of Knoevenagel condensate beta-ketoanilide and its transition metal (II) complexes [J]. J Indian Chem Soc, 2007, 84(1): 29-33.
    [32] Henderson W, Nicholson B K, Oliver A G, Synthesis and characterisation of four- and eight-membered ring auralactam complexes [J]. J Organomet Chem, 2001, 620(1-2): 182-189.
    [33] a) Krishnankutty K, Ummathur M B, Metal complexes of unsaturated diketoanilides [J]. J Indian Chem Soc, 2006, 83(7): 639-644. b) Maurya R C, Mishra D O, Trivedi P K, Synthesis and Characterization of Some Hovel Pehta-Coordihated Mixed-Ligakd Derivatives of Zinc(II)-bis(Acetylacetone) and-bis(Acetoacetanilide) Chelates with 2/3-Pyrazoline-5-One Derivatives [J]. Synth React Inorg Met -Org Chem, 1992, 22(4): 403-414.
    [34] a) Henderson W, Oliver A G, Rickard C E F, et al. Platina- and palladalactam complexes derived from 2-benzoylacetanilide; syntheses and X-ray structure of [Pd{NPhC(O)CHC(O)Ph}(bipy)]·CH2Cl2 [J]. Inorg Chim Acta, 1999, 292(2): 260-265. b) Raman N, Raja S J, Joseph J, et al. Designing, synthesis, spectral characterization of antimicrobial and DNA active tridentate Schiff base ligands and their complexes [J]. J Chil Chem Soc, 2008, 53(3): 1599-1604.
    [35] Mercer M, Fraser R T M, Formation and dissociation of copper (II) nitrosyl complexes in non-aqueous solvents [J]. J Inorg Nucl Chem, 1963, 25(5): 525-534.
    [36] Syamal A, Dutta R L, Acetoacetarylamides As Chelating Ligands: Part II-Octahedral Complexes of Cobalt(II) Bisacetoacetarylamindes With Amines [J]. Indian J chem, 1968, 6(9): 520-522.
    [37] Knorr L, Synthetische Versuche mit dem Acetessigester [J]. Justus Liebig's Annalen der Chemie, 1888, 245(3): 357-382.
    [38] a) Coffey S, Thompson J K, Wilson F J, Ethyl esters ofβ-arylaminocrotonic acids [J]. J Chem Soc 1936, 856-859. b) Bergstrom F W, Heterocyclic nitrogen compounds. Part II A. Hexacyclcioc compounds: pyridine, quinoline, and isoquinoline [J]. Chem Rev, 1944, 35, 77-277. c) Hauser C R, Reynolds G A, Reactions ofβ-Keto Esters with Aromatic Amines. Syntheses of 2- and 4-Hydroxyquinoline Derivatives [J]. J Am Chem Soc, 1948, 70, 2402-2404. d) Carter P H, Katritzky A R, Plant S G, Experiments on the preparation of indolocarbazoles. Part VII. Some derivatives of5-amino-1-phenylbenzotriazole [J]. J Chem Soc, 1955, 337-340. e) Uchida M, Tabusa F, Komatsu M, et al. Studies on 2(1H)-quinolinone derivatives as gastric antiulcer active agents. Synthesis and antiulcer activity of the metabolites of 2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinon-4-yl] propionnic acid [J]. Chem Pharm Bull, 1986, 34, 4821-4824. f) Rahan M, Martin V A, Craine L, Torsional barriers in quinolinone hydroxylamine and sulfenamide derivatives [J]. J Org Chem, 1990, 55(14): 4311-4316. g) Ashrof M A, Raman P S, Studies on Cyclization of allylacetoacetanilides and Spectral Characterization of the Products [J]. J Indian Chem Soc, 1994, 71(12): 733-737. h) Hahn H, Chang K H, Lee W S, et al. Synthesis of new dihydrooxathiino[2, 3-b]quinoline [J]. J Heterocycl Chem, 1996, 33(6): 2055-2057. i) Bhalekar S M, Parab H M, Synthesis and biological activity of 2-(substituted quinolin-6-yl)-4H-1-benzopyran-4-ones [J]. Indian J Heterocycl Chem, 2007, 16(4): 337-340.
    [39] Staskun B, The Conversion of Benzoylacetanilides into 2- and 4-hydroxy quinolines [J]. J Org Chem, 1964, 29(5): 1153-1157.
    [40] Sai K K S, Gilbert T M, Klumpp D A, Knorr Cyclizations and Distonic Superelectrophiles [J]. J Org Chem, 2007, 72(25): 9761-9764.
    [41] a) Conrad M, Limpach L, synthesen von Chinolinderivaten mittelst Acetessigester [J]. Ber Dtsch Cliem Ges, 1887, 20(1): 944-948. b) Conrad M, Limpach L, Synthese von Chinolinderivaten mittelst Acetessigester [J]. Ber Dtsch Cliem Ges, 1891, 24(2): 2990-2992. c) Manske R H, The Chemistry of Quinolines [J]. Chem Rev, 1942, 30(1): 113-144. d) Reitsema R H, The Chemistry of 4-Hydroxyquinolines [J]. Chem Rev, 1948, 43(1): 43-68. e) Vasilyev A V, Solov'eva N P, Podhaluzina N Ya, et al. A Convient Method For The Preparation of Linearfuroquinolin-2-Ones [J]. Chemistry of Heterocyclic Compounds, 2003, 39(4): 534-538.
    [42] a) Bunnett J F, Hrutfiord B F, Williamson S M, 3-Acetyloxindole [J]. Organic Syntheses Coll, 1973, 5, 12-16; 1960, 40, 1-4. b) Bunnett J F, Hrutfiord B F, Ring Closure via Aryne Intermediates: A General Principle of Synthesis [J]. J Am Chem Soc, 1961, 83(7): 1691-1697.
    [43] Setsune J, Matsukawa K, Kitao T, Copper (I)-Promoted Aromatic Nucleophilic-Substitution Reactions of Ortho-Bromoaniline Derivatives with Active Methylene Carbanions [J]. Nippon Kagaku Kaishi, 1985, 3, 438-441.
    [44] Hirao K, Mohri K, Yonemitsu O, et al. New route to 2-substituted indoles by pyrolysis of N-acylacetylphenylhydroxylamines [J]. Tetrahedron Lett, 1992, 33(11): 1459-1462.
    [45] Lu B, Ma D, Assembly of 3-Acyloxindoles via CuI/L-Proline-Catalyzed Intramolecular Arylation ofβ-Keto Amides [J]. Org Lett, 2006, 8(26): 6115-6118.
    [46] Chen Y, Xie X, Ma D, Facile Access to Polysubstituted Indoles via a Cascade Cu-Catalyzed Arylation?Condensation Process [J]. J Org Chem, 2007, 72(24): 9329-9334.
    [47] a) Boyer J, Corriu R J P, Perz R, et al. Reduction Selective de Composes Carbonyles Par Catalyse Heterogene a La Surface Des Sels [J]. Tetrahedron, 1981, 37(11): 2165-2171. b) Bose A K, Manhas M S, Sahu D P, et al. Stereospecific cyclization ofβ-hydroxy aryl amides toβ-lactams [J]. Can J Chem, 1984, 62(11): 2498-2505.
    [48] Schmidt G F, Reiner J, Sibs-Fink C, Katalytische Hydrierung und Hydrokupplung von Acetessigs?ureamiden und -estem mit dem Clusteranion [H3Ru4(CO)12]- als Katalysator [J]. J Organomet Chem, 1988, 355(1-3): 379-384.
    [49] Hazai L, Deák G, Condensed Heterocyclic Lactams. I. Study on the Cyclization Methods Resulting in 4-Aryl-3,4-dihydroquinolin-2(1H)-ones [J]. J Heterocyclic Chem, 1991, 28(4): 919-922.
    [50] Singh J, Kad G L, Sharma M, et al. Chemoselective Carbonyl Reduction of Functionalised Aldehydes and Ketones to Alcohols with Sodium Dithionite [J]. Synth Commun, 1998, 28(12): 2253-2257.
    [51] Mengel A, Reiser O, Around and beyond Cram’s Rule [J]. Chem Rev, 1999, 99(5): 1191-1223.
    [52] Bartoli G, Bosco M, Marcantoni E, et al. Highly Stereoselective Reduction ofβ-Keto Amides: The First General and Efficient Approach to N-mono- and non-Substituted anti-α-Alkylβ-HydroxyAmides [J]. Synlett, 2004, (1): 73-76.
    [53] Bette V, Mortreux A, Savoia D, et al. [Zinc-Diamine]-Catalyzed Hydrosilylation of Ketones in Methanol. New Developments and Mechanistic Insights [J]. Adv Synth Catal, 2005, 347(2-3): 289-302.
    [54] Xiong T, Zhang Q, Zhang Z, et al. A Divergent Synthesis ofγ-Iminolactones, Dihydroquinolin-2-ones, andγ-Lactames fromβ-Hydroxymethylcyclopropanylamides [J]. J Org Chem, 2007, 72(21): 8005-8009.
    [55] General reviews: a) Deal B S, Ridley D D, Simpson G W, Asymmetric Reduction of Carbonyl Compounds by Yeast. II Preparation of Optically Activeα- andβ-Hydroxy Carboxylic Acid Derivatives [J]. Aust J Chem, 1976, 29(11): 2459-2467. b) Santaniello E, Ferraboschi P, Grisenti P, et al. The Biocatalytic Approach to the Preparation of Enantiomerically Pure Chiral Building Blocks [J]. Chem Rev, 1992, 92(5): 1071-1140. c) Servi S, Baker`s Yeast as a Reagent in Organic Synthesis [J]. Synthesis, 1990, (2): 1-25. d) Csuk R, Glanzer B, Baker's Yeast Mediated Transformations in Organic Chemistry [J]. Chem Rev, 1991, 91(1): 49-97.
    [56] Keto ester reviews: Nakamura K, Kawai Y, Nakajima N, et al. Stereochemical Control of Microbial Reduction. 17. A Method for Controlling the Enantioselectivity of Reductions with Bakers’Yeast [J]. J Org Chem, 1991, 56(15): 4778-4783.
    [57] Diketone reviews: a) Bolte J, Gourcy J G, Veschambre H, Utilisation des Methodes Biologiques Pour La Preparation de Synthons Chiraux: 1-Reduction deβ-Dicetones Acycliques Par Saccharomvces Cerevisiae (Levure de Boulanger) [J]. Tetrahedron Lett, 1986, 27(5): 565-568. b) Ohta H, Ozaki K, Tsuchihashi G I, Asymmetric Synthesis of (1S, 3S, 5R)-1, 3-Dimethyl-2,9-dioxabicyclo [3.3.1]nonane Mediated by Fermenting Bakers` Yeast [J]. Chem Lett, 1987, (11): 2225-2226. c) Chenevert R, Thiboutot S, Enantiospecific synthesis of optically pure (S)-(+)-3-hydroxy-1-phenyl-1-butanone by bakers' yeast reduction [J]. Can J Chem, 1986, 64(8): 1599-1601. d) Kawai M, Tajima K, Mizuno S, et al. Yeast-Mediated Reduction of N-Substituted Acetoacetamides. Improvement of Conversion by Immobilization [J]. Bull Chem Soc Jpn, 1988, 61(8): 3014-3016.
    [58] Aldehyde and ketone reviews: a) MacLeod R, Prosser H, Fikentscher L, et al. Asymmetric Reductions. XII. Stereoselective Ketone Reductions by Fermenting Yeast [J]. Biochemistry, 1964, 3(6): 838-846. b) Kayser M M, Yang Y, Mihovilovic M D, et al. Baker`s yeast-catalyzed synthesis of optically pure 4-tert-butyl-3-hydroxy beta-lactam cis-(3R,4S) and trans-(3R,4R) diastereomers [J]. Can J Chem, 2002, 80(7): 796-800.
    [59] Saxon R E, Leisch H, Hudlicky T, Preliminary investigation of the yeast-mediated reduction ofβ-keto amides derived from cyclic amines as potential resolution methodology [J]. Tetrahedron: Asymmetry, 2008, 19(6): 672-681.
    [60] Ducker J W, Gunter M J, The Reaction of Malononitrile with Someβ-Dicarbonyl Compounds [J]. Austr J Chem, 1975, 28(10): 581-590.
    [61] Zaleska B, Slusarska B, Knoevenagel Reaction of malononitrile and its“dimer”withβ-ketoanilides [J]. Monatshefte fuer Chemie, 1981, 112(10): 1187-1194.
    [62] a) Habashi A, Ibraheim N S, yridin S M, The Chemistry and Synthetic Potentialities ofβ-Ketoanilides: Reaction of Ethyl Cyanoaceta Hitmβ-Ketoanilides [J]. Heterocycles, 1986, 24(9): 2463-2466. b) Krivokolysko S G, Dyachenko V D, Litvinov V P, A convenient method for the synthesis of substituted 2-alkylthio-3-cyano-4,6-dimethyl-5-phenylcarbamoyl-1,4-dihydropyridines [J]. Chem Heterocycl Compd, 2000, 36(3): 284-286. c) Wardakhan W W, Elmegeed G A, Manhi F M, Utility of 2-Aminothiophene-3-carboxamide in the Synthesis of Biologically Active Fused Heterocyclic Derivatives [J]. Phosphorus Sulfur Silicon Relat Elem, 2005, 180(1): 125-140.
    [63] Liang F, Cheng X, Liu J, et al. Efficient three-component one-pot synthesis of fully substituted 130 yridine-2(1H)-ones via tandem Knoevenagel condensation-ring-opening of cyclopropane-intramolecular cyclization [J]. Chem Commun, 2009, (24): 3636-3638.
    [64] a) Chaudhury C, Siddhanta S K, Kinetics and Mechanism of the Reaction Between cis-[Coen2(H2O)2]3+ ion and Salicylic-acid in 3-percent Ethanol-Water Mixture [J]. J Indian Chem Soc, 1990, 67(6): 516-518. b) Lee K, Kwon H, Kim B, et al. Synthesis of Pyrazolo-fused Hetercyles by a Tandem Appel's Dehydration/Electrocylization Methodolgy [J]. J Heterocyclic Chem, 1997, 34(6): 1795-1799. c) Tang J, Shewchuk L M, Sato H, et al. Anilinopyrazole as selective CDK2 inhibitors: design, synthesis, biological evaluation, and x-ray crystallographic analysis [J]. Bioorg Med Chem Lett, 2003, 13(18): 2985-2988. d) Dodd D S, Martinez R L, One-pot synthesis of 5-(substituted-amino)pyrazoles [J]. Tetrahedron Lett, 2004, 45(22): 4265-4267. e) Kaleta Z, Tárkányi G, G?m?ryá, et al. Synthesis and Application of a Fluorous Lawesson's Reagent: Convenient Chromatography-Free Product Purification [J]. Org Lett, 2006, 8(6): 1093-1095. f) Teng M, Zhu J, Johnson M D, et al. Structure-Based Design of (5-Arylamino-2H-pyrazol-3-yl)-biphenyl-2‘,4‘-diols as Novel and Potent Human CHK1 Inhibitors [J]. J Med Chem, 2007, 50(22): 5253-5256.
    [65] Tiwari N, Dwivedi B, Nizamuddin, Synthesis of some pyrazoline and isoxazolin derivatives as possible fungicides [J]. Boll Chim Farm, 1989, 128(11): 332-335.
    [66] Atechian S, Nock N, Norcross R D, et al. New vistas in quinoline synthesis [J]. Tetrahedron, 2007, 63(13): 2811-2823.
    [67] Friedl?nder P, Ueber o-Amidobenzaldehyd [J]. Ber. 1882, 15(2): 2572-2575.
    [68] a) Reddy K R, Mogilaiah K, Sreenivasule B, Substituted-1,8-naphthyridines. 4. Synthesis of 2-methyl-n-aryl-1,8-naphthyridine-3-carboxamides [J]. J Indian Chem Soc, 1987, 64(3): 193-194. b) Mogilaiah K, Reddy C S, An Efficient Friedlander Condensation Using Sodium Fluoride as Catalyst in the Solid State [J]. Synth Commun, 2003, 33(18): 3131-3134. c) Reddy Y T, Reddy P R, Reddy M N, et al. Sulfamic Acid: An Efficient, Cost-Effective, and Reusable Solid Acid Catalyst for the Synthesis of 1,8-Naphthyridines Under Solvent-Free Heating and Microwave Irradiation [J].Synth Commun, 2008, 38(18): 3201-3207. d) Marco-Contelles J, Perez-Mayoral E, Samadi A, Recent Advances in the Friedlander Reaction [J]. Chem Rev, 2009, 109(6): 2652-2671.
    [69] Bulow C, King E, Beitrage zur Kenntnis des Acetessiganilids [J]. Ann Chem, 1924, 439(1): 211-232.
    [70] a) Hodgkinson A J, Staskun B, Conversion of 2,2-dichloroacetoacetanilides into 4-(hydroxymethyl)-2(1H)-quinolones [J]. J Org Chem, 1969, 34(6): 1709-1713. b) Garanti L, Sala A, Zecchi G, Synthesis of Pyrrolo[3,4-c]Pyrazole Derivatives By Intramolecular Cycloadditon of Nitrile Imines [J]. Synth Commun, 1976, 6(4): 269-275. c) Hahn H, Chang K H, Nam K D, Construction of Dihydro-1,4-dioxins: Synthesis of Dihydro-1,4-dioxin-3-carboxanilides [J]. Bull Korean Chem Soc, 2001, 22(2): 149-153.
    [71] Fragala J, Dofek R, Czechoslovakian Patent 170709; Chem Abstr, 1978, 89, 6126e.
    [72] Keller R B, Laforge R A, Possible sedative agents. I. N-substituted piperazines [J]. J Am Pharm Assoc, 1952, 41(6): 301-302.
    [73] a) Mehta C H, Patel G H, Bromination of 2,4-substituted quinoline derivatives [J]. Curr Sci, 1961, 30(1): 15. b) Chick F, Wilsmore N T M, CCX.-The Polymerisation of Keten. Cyclobutan-1:3-dione (“Acetylketen”). [J]. J Chem Soc, 1910, 97, 1978-2000.
    [74] a) Hasegawa M, Sur la synthese d'alcool lepidylique [J]. Pharm Bull, 1953, 1(1): 50-52. b) Cook D J, Bowen R E, Sorter P, et al. Bromination Studies of Alkyl-Substituted 2-Pyridones and 2-Quinolones [J]. J Org Chem, 1961, 26(12): 4949-4950. c) Chudgar R J, Trivedi K N, Bromination of Acetoacetanilide : A Revision of Structure [J]. Curr Sci, 1965, 34, 560. d) Ali M I, Abou-State M A, Hassan N M, .gamma.-Bromo- and .gamma.-iodoacetoacetanilides [J]. J Chem Eng Data, 1972, 17(1): 106-108. e) Shawali A S, Mansour A K, Abbas I, et al. Tautomerism in Analogs of Potential Antidiabetics-5-Arylazo-4-Hydoxy-i-Arylpyrazole-3-Carboxanilides [J]. Indian J Chem, 1974, 12(3): 298-300.
    [75] a) Ali M I, Abou-State M A, Hassan N M,α-Bromoacetoacetanilides: A Route to 3-bromo-2-quinolines [J]. Indian J Chem, 1973, 11(1): 4-6. b) Shcarpf W G, U. S. Patent, 3852351,Chem Abstr, 1975, 82, 170110.
    [76] a) Lakouraj M M, Tajbakhsh M, Ramzanian-Lehmali F, et al. Ionene supported peroxodisulfates: Polymeric reagents for the oxidative deprotection of TMS and THP ethers and oxidative cleavage of the C=N bond in water [J]. Monatsh Chem, 2008, 139(5): 543-548. b) Pravst I, Zupan M, Stavber S, Halogenation of ketones with N-halosuccinimides under solvent-free reaction conditions [J]. Tetrahedron, 2008, 64(22): 5191-5199.
    [77] Avasare M D, Shah M L, Sheth N M, Formation of the iodo derivatives of substituted cyanacet- and acetoacetamide [J]. J Indian Chem Soc, 1952, 29(9): 709-710.
    [78] Stephen A, Schulz G, Reinshagen H, Synthesen von Dijodacetamiden [J]. Ann Chem, 1974, (3): 363-368
    [79] Naik K G, Trivedi R K, Mankad B N, Relations between chemical activity and absorption in the ultraviolet of certain organic molecules VI. Interaction of nitrosyl chloride on substituted amides of acetoacetic acid [J]. J Indian Chem Soc, 1943, 20, 384-388.
    [80] Pierce J B, Fanning R J, Davis R A, Synthesis and fungicidal activity of N, S-Substitutedα-thio-β-aminocrotonanilides [J]. Can J Chem, 1975, 53(9): 1327-1332.
    [81] a) Staskun B, Meltzer P C, The role of nuclear halogen in the cyclisation of benzoylacetanilides to indeno[1,2,3-de]quinolinones [J]. Tetrahedron, 1977, 33(18): 2429-2432. b) Abdelhamid A O, Hassaneen H M, Shawali A S, A Facile Synthesis of 1, 3,4-Selenadiazolo[2, 3-b]quinazoline Derivatives via Japp-Klingemann Reaction [J]. J Heterocyclic Chem, 1983, 20(3): 719-721. c) Frohberg P, Drutkowski G, Wanger C, Synthesis and Structural Assignment of Oxanilo-N-arylhydrazonoyl Chlorides [J]. Eur J Org Chem, 2002, (10): 1654-1663. d) Shawali A S, Abdallah M A, Mosselhi M A N, et al. A facile one-pot regioselective synthesis of [1,2,4]triazolo[4,3-a]5(1H)-pyrimidinones via tandem Japp-Klingemann, Smiles rearrangement, and cyclization reactions [J]. Heteroat Chem, 2002, 13(2): 136-140. e) Drutkowski G, Donner C, Schulze I, Derivatives of arylhydrazonic acids. Part 2: A facile approach to novel 4,5-dihydro-1H-1,2,4-triazoles via cyclization of amidrazones [J]. Tetrahedron, 2002, 58(26): 5317-5326. f) Elwan N M, Hassaneen H M, Hassaneen H M, Synthesis and reactions of indane-1, 3-dione-2-thiocarboxanilides with hydrazonoyl halides and active chloromethylene compounds [J]. Heteroat Chem, 2002, 13(7): 585-591.
    [82] Anwar et al. Some reactions of 4-cholorquinazoline, 6-nitro- and 6-amino- 4(3H)-quinazolones [J]. Rev Roum Chim, 1981, 26(11-12): 1469-1478.
    [83] Metwally M A, Mogieb M A, The use of malononitrile in the synthesis of novel alpha-amino nitriles [J]. Synth Commun, 2001, 31(12): 1901-1905.
    [84] Japp F R, Klingemann F, Ueber Benzolazo- und Benzolhydrazofetts?uren [J]. Ber Dtsch Chem Ges, 1887, 20(2): 2942-2944, Zur Kenntniss der Benzolazo- und Benzolhydrazopropions?uren, 3284-3286, Ueber sogenannte“gemischte Azoverbindungen”3398-3401.
    [85] a) Shawali A S, Párkányi C, Hydrazidoyl halides in the synthesis of heterocycles [J]. J Heterocyclic Chem, 1980, 17(5): 833-854. b) Shawali A S, Reactions of heterocyclic compounds with nitrilimines and their precursors [J]. Chem Rev, 1993, 93(8): 2731-2777. c) Broggini G, Molteni G, Zecchi G, Intramolecular reactions of nitrilimines as a fruitful source of heterocycles [J]. Heterocycles, 1998, 47(1): 541-557. d) A. S. Shawali, M. A. Abdallah, The Chemistry of Heterocyclic Hydrazonoyl Halides [J]. Adv Heterocycl Chemistry, 1995, 63, 277-338.
    [86] Ibrahim M K A, Elghandour A H, Abou-hadeed K, Reactions with Heterocyclic diazonium salts: synthesis of several new thiazolo[2, 3-c]as-triazines and thiazolo[2, 3-c]1,2,4-triazole derivatives [J]. Phosphorus Sulfur Silicon Relat Elem, 1991, 60(1-2): 119-123.
    [87] Petra F, Guntram D, Christoph W, et al. Structure elucidation of N-aryl-2-chloro-3-oxobutanamides with respect to intra- and intermolecular hydrogen bonding [J]. J Chem Res (S), 2002, (1): 13-14.
    [88] Frohberg P, Wagner C, Meiera R, et al. Derivatives of arylhydrazonic acids. Part 3: Stereochemicalrearrangement of Z-oxanilo-N1-dialkyl-N2-arylamidrazones [J]. Tetrahedron, 2006, 62(25): 6050-6060.
    [89] a) Sharaf M A F, Ezat E H M, Hammouda H A A, Reactions with 4,5-di (p-Chlorophenyl)Imidazolidine-2-Thione [J]. Phosphorus Sulfur Silicon Relat Elem, 1994, 92(1-4): 19-27. b) Abdallah M A, Mosselhi M A N, Riyadh S M, et al. Novel in situ Formation and Rearrangement of Thiohydrazonate Esters [J]. J Chem Res, Synop, 1998, (11): 700-701. c) Shawali A S, Ali N A H, Ali A S, et al. Synthesis and biological activity of new functionalised cyclohepta[4,5]-thieno[2, 3-d][1,2,4] triazolo[4,3-a]pyrimidin-5-ones [J]. Journal of Chemical Research, 2006, (5): 327-332. d) Shawali A S, Mahran A M, Nada A A, Synthesis and antimicrobial activity of new functionalized derivatives of [1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one [J]. Heteroat Chem, 2007, 18(4): 393-398.
    [90] Han M, Nam K, Hahn H, et al. Unexpected formation of new bicyclicγ-lactams by dimerization of α-chloroacetoacetanilides [J]. Tetrahedron Lett, 2008, 49 (35): 5217-5219.
    [91] a) Es T V, Staskun B, A Novel Synthesis of Indeno[1.2.3-de]quinolin-2-ones [J]. Tetrahedron, 1969, 25(24): 5941-5951. b) Staskun B, Novel Intramolecular Two-Substituent Migration Accompanying Indenoquinolone Formation [J]. Tetrahedron, 1972, 28(19): 5069-5079. c) Meltzer P C, Staskun B, Double Migration of Methyl and Bromine Accompanying Indeno[1,2,3-de]Quinolinone Formation [J]. Tetrahedron, 1977, 33(22): 2965-2967. d) Denner L, Marais J L C, Staskun B, Intrmolecular, Two-Substituent. Consecutive and Sequential (conseq) Migrations: X-Ray Structure of an Indeno[1,2,3-de]quinoline Product [J]. Tetrahedron, 1985, 41(23): 5615-5618. e) Yamashkin S A, Romanova G A, Romanova I S, et al. Synthesis of Functionally Substituted Pyrrolo[2, 3-g]- and Pyrrolo[3, 2-f]quinolines from 5-Amino-2-phenyl- and 5-Amino-1-methyl-2-phenylindoles [J]. Chem Heterocycl Compd, 2003, 39(9): 1188-1196. f) Schlosser M, Cottet F, Heiss C, et al. Relay Propagation of Crowding: The Trifluoromethyl Group as Both an Emitter and Transmitter of Steric Pressure [J]. Eur J Org Chem, 2006, (3): 729-734. g) Bonnefous C, Payne J E, Roppe J, et al. Discovery of Inducible Nitric Oxide Synthase (iNOS) Inhibitor Development Candidate KD7332, Part 1: Identification of a Novel, Potent, and Selective Series of Quinolinone iNOS Dimerization Inhibitors that are Orally Active in Rodent Pain Models [J]. J Med Chem, 2009, 52(9): 3047-3062.
    [92] a) Mah H D, Lee W S, Rearrangement of 1, 3-Thiazolidine Sulfoxides [J]. J Heterocycl Chem, 1989, 26(5): 1447-1451. b) Malle E, Stadlbauer W, Ostermann G, et al. Synthesis of new 2-, 3-, and 4-substituted azidoquinolines: inhibitors of human blood platelet aggregation in vitro [J]. Eur J Med Chem, 1990, 25(2): 137-142. c) Ibrahim M K A, Elghandour A H, Abou-hadeed K, Reactions With Heterocyclic Diazonium Salts: Synthesis of Several New Thiazolo[2, 3-c]as-Triazines and Thiazolo [2, 3-c]1,2,4-Triazole Derivatives [J]. Phosphorus Sulfur Silicon Relat Elem, 1991, 63(1-2): 119-129. d) Uneme H, Mitsudera H, Yamada J, et al. Synthesis and Biological Activity of 3- and 4-Aminomethyl-1, 2-dithiolanes [J]. Bioscience, Biotechnology, and Biochemistry, 1992, 56(8): 1293-1299. e) Mohareb R M, Zohdi H F, Shyif S M, et al. Heterocyclic Synthesis with Isothiocyanates: An Expeditious Synthetic Route for Polyfunctionally Substituted 3-(ThiazolZylidene) pyridines and Their Fused Derivatives [J]. Tetrahedron, 1994, 50(19): 5807-5820. f) Sherif S M, A convenient synthesis of polyfunctionally substituted 2-(arolyl-(arylsulfonyl)-methylene)-2,3-dihydrothiazoles and -thiazolidin-4-ones and their fused derivatives [J]. Monatshefte fuer Chemie, 1996, 127(5): 557-568. g) Miyadera A, Satoh K, Imura A, Efficient Synthesis of a Key Intermediate of DV-7751 via Optical Resolution or Microbial Reduction [J]. Chem Pharm Bull, 2000, 48(4): 563-565. h) Hahn H, Shin S, Mah H, Synthesis of 2-Benzylimino-1, 3-thiazolines and Their Structure Determination [J]. J Korean Chem Soc, 2001, 45(6): 612-615. i) Lee J T, Mah H, Nam K D, Syntheses of 1, 3-Imidazolin-2-Ones and 1, 3-Imidazolin-2-Thiones from New Building Blocks,γ-Aminoacetoacetanilides [J]. J Comb Chem, 2008, 10(6): 803-806.
    [93] a) Benary E, Kerckhoff W,über die Acylierung vonβ-Amino-crotons?ure-anilid [J]. Berichte der Deutschen Chemischen Gesellschaft [Abteilung] B: Abhandlungen, 1926, 59B(10): 2548-2551. b)Pillai A D, Rathod P D, Xavier F P, et al. Tetra substituted thiophenes as anti-inflammatory agents: Exploitation of analogue-based drug design [J]. Bioorg Med Chem, 2005, 13(24): 6685-6692. c) Mohareb R M,Phenyl isothiocyanate in heterocyclic synthesis: Novel synthesis of thiazoles, thieno[2, 3-b]pyridine, thiophene and thieno[3, 2-c]pyridazine derivatives [J]. Monatshefte fuer Chemie, 1992, 123(4): 341-347.
    [94] Pillai A D, Rani S, Rathod P D, et al. QSAR studies on some thiophene analogs as anti-inflammatory agents: enhancement of activity by electronic parameters and its utilization for chemical lead optimization [J]. Bioorg Med Chem, 2005, 13(4): 1275-1283.
    [95] Ripin D H, Evans D A,“PKa's of inorganic and oxo-acids”[DB/OL] chem 206
    [96] a) Searles A L, Lindwall H G, The Synthesis of 3-Alkyl-4-methylquinolines [J]. J Am Chem Soc, 1946, 68(6): 988-990. b) Searles A L, Kelly R J, The Preparation and Cyclization of Substituted Acetoacetanilides [J]. J Am Chem Soc, 1955, 77(22): 6075-6076. c) Duff T, James J P, Müller-Bunz H, Synthesis and X-Ray Crystal Structure Determinations of Pyrrolidine-2,4-Diones, 2-Iminopyrrolidin-5-Ones and 1, 3-Oxazine-2,4-Diones Derived From Acetoacetanilides [J]. Heterocycles, 2006, 68(3): 465-474. d) Zhou C, Che C, Highly Efficient Au(I)-Catalyzed Intramolecular Addition ofβ-Ketoamide to Unactivated Alkenes [J]. J Am Chem Soc, 2007, 129(18): 5828-5829.
    [97] O'Halloran N, James J P, Downey C A, Inter- and Intra-Molecular Cyclization Reactions of Azoacetates Derived from Aryl Hydrazones of Ethyl Acetoacetate and Acetoacetanilides [J]. Heterocycles, 2008, 75(11): 2681-2701.
    [98] Hahn H G, Lee W S, Formation of a thiirane and a 1, 3-oxathiolane S-oxide from thermolysis of a thiosulfinic S-ester [J]. J Chem Res, Synop, 1995, (3): 86-87.
    [99] Arcadi A, Cacchi S, Fabrizi G, et al. Highly substituted furans from 2-propynyl-1, 3-dicarbonyls and organic halides or triflates via the oxypalladation-reductive elimination domino reaction [J]. Tetrahedron, 2003, 59(25): 4661-4671.
    [100] a) Faming Zhuanli Shenqing Gongkai Shuomingshu, 101307009, 19 Nov 2008. b) PCT Int. Appl., 2009144736, 03 Dec 2009. c) PCT Int. Appl., 2003004457, 16 Jan 2003. d) Faming Zhuanli Shenqing Gongkai Shuomingshu, 1299811, 20 Jun 2001.
    [101] a) U. S. Pat. Appl. Publ., 2005261354, 24 Nov 2005. b) ?hrlein R, Baisch G, Chemo-Enzymatic Approach to Statin Side-Chain Building Blocks [J]. Adv Synth Catal, 2003, 345(6-7): 713-715. c) PCT Int. Appl., 2001072706, 04 Oct 2001. d) PCT Int. Appl., 8907598, 24 Aug 1989. e) Fekner Z, Digital Simulation of Cyclic Chronopotentiometry and Cyclic Reciprocal Derivative Chronopotentiometry for Linear Adsorption Systems [J]. Collect Czech Chem Commun, 2008, 73(2): 229-246. f) Sagyam R R, Padi P R, Ghanta M R, et al. An efficient synthesis of highly substituted pyrrole and bis pyrrole derivatives [J]. J Heterocycl Chem, 2007, 44(4): 923-926. j) Tararov V I, Andrushko N, Andrushko V, et al.Synthesis of the Chiral Side Chain of Statins - Lactone versus Lactol Pathway [J]. Eur J Org Chem, 2006, (24): 5543-5550.
    [102] Zaleska B, Lis S, Cerium (IV) Mediated Oxidative Dimerization of 3-oxoacid Anilides And Their Cyclizations [J]. Synth Commun, 2001, 31(2): 189-197.
    [103] Celerier J P, Haddad M, Jacoby D, et al. Heterocyclization of Primary Amines With Highly Activated Cyclopropanes: A New Route to Isoretronecanol [J]. Tetrahedron Lett, 1987, 28(52): 6597-6600.
    [104] a) Pan W, Dong D, Wang K, et al. Efficient One-Pot Synthesis of Highly Substituted Pyridin-2(1H)-ones via the Vilsmeier-Haack Reaction of 1-Acetyl,1-Carbamoyl Cyclopropanes [J]. Org Lett, 2007, 9(12): 2421-2423. b) Xiang D, Wang K, Liang Y, A Facile and Efficient Synthesis of Polyfunctionalized Pyridin-2(1H)-ones fromβ-Oxo Amides under Vilsmeier Conditions [J]. Org Lett, 2008, 10(2): 345-348.
    [105] Xiang D, Yang Y, R Zhang, et al. Vilsmeier-Haack Reactions of 2-Arylamino-3-acetyl-5,6-dihydro-4H-pyrans toward the Synthesis of Highly SubstitutedPyridin-2(1H)-ones [J]. J Org Chem, 2007, 72(22): 8593-8596.
    [106] Zhang R, Liang Y, Zhou G, Ring-Enlargement of Dimethylaminopropenoyl Cyclopropanes: An Efficient Route to Substituted 2,3-Dihydrofurans [J]. J Org Chem, 2008, 73(20): 8089-8092.
    [107] a)Wang K, Xiang D, Liu J, Efficient and Divergent Synthesis of Fully Substituted 1H-Pyrazoles and Isoxazoles from Cyclopropyl Oximes [J]. Org Lett, 2008, 10(9): 1691-1694. b)Wang K, Fu X, Liu J, et al. PIFA-Mediated Oxidative Cyclization of 1-Carbamoyl-1-oximylcycloalkanes: Synthesis of Spiro-Fused Pyrazolin-5-one N-Oxides [J]. Org Lett, 2009, 11(4): 1015-1018.
    [108] Livi O, Ferrarini P L, Tonetti I, Synthesis and biological activity of 1,2,3-triazol-1,8-naphthyridines [J]. Farmaco, Edizione Scientifica, 1976, 31(11): 797-808.
    [109] Maryanoff B E, Simon E J, Gioannini T, et al. Potential affinity labels for the opiate receptor based on fentanyl and related compounds [J]. J Med Chem, 1982, 25(8): 913-919.
    [110] a) Etkin N, Babu S D, Fooks C J, et al. Preparation of 3-acetyl-2-hydroxyindoles via rhodium carbenoid aromatic carbon-hydrogen insertion [J]. J Org Chem, 1990, 55(3): 1093-1096. b) Gerstenberger B S, Lin J, Mimieux Y S, et al. Structural Characterization of an Enantiomerically Pure Amino Acid Imidazolide and Direct Formation of theβ-Lactam Nucleus from anα-Amino Acid [J]. Org Lett, 2008, 10(3): 369-372.
    [111] a) Doyle M P, Shanklin M S, Pho H Q, et al. Rhodium(II) acetate and Nafion-H catalyzed decomposition of N-aryldiazoamides. Efficient synthesis of 2(3H)-indolinones [J]. J Org Chem, 1988, 53(5): 1017-1022. b) Wee A G H, Liu B, Zhang L, Dirhodium Tetraacetate Catalyzed Carbon-Hydrogen Insertion Reaction in N-Substitutedα-Carbomethoxy-α-diazoacetanilides and Structural Analogues. Substituent and Conformational Effects [J]. J Org Chem, 1992, 57(16): 4404-4414. c) Himbert G, Ruppmich M, A Wagner-Meerwein Rearrangement as Intermediate Step in the Formation of Dihydroindolones from 2-Diazoacetoacetanilides [J]. Angew Chem Int Ed, 1990, 29(1): 86-87. d) Venkatesan H, Davis M C, Altas Y, et al. Total Synthesis of SR 121463 A, a Highly Potent and Selective Vasopressin V2 Receptor Antagonist [J]. J Org Chem, 2001, 66(11): 3653-3661.
    [112] Zhang H, Ryono D E, Devasthale P, et al. Design, synthesis and structure-activity relationships of azole acids as novel, potent dual PPARα/γagonists [J]. Bioorg Med Chem Lett, 2009, 19(5): 1451-1456.
    [113] Doyle M P, Pieters R J, Taunton J, et al. Synthesis of nitrogen-containing polycycles via rhodium(II)-induced cyclization-cycloaddition and insertion reactions of N-(diazoacetoacetyl)amides. Conformational control of reaction selectivity [J]. J Org Chem, 1991, 56(2): 820-829.
    [114] Muroni D, Saba A, Quinoline ?-lactams by Rh(II)-catalyzed highly stereoselective carbon-hydrogen intramolecular insertion [J]. Arkivoc, 2005, (13): 1-7.
    [115] Lee S, Yoshida K, Matsushita H, et al. N?H Insertion Reactions of Primary Ureas: The Synthesis of Highly Substituted Imidazolones and Imidazoles from Diazocarbonyls [J]. J Org Chem, 2004, 69(25): 8829-8835.
    [116] Kelber C. The effect of sulphuric carbonic acid and atzaki on acetophenone [J]. Berichte Der Deutschen Chemischen Gesellschaft, 1910, 43(2): 1252-1259.
    [117] For reviews, see: a) Dieter R K, Alpha-Oxo Ketene Dithioacetals and Related Compounds-Versatile 3-Carbon Synthons [J]. Tetrahedron, 1986, 42(12): 3029-3096. b) Junjappa H, Ila H, Asokan C V,α-Oxoketene-S,S-, N,S- and N,N-acetals: Versatile intermediates in organic synthesis [J]. Tetrahedron, 1990, 46(16): 5423-5506. c) Kolb M, Ketene Dithioacetals in Organic Synthesis: Recent Developments [J]. Synthesis, 1990, (3): 171-190.
    [118] Rudorf W D, Schierhorn A, Augustin M, Reaktionen von o-halogenacetophenonen mit schwefelkohlenst off und phenylisothiocyanat [J]. Tetrahedron, 1979, 35(4): 551-556.
    [119] Huang J, Lu Y, Qiu B, et al. One-Pot Synthesis of Substituted Isothiazol-3(2H)-ones: Intramolecular Annulation of a-Carbamoyl Ketene-S,S-acetals via PIFA-Mediated N-S Bond Formation [J]. Synthesis, 2007, (18): 2791-2796.
    [120] a) Bi X, Dong D, Liu Q, et al. [5+1] Annulation: A Synthetic Strategy for Highly Substituted Phenols and Cyclohexenones [J]. J Am Chem Soc, 2005, 127(13): 4578-4579. b) Dong D, Bi X, Liu Q, et al. [5C+1N] Annulation: a novel synthetic strategy for functionalized 2,3-dihydro-4-pyridones [J]. Chem Commun, 2005, (28): 3580-3582. c) Bi X, Dong D, Li Y, et al. [5C+1S] Annulation: A Facile and Efficient Synthetic Route toward Functionalized 2,3-Dihydrothiopyran-4-ones [J]. J Org Chem, 2005, 70(26): 10886-10889.
    [121] Zhao L, Liang F, Bi X, et al. Efficient Synthesis of Highly Functionalized Dihydropyrido[2, 3-d]pyrimidines by a Double Annulation Strategy from r-Alkenoyl-r-carbamoyl Ketene-(S,S)-acetals [J]. J Org Chem, 2006, 71(3): 1094-1098.
    [122] Li Y, Liang F, Bi X, et al. Intramolecular Thia-anti-Michael Addition of a Sulfur Anion to Enones: A Regiospecific Approach to Multisubstituted Thiophene Derivatives [J]. J Org Chem, 2006, 71(21): 8006-8010.
    [123] Bi X, Zhang J, Liu Q, et al. Intramolecular Aza-Anti-Michael Addition of an Amide Anion to Enones: A Regiospecific Approach to Tetramic Acid Derivatives [J]. Adv Synth Catal, 2007, 349(14-15): 2301-2306.
    [124] Liu J, Liang F, Liu Q, et al. BF3·Et2O-Mediated C-C Bond-forming Reaction ofα-Hydroxyketene-(S,S)-acetals with Active Methylene Compounds and its Application in the Synthesis of Substituted 3,4-Dihydro-2-pyridones [J]. Synlett, 2007, (1): 156-160.
    [125] Hassaneen H M, Mousa H A H, Abed N M, Chemistry of C-Heteroarylhydrazidoyl Halides. Synthesis and Reactions of N-(p-Nitrophenl)-C-(2-Thienyl)-Formohydrazisoyl Halides [J]. Heterocycles, 1988, 27(3): 695-706.
    [126] a) Khalil Z H, Anni A S, Synthesis of New Anildo-pyrazoline And Isoxazoline Derivatives [J]. J Indian Chem Soc, 1981, 58(2): 168-170. b) Hassaneen H M, Mousa H A H, Shawali A S, Chemistry of C-Heteroarylnitrilimines. Synthesis and Cycloaddition Reactions of N-Phenyl-C-(2-thienyl)nitrilimine [J]. J Heterocycl Chem, 1987, 24(6): 1665-1668. c) Zohdi H F, Khalifa F A, Abdelhamid A O, et al. Heterocycles From Nitrile Oxides-Synthesis of Some New Isoxazoles, Pyrrolo[3,4-d]isoxazoles And Isoxazolo[3,4-d]-pyridazines [J]. J Chem Res, Synop, 1991, 11, 322-323. d) Calderone V, Fiamingo F L, Amato G, 1,2,3-Triazol-carboxanilides and 1,2,3-triazol-(N-benzyl)-carboxamides as BK-potassium channel activators. XII [J]. Eur J Med Chem, 2008, 43(11): 2618-2626. e) Sawaya A, Abreu I N, Andreazza N L, et al. HPLC-ESI-MS/MS of Imidazole Alkaloids in Pilocarpus microphyllus [J]. Molecules, 2008, 13(7): 1501-1517. f) Raw S A, Turner A T, A one-pot process for the regioselective synthesis of 1, 3,4-trisubstituted-1H-pyrazoles [J]. Tetrahedron Lett, 2009, 50(6): 696-699.
    [127] Hammouda H A, El-Reedy A M, Hussain S M, Reactions with a-Substituted Cinnamonitriles. A Novel Synthesis of Hexa-substituted Pyridines [J]. J Heterocyclic Chem, 1986, 23(4): 1203-1206.
    [128] a) Bogdanowicz-Szwed K, Krasodomska M, Efficient synthesis of polyfunctionalised pyridines by conjugate addition of 2-thienylcarbonyl (thioacetanilides) toα,β-unsaturated nitriles [J]. J Chem Res, Synop, 2002, (4): 149-150. b) Dyachenko A D, Desenko S M, Dyachenko V D, et al. Synthesis and crystal structure of 3-carbamoyl-6-methyl-5-phenylcarbamoyl-2-thioxo-1,2,3,4-tetrahydropyridine- 4-spirocyclohexane [J]. Chem Heterocycl Compd, 2003, 39(6): 744-748. c) Harb A A, Hussein A M, Mousa I A, Acetoacetanilides in Heterocyclic Synthesis, Part 1: An Expeditious Synthesis of Thienopyridines and Other Fused Derivatives [J]. Phosphorus Sulfur Silicon Relat Elem, 2006, 181(10): 2247-2261.
    [129] Paulvannan K, Stille J R, Conformationally Restrictedβ-Amino Acid Isosteres Prepared Through Regioselectively Controlled Aza-Annulation [J]. Tetrahedron Lett, 1993, 34(51): 8197-8200.
    [130] Liéby-Muller F, Allais C, Constantieux T, et al. Metal-free Michael addition initiated multicomponent oxidative cyclodehydration route to polysubstituted pyridines from 1, 3-dicarbonyls [J]. Chem Commun, 2008, (35): 4207-4209.
    [131] a) Biginelli P, Ueber Aldehyduramide des Acetessig?thers [J]. Ber. 1891, 24(1): 1317-1319; Ueber Aldehyduramide des Acetessig?thers. II, 24(2): 2962-2967. b) Biginelli P, Ueber eine Bildungsweise des Stilbens [J]. Ber. 1893, 26(1): 447-451. c) Zaugg H E, Martin W B, [J]. Org. React. 1965, 14, 88. d) Kappe C O, 100 Years of the Biginelli Dihydropyrimidine Synthesis [J]. Tetrahedron 1993, 49(32): 6937-6963. e) Kappe C O, Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog [J]. Acc Chem Res, 2000, 33(12): 879-888.
    [132] a) O'Reilly B C, Atwal K S, Synthesis of Substituted 1,2,3,4-Tetrahydro-6-Methyl-2-Oxo-5- Pyrimidinecarboxylic Acid Esters: The Biginelli Condensation Revisited [J]. Heterocycles, 1987, 26(5): 1185-1188. b) Atwal K S, O'Reilly B C, Gougoutas J Z, et al. Synthesis of Substituted 1,2,3,4-Tetrahydro-6-Methyl-2-Thioxo-5-Pyrimidinecarboxylic Acid Esters [J]. Heterocycles, 1987, 26(5): 1189-1192.
    [133] Kato T, Chiba T, Sasaki M, Biginelli Reaction using Acetoacetamide Derivatives [J]. Yakugaku Zasshi, 1981, 101(2): 182-185.
    [134] Stadler A, Kappe C O, Automated Library Generation Using Sequential Microwave-Assisted Chemistry. Application toward the Biginelli Multicomponent Condensation [J]. J Comb Chem, 2001, 3(6): 624-630.
    [135] a) Parmar J M, Parikh A R, Synthesis and biological evaluation of some pyrimidinethiones and related heterocycles [J]. Indian J Heterocycl Chem, 2001, 10(3): 205-208. b) Kappe C O, Alexander Stadler, Building Dihydropyrimidine Libraries via Microwave-Assisted Biginelli Multicomponent Reactions [J]. Methods Enzymol, 2003, 369, 197-223. c) Chebanov V A, Muravyova E A, Desenko S M, et al. Microwave-Assisted Three-Component Synthesis of 7-Aryl-2-alkylthio-4,7-dihydro- 1,2,4-triazolo [1,5-a]-pyrimidine-6-carboxamides and Their Selective Reduction [J]. J Comb Chem, 2006, 8(3): 427-434. d) Krylsky A V, Potapov A Y, Krysin M Y, et al. Benzoxazolyl-and benzothiazolyl-guanidines in three-component reactions [J]. Chem Heterocycl Compd, 2006, 42(7): 935-942. e) Potapov A Y, Shikhaliev K S, Krylsky D V, et al. Three-component condensation of hetarylguanidines with aldehydes (ketones) and dicarbonyl compounds [J]. Chem Heterocycl Compd, 2006, 42(10): 1338-1342. f) Sehon C A, Wang G Z, Viet A Q, et al. Potent, Selective and Orally Bioavailable Dihydropyrimidine Inhibitors of Rho Kinase (ROCK1) as Potential Therapeutic Agents for Cardiovascular Diseases [J]. J Med Chem, 2008, 51(21): 6631-6634. g) Virsodia V, Pissurlenkar R R S, Manvar D, et al. Synthesis, screening for antitubercular activity and 3D-QSAR studies of substituted N-phenyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydro-pyrimidine- 5-carboxamides [J]. Eur J Med Chem, 2008, 43(10): 2103-2115.
    [136] a) PCT Int. Appl., 2007005941, 11 Jan 2007 b) Indian Pat. Appl., 2004DE01311, 28 Jul 2006. c) PCT Int. Appl., 2007054896, 18 May 2007. d) Baumann K L, Butler D E, Deering C F, et al. The Convergent Synthesis of C1-981, an Optically Active, Highly Potent, Tissue Selective Inhibitor of HMG-CoA Reductase [J]. Tetrahedron Lett, 1992, 33(17): 2283-2284.
    [137] a) Hantzsch A, Ueber die Synthese pyridinartiger Verbindungen aus Acetessig?ther und Aldehydammoniak [J]. Justus Liebigs Ann Chem, 1882, 215(1): 1-82. b) Hantzsch A, Ueber die Condensation von Acetessigs?uremethyl?ther mit Aldehydammoniak [J]. Ber Dtsch Chem Ges, 1883, 16(2): 1946-1948. c) Hantzsch A, Versuche zur Constitutionsbestimmung der synthetischen Hydropyridinderivate [J]. Ber Dtsch Chem Ges, 1885, 18(2): 2579-2586.
    [138] Beutler U, Fuenfschilling P C, Steinkemper A, An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part II [J]. Org Process Res Dev, 2007, 11(3): 341-345.
    [139] Hantzsch A, Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen [J]. Berichte der deutschen chemischen Gesellschaft, 1881, 14(2): 1637-1638.
    [140] Knoevenagel E, Fries A, Synthesen in der Pyridinreihe. Ueber eine Erweiterung der Hantzsch'schen Dihydropyridinsynthese [J]. Berichte der deutschen chemischen Gesellschaft, 1898, 31(1): 761-767.
    [141] Kastron V V, Dubur G Y, Vitolin R O, et al. Synthesis and pharmacological activity of4-(ortho-difluoromethoxyphenyl)-1,4-dihydropyridines [J]. Khimiko-Farmatsevticheskii Zhurnal, 1985, 19(5): 545-549.
    [142] Srinivasan L, Anandalwar S M, Prasad J S, et al. Crystal and Molecular Structure of 2,6-Dimethyl-3,5-di-N-(2′-chlorophenyl)-carbamoyl-4-(4″-hydroxyphenyl)-1,4-dihydropyridine [J]. X-Ray Structure Analysis Online, 2005, 21(11): x189-x190.
    [143] a) Desai B, Sureja D, Naliapara Y, Synthesis and QSAR Studies of 4-Substituted Phenyl-2,6-dimethyl-3, 5-Bis-N-(substituted Phenyl)carbamoyl-1,4-dihydropyridines as Potential Antitubercular Agentsy [J]. Bioorg Med Chem, 2001, 9(8): 1993-1998. b) Carroll W A, Agrios K A, Altenbach R J, et al. Synthesis and Structure-Activity Relationships of a Novel Series of Tricyclic Dihydropyridine-Based KATP Openers That Potently Inhibit Bladder Contractions in Vitro [J]. J Med Chem, 2004, 47(12): 3180-3192. c) Rajanarendar E, Ramesh P, Srinivas M, Solid-Supported Synthesis of Isoxazole-Substituted 1, 4-Dihydropyridines by Modified Hantzsch Method and Their Aromatization [J]. Synth Commun, 2006, 36(5): 665-671. d) Kumar B R P, Yuvaraj S, Srivastava A,et al. CoMFA Study, Syntheses, Antitubercular and Anticancer Activity of Some Novel 1,4-Dihydropyridines [J]. Letters in Drug Design & Discovery, 2008, 5(1): 7-14. e) Suresh T, Swamy S K, Reddy V M, Synthesis and bronchodilatory activity of new 4-aryl-3,5-bis(2-chlorophenyl)-carbamoyl-2,6-dimethyl-1,4-dihydropyridines & their 1-substituted analogues [J]. Indian J Chem, Sect B, 2007, 46B(1): 115-121. f) Pattan S R, Rasal V P, Venkatramana N V, Synthesis and evaluation of some 1, 4-dihydropyridine and their derivatives as antihypertensive agents [J]. Indian J Chem, Sect B, 2007, 46B(4): 698-701. g) Amini M, Navidpour L, Shafiee A, Synthesis and antitubercular activity of new N,N-diaryl-4-(4,5-dichloroimidazole-2-yl)- 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamides [J]. Daru, Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 2008, 16(1): 9-12. h) Fassihi A, Azadpour Z, Delbari N, et al. Synthesis and antitubercular activity of novel 4-substituted imidazolyl-2,6-dimethyl-N3,N5-bisaryl-1,4-dihydropyridine-3,5-dicarboxamides [J]. Eur J Med Chem, 2009, 44(8): 3253-3258. i) Reddy G M, Shiradkar M, Chakravarthy A K, Chemical and Pharmacological Significance of 1, 4-Dihydropyridines [J]. Curr Org Chem, 2007, 11(10): 847-852.
    [144] a) Dong J H, Qiu K Y, Feng X D, On the kinetics and initiation mechanism of acrylamide polymerization using the ceric ion/acetoacetanilide system as initiator [J]. Macromol Chem Phys, 1994, 195(3): 823-831. b) Huang J, Liang Y, Pan W, et al. Efficient Synthesis of Highly Substituted Pyrrolin-4-ones via PIFA-Mediated Cyclization Reactions of Enaminones [J]. Org Lett, 2007, 9(26): 5345-5348.
    [145] Li J, Zhang Y, Song R, et al.β-Oxo Amides: Inexpensive and Efficient Ligands for the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction [J]. Synthesis, 2007, (19): 2957-2966.
    [146] For reviews, see: a) Sydnes L K, Allenes from Cyclopropanes and Their Use in Organic Synthesis-Recent Developments [J]. Chem Rev, 2003, 103(4): 1133-1150. b) Gnad F, Reiser O, Synthesis and Applications ofβ-Aminocarboxylic Acids Containing a Cyclopropane Ring [J]. Chem Rev, 2003, 103(4): 1603-1624. c) Reissig H U, Zimmer R, Donor?Acceptor-Substituted Cyclopropane Derivatives and Their Application in Organic Synthesis [J]. Chem Rev, 2003, 103(4): 1151-1196. d) Lebel H, Marcoux J F, Molinaro C, et al. Stereoselective Cyclopropanation Reactions [J]. Chem Rev, 2003, 103(4): 977-1050. e) Reichelt A, Martin, S F, Synthesis and Properties of Cyclopropane-Derived Peptidomimetics [J]. Acc Chem Res, 2006, 39(7): 433-442. f) Yu M, Pagenkopf B L, Recent advances in donor-acceptor (DA) cyclopropanes [J]. Tetrahedron, 2005, 61(2): 321-347. g) Wong H N C, Hon M Y, Tse C W, et al. Use of cyclopropanes and their derivatives in organic synthesis [J]. Chem Rev, 1989, 89(1): 165-198.
    [147] For some recent results, see: a) Ogoshi S, Nagata M, Kurosawa H, Formation of Nickeladihydropyran by Oxidative Addition of Cyclopropyl Ketone. Key Intermediate in Nickel-Catalyzed Cycloaddition [J]. J Am Chem Soc, 2006, 128(16): 5350-5351. b) Liu L,Montgomery J, Dimerization of Cyclopropyl Ketones and Crossed Reactions of Cyclopropyl Ketones with Enones as an Entry to Five-Membered Rings [J]. J Am Chem Soc, 2006, 128(16): 5348-5349. c) Ma S, Zhang J, Tuning the Regioselectivity in the Palladium(II)-Catalyzed Isomerization of Alkylidene Cyclopropyl Ketones: A Dramatic Salt Effect [J]. Angew Chem, 2003, 115(2): 193-197. [J]. Angew Chem Int Ed, 2003, 42(2): 183-187.
    [148] Cloke J B, The Formation of Pyrrolines From Gamma-Chloropropyl And Cyclopropyl Ketimines [J]. J Am Chem Soc, 1929, 51(4): 1174-1187.
    [149] a) Alonso M E, Morales A, Aluminum oxide assisted stereoselective rearrangement of a cyclopropyl ketone to 4,5-dihydrofuran [J]. J Org Chem, 1980, 45(22): 4530-4532. b) Yadav V K, Balamurugan R, Silicon-Assisted Ring Opening of Donor-Acceptor Substituted Cyclopropanes. An expedient entry to substituted dihydrofurans [J]. Org Lett, 2001, 3(17): 2717-2719. c) Bernard A M, Frongia A, Piras P P, et al. Regioselective Synthesis of Trisubstituted 2,3-Dihydrofurans from Donor?Acceptor Cyclopropanes or from Reaction of the Corey Ylide withα-Sulfenyl-,α-Sulfinyl-, or α-Sulfonylenones [J]. Org Lett, 2005, 7(21): 4565-4568. d) Pittman C U, Manus S P M, Acid-catalyzed cyclization reactions. VI. Rearrangement of protonated cyclopropyl ketones to 1-oxacyclopent-1-enyl cations [J]. J Am Chem Soc, 1969, 91(21): 5915-5918. e) Honda M, Naitou T, Hoshino H, et al. An efficient synthesis of 5-silyl-2,3-dihydrofurans via acid-catalyzed ring-enlargement of cyclopropyl silyl ketones and their functionalization [J]. Tetrahedron Lett, 2005, 46(43): 7345-7348. f) Bowman R K, Johnson J S, Nickel-Catalyzed Rearrangement of 1-Acyl-2-vinylcyclopropanes. A Mild Synthesis of Substituted Dihydrofurans [J]. Org Lett, 2006, 8(4): 573-576.
    [150] a) Yang Y H, Shi M, Ring-Expanding Reaction of Cyclopropyl Amides with Triphenylphosphine and Carbon Tetrahalide [J]. J Org Chem, 2005, 70(21): 8645-8648. b) Kirkland T A, Colucci J, Geraci L S, et al. Total Synthesis of (+)-Ambruticin S [J]. J Am Chem Soc, 2001, 123(49): 12432-12433. c) Zheng X, Kerr M A, Synthesis and Cross-Coupling Reactions of 7-Azaindoles via a New Donor?Acceptor Cyclopropane [J]. Org Lett, 2006, 8(17): 3777-3779. d) Zhang M X, Eaton P E, BuMgNiPr2: A New Base for Stoichiometric, Position-Selective Deprotonation of Cyclopropane Carboxamides and Other Weak CH Acids [J]. Angew Chem, 2002, 114(12): 2273-2275. [J]. Angew Chem Int Ed, 2002, 41(12): 2169-2171.
    [151] For reviews, see: a) Michael J P, Quinoline, quinazoline and acridone alkaloids [J]. Nat Prod Rep, 2002, 19(6): 742-746. b) Michael J P, Quinoline, quinazoline and acridone alkaloids [J]. Nat Prod Rep, 2003, 20(5): 476-493. c) Michael J P, Quinoline, quinazoline and acridone alkaloids [J]. Nat Prod Rep, 2004, 21(5): 650-668. (d) Mabire D, Coupa S, Adelinet C, et al. Synthesis, Structure?Activity Relationship, and Receptor Pharmacology of a New Series of Quinoline Derivatives Acting as Selective, Noncompetitive mGlu1 Antagonists [J]. J Med Chem, 2005, 48(6): 2134-2153. (e) Michael, J. P. Quinoline, quinazoline and acridone alkaloids [J]. Nat Prod Rep, 2005, 22(5): 627-646.
    [152] a) Ambrozin A R P, Mafezoli J, Vieira P C, et al. New Pyrone and Quinoline Alkaloid from Almeidea rubra and their Trypanocidal Activity [J]. J Braz Chem Soc, 2005, 16(3A): 434-439. b) Ito C, Itoigawa M, Sato A, et al. Chemical Constituents of Glycosmis arborea: Three New Carbazole Alkaloids and Their Biological Activity [J]. J Nat Prod, 2004, 67(9): 1488-1491. c) Grougnet R, Magiatis P, Fokialakis N, et al. Koniamborine, the First Pyrano[3, 2-b]indole Alkaloid and Other Secondary Metabolites from Boronella koniambiensis [J]. J Nat Prod, 2005, 68(7): 1083-1086. d) Ayafor J F, Isolation and identification of three new phenolic furoquinoline alkaloids from Teclea verdoorniana Exell & Mendonca (Rutaceae) [J]. J Chem Soc Perkin Trans 1, 1982, 909-916. e) Okogun J I, Ayafor J F, Tecleaverdoornine: a new C-prenylated phenylated furoquinoline [J]. J Chem Soc Chem Commun, 1977, (18): 652-653.
    [153] Abass M, Fused Quinolines. Recent Synthetic Approaches to Azoloquinolines. A Review [J]. Heterocycles, 2005, 65(4): 901-965.
    [154] a) Chen Y, Chen I, Lu C, et al. Synthesis and anti-inflammatory evaluation of 4-anilinofuro[2, 3-b]quinoline and 4-phenoxyfuro[2, 3-b]quinoline derivatives. Part 3 [J]. Bioorg Med Chem, 2004, 12(2): 387-392. b) Chen Y, Chen I, Lu C, et al. Synthesis and anti-inflammatory evaluation of 9-phenoxyacridine and 4-phenoxyfuro[2, 3-b]quinoline derivatives. Part 2 [J]. Bioorg Med Chem, 2003, 11(18): 3921-3927. c) Huang Y, Wu P, Hsu W M, et al. Highly sensitive analysis of the anti-tumor agent 1-[4-(furo[2, 3-b]-quinolin-4-ylamino)phenyl]ethanone in rat plasma by high-performance liquid chromatography using electrochemical detection [J]. J Pharm Biomed Anal, 2005, 38(3): 551-555. d) Chen Y, Chen I, Wang T, et al. Synthesis and anticancer evaluation of certain 4-anilinofuro[2, 3-b]quinoline and 4-anilinofuro[3, 2-c]quinoline derivatives [J]. Eur J Med Chem, 2005, 40(9): 928-934. e) Butensch?n I, M?ller K, H?nsel W, Angular Methoxy-Substituted Furo- and Pyranoquinolinones as Blockers of the Voltage-Gated Potassium Channel Kv1.3 [J]. J Med Chem, 2001, 44(8): 1249-1256.
    [155] Tuppy H, B?hm F, Synthese des Dictamnins, Synthese des Dictamnins [J]. Angew Chem, 1956, 68(11): 376-389.
    [156] a) Grundon M F, McCorkindale N J, The synthesis of dictamnine andγ-fagarine [J]. J Chem Soc, 1957, 2177-2185. b) Clark E A, Grundon M F, The behaviour of ion-exchange resins with mixed solvents. Part III. Dioxan-water mixtures [J]. J Chem Soc, 1964, 4169-4171. c) Narasimhan N S, Mali R S, Synthetic application of lithiation reactions-VI: New synthesis of linear furoquinoline alkaloids [J]. Tetrahedron, 1974, 30(23-24): 4153-4157. d) Pirrung M C, Blume F J, Rhodium-Mediated Dipolar Cycloaddition of Diazoquinolinediones [J]. J Org Chem, 1999, 64(10): 3642-3649. e) Baston E, Palusczak A, Hartmann R W, 6-Substituted 1H-quinolin-2-ones and 2-methoxy-quinolines: Synthesis and evaluation as inhibitors of steroid 5αreductases types 1 and 2 [J]. Eur J Med Chem, 2000, 35(10): 931-940. f) Narasimhan N S, Paradkar M V, Alurkar R H, Synthetic application of lithiation reactions-IV,: Novel synthesis of linear furoquinoline alkaloids and a synthesis of edulitine [J]. Tetrahedron, 1971, 27(6): 1351-1356.
    [157] a) Sekar M, Prasad K J R, Quinoline Alkaloids: Synthesis of Pyrano[2, 3-b]quinolines, Khaplofoline, Lunacrine, and Demethoxylunacrine [J]. J Nat Prod, 1998, 61(2): 294-296. b) Godet T, Vaxelaire C, Michel C, et al. Silver versus Gold Catalysis in Tandem Reactions of Carbonyl Functions onto Alkynes: A Versatile Access to Furoquinoline and Pyranoquinoline Cores [J]. Chem Eur J, 2007, 13(19): 5632-5641. c) Marco-Contelles J, León R, López M G, et al. Synthesis and biological evaluation of new 4H-pyrano[2, 3-b]quinoline derivatives that block acetylcholinesterase and cell calcium signals, and cause neuroprotection against calcium overload and free radicals [J]. Eur J Med Chem, 2006, 41(12): 1464-1469. d) Butensch?n I, M?ller K, H?nsel W, Angular Methoxy-Substituted Furo- and Pyranoquinolinones as Blockers of the Voltage-Gated Potassium Channel Kv1.3 [J]. J Med Chem, 2001, 44(8): 1249-1256. e) Kalita K P, Baruah B, Bhuyan P J, Synthesis of novel pyrano[2, 3-b]quinolines from simple acetanilides via intramolecular 1, 3-dipolar cycloaddition [J]. Tetrahedron Lett, 2006, 47(44): 7779-7782. f) Ramsakrishnan V T, Shanmugam P, Synthesis of 3:4 dihydro-5-methyl-2H-pyrano-(2,3-b)-quinoline [J]. Proc Indian Acad Sci, 1962, 55(6): 345-349.
    [158] a) Fayol A, Zhu J, Synthesis of Furoquinolines by a Multicomponent Domino Process [J]. Angew Chem, 2002, 114(19): 3785-3787. [J]. Angew Chem Int Ed, 2002, 41(19): 3633-3635. b) Du W, Curran D P, Synthesis of Carbocyclic and Heterocyclic Fused Quinolines by Cascade Radical Annulations of Unsaturated N-Aryl Thiocarbamates, Thioamides, and Thioureas [J]. Org Lett, 2003, 5(10): 1765-1768. c) Aillaud I, Bossharth E, Conreaux D, et al. A Synthetic Entry to Furo[2, 3-b]pyridin-4(1H)-ones and Related Furoquinolinones via Iodocyclization [J]. Org Lett, 2006, 8(6): 1113-1116. d) Bhoga U, Mali R S, Adapa S R, New synthesis of linear furoquinoline alkaloids [J]. Tetrahedron Lett, 2004, 45(51): 9483-9485, and references therein. e) Godet T, Bosson J, Belmont P, Efficient Base-Catalyzed 5-exo-dig Cyclization of Carbonyl Groups on Unactivated Alkynyl-Quinolines: An Entry to Versatile Oxygenated Heterocycles Related to the FuroquinolineAlkaloids Family [J]. Synlett, 2005, (18): 2786-2790.
    [159] Collins J F, Gray G A, Grundon M F, et al. Quinoline alkaloids. Part XIII. A convenient synthesis of furoquinoline alkaloids of the dictamnine type [J]. J Chem Soc, Perkin I, 1973, 94-97.
    [160] Cooke R G, Haynes H F. The synthesis of furoquinoline alkaloids: dictamnine and evolitrine [J]. Austral J Chem, 1958, 11(2): 225-229.
    [161] Bossharth E, Desbordes P, Monteiro N, et al. Synthesis of Furo[2,3-b]pyridones by One-Pot Coupling of 3-Iodopyridones, Alkynes, and Organic Halides [J]. Org Lett, 2003, 5(14): 2441-2444.
    [162] Raffa G, Rusch M, Balme G, et al. A Pd-Catalyzed Heteroannulation Approach to 2,3-Disubstituted Furo[3, 2-c]coumarins [J]. Org Lett, 2009, 11(22): 5254-5257.
    [163] Arturo Battaglia. Gaetano Barbaro. Patrizia Giorgianni. Synthesis and Reactivity of N-Mesitylcyclopropylideneazomethine [J]. J Org Chem, 1985, 50(25): 5368-5370.
    [164] Povarov L S,α,β-Unsaturated Ethers and Their Analogues in Reactions of Diene Synthesis [J]. Russ Chem Rev, 1967, 36(9): 656-670.
    [165] Yadav J S, Reddy B V S, Madhuri C, et al. LiBF4-Catalyzed Imino-Diels-Alder Reaction: A Facile Synthesis of Pyranoand Furoquinolines [J]. Synthesis, 2001, (7): 1065-1068.
    [166] Yadav J S, Reddy B V S, Gayathri K U, et al. Scandium Triflate Immobilized in Ionic Liquids: A Novel and Recyclable Catalytic System for Hetero-Diels-Alder Reactions [J]. Synthesis, 2002, (17): 2537-2541.
    [167] Nagarajan R, Magesh C J, Perumal P T, Inter- and Intramolecular Imino Diels-Alder Reactions Catalyzed by Sulfamic Acid: A Mild and Efficient Catalyst for a One-Pot Synthesis of Tetrahydroquinolines [J]. Synthesis, 2004, (1): 69-74.
    [168] Pai B R, Prabhakar S, Santhanam P S, et al. Synthesis of 6-Methoxydictamnine [J]. Indian J Chem, 1964, 2, 491-492.
    [169] Beccalli E M, Broggini G, Martinelli M, et al. Synthesis of Tricyclic Quinolones and Naphthyridones by Intramolecular Heck Cyclization of Functionalized Electron-Rich Heterocycles [J]. Eur J Org Chem, 2005, (10): 2091-2096.
    [170] Yamaguchi S, Yoshimoto Y, Murai R, et al. The Synthesis of Benzofuroquinolines. VII. Some Benzo[h]benzonfuro[2, 3-b]- and [3, 2-c]quinoline derivatives [J]. J Heterocyclic Chem, 1990, 27(4): 999-1001.
    [171] a) Long R, Schofield K, Some alkylquinoline-5:8-quinones [J]. J Chem Soc, 1953, 3161-3167. b) Roberts E, Turner E E, The factors controlling the formation of some derivatives of quinoline, and a new aspect of the problem of substitution in the quinoline series [J]. J Chem Soc, 1927, 1832-1857. c) Kouznetsov V V, Mendez L Y V, Gomez C M M, Recent Progress in the Synthesis of Quinolines [J]. Curr Org Chem, 2005, 9, 141-161.
    [172] Zhang Z, Zhang Q, Sun S, et al. Domino Ring-Opening/Recyclization Reactions of Doubly Activated Cyclopropanes as a Strategy for the Synthesis of Furoquinoline Derivatives [J]. Angew Chem Int Ed, 2007, 46(10): 1726-1729 and references cited therein.
    [173] For reviews, see: [146g], a) Danishefsky S, Electrophilic cyclopropanes in organic synthesis [J]. Acc Chem Res, 1979, 12(2): 66-72. b) Zefirov N S, Kozhushkov S I, Kuznetsova T S, et al. Rearrangements and cyclization-XVII: Mechanism of the formation of 1,2-azoles in reactions of 1,1-diacyclopropanes with hydrazine and hydroxylamine derivatives [J]. Tetrahedron, 1986, 42(2): 709-713.
    [174] For reviews, see: a) Namyslo J C, Kaufmann D E, The Application of Cyclobutane Derivatives in Organic Synthesis [J]. Chem Rev, 2003, 103(4): 1485-1538. b) Lee-Ruff E, Mladenova G, Enantiomerically Pure Cyclobutane Derivatives and Their Use in Organic Synthesis [J]. Chem Rev, 2003, 103(4): 1449-1484.
    [175] a) Langer P, Bose G, [3+3] Cyclizations of 1, 3-Bis(silyl enol ether)s with 1,1-Diacetylcyclopentaneand 1,1-Diacetylcyclopropane [J]. Angew Chem Int Ed, 2003, 42(34): 4033-4036. b) Bose G, Ullah E, Langer P, Synthesis of Spiro[5.4]decenones and their Transformation into Bicyclo[4.4.0]deca-1, 4-dien-3-ones by Domino‘Elimination-Double-Wagner-Meerwein-Rearrangement’Reactions [J]. Chem Eur J, 2004, 10, 6015-6028. c) Nishizawa M, Asai Y, Imagawa H, TiCl4 Induced Anti-Markovnikov Rearrangement [J]. Org Lett, 2006, 8(25): 5793-5796. d) Giacomello P, Pizzabiocca A, Renzi G, et al. Acid-catalyzed aldehyde-ketone rearrangements in the gas phase. Cyclopentane- and cyclohexanecarboxaldehyde [J]. Tetrahedron Lett, 1983, 24(38): 4157-4160.
    [176] Jones G, Quinolines [M]. Wiley: New York, 1977, 151-158.
    [177] For reviews on how the C-ring cyclization process overcomes the energy barrier required to expand the tertiary cyclopentyl carbocation to the less stable secondary cyclohexyl carbocation in the transformation from squalene to lanosterol and related transformations, see: a) Abe I, Rohmer M, Restwich G D, Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes [J]. Chem Rev, 1993, 93(6): 2189-2206. b) Wendt K U, Schulz G E, Corey E J, et al. Enzyme Mechanisms for Polycyclic Triterpene Formation [J]. Angew Chem Int Ed, 2000, 39(16): 2812-2833. c) Yoder R A, Johnston J N, A Case Study in Biomimetic Total Synthesis: Polyolefin Carbocyclizations to Terpenes and Steroids [J]. Chem Rev, 2005, 105(12): 4730-4756.
    [178] a) Walker G E, Kronja O, Saunders M, Isotopic Scrambling in Di-13C-labeled 2-Butyl Cation: Evidence for a Protonated Cyclopropane Intermediate [J]. J Org Chem, 2004, 69(10): 3598-3601. b) Cooper C N, Jenner P J, Perry N B, et al. Classical carbonium ions. Part 13. Rearrangements from secondary to primary alkyl groups during reactions involving carbonium ions [J]. J Chem Soc Perkin Trans 2, 1982, (5): 605-611.
    [179] a) Khan M A, Fereira da Rocha J, Tricyclic heteroaromatic ring systems II A convenient synthesis of 1H-pyrrolo[3, 2-c]quinolines [J]. J Heterocycl Chem, 1978, 15(6): 913-921. b) Kang S K, Park S S, Kim S S, et al. Synthesis of 1,2,3-trisubstituted pyrrolo[3, 2-c]quinolines via palladium-catalyzed heteroannulation with internal alkynes [J]. Tetrahedron Lett, 1999, 40(23): 4379-4382.
    [180] Witherup K M, Ransom R W, Graham A C, et al. Martinelline and Martinellic Acid, Novel G-Protein Linked Receptor Antagonists from the Tropical Plant Martinella iquitosensis (Bignoniaceae)[J]. J Am Chem Soc, 1995, 117(25): 6682-6685.
    [181] Khan M A, Fereira da Rocha J, Pyrroloquinolines V. 1H-Pyrrolo[3, 2-c]quinolines [J]. Heterocycles, 1979, 12(6): 857-870.
    [182] a) Helissey P, Parrot-Lopez H, Renault J, et al. Synthesis and cytotoxic activity of 7-methoxy-1H-pyrrolo[3, 2-c]-quinoline-6,9-dione and 3-methoxy-11H-indolo[3, 2-c]quinoline-1, 4-diones [J]. Eur J Med Chem, 1987, 22(4): 366-368. b) Helissey P, iorgi-Renault S, Parrot-Lopez H, et al. Heterocyclic Quinones. XVI. : Pharmacomodulation in the Series of 11H-Indolo[3, 2-c]quinolinediones: Synthesis, Cytotoxicity and Antitumor Activity of 3-Substituted 11H-Pyrido[3',4':4,5]pyrrolo[3, 2-c]quinoline-1,4-diones [J]. Chem Pharm Bull, 1989, 37(9): 2413-2416. c) Helissey P, Cros S, Giorgi-Renault S, Synthesis, Antitumor Evaluation And Sar of New 1H-Prrolo[3, 2-c]quinoline-6,9-diones And 11H-indolo[3, 2-c]quinoline-1,4-diones [J]. Anticancer Drug Des, 1994, 9(1): 51-67.
    [183] a) Brown T H, Ife R J, Keeling D J, et al. Reversible inhibitors of the gastric (H+/K+)-ATPase. 1. 1-Aryl-4-methylpyrrolo [3, 2-c] quinolines as conformationally restrained analogs of 4-(arylamino) quinolines [J]. J Med Chem, 1990, 33(2): 527-533. b) Escolano C, Jones K, Aryl radical cyclisation onto pyrroles: a divergent synthesis of spiropyrrolidinyloxindoles and pyrroloquinolines [J]. Tetrahedron Lett, 2000, 41(46): 8951-8955.
    [184] Wright G C, Watson E J, Ebetino F F, et al. Synthesis and hypotensive properties of new 4-aminoquinolines [J]. J Med Chem, 1971, 14(11): 1060-1066.
    [185] Skonicki J S, Kearney R M, U. S. patent 5,216,162, and references cited there in.
    [186] Lovely J C, Mahmud H, An approach to the pyrroloquinoline core of martinelline and martinellicacid [J]. Tetrahedron Lett, 1999, 40(11): 2079-2082.
    [187] Ma D, Xia C, Jiang J, et al. First Total Synthesis of Martinellic Acid, a Naturally Occurring Bradykinin Receptor Antagonist [J]. Org Lett, 2001, 3(14): 2189-2191.
    [188] Selected examples of synthesis of the pyrroloquinoline core: a) Gurjar M K, Pal S, Rao A V R, Studies Directed toward the Synthesis of Martinellines : One Pot Synthesis of Pyrroloquinolone Ring System [J]. Heterocycles, 1997, 45(2): 231-234. b) Ho T C T, Jones K, A synthesis of the tricyclic pyrroloquinoline core of martinelline [J]. Tetrahedron, 1997, 53(24): 8287-8294. c) Snider B B, Ahn Y, Foxman B M, Synthesis of the tricyclic triamine core of martinelline and martinellic acid [J]. Tetrahedron Lett, 1999, 40(17): 3339-3342. d) Nieman J A, Ennis M D, Enantioselective Synthesis of the Pyrroloquinoline Core of the Martinellines [J]. Org Lett, 2000, 2(10): 1395-1397. e)Nyerges M, Fejes I, Toke L, An intermolecular 1, 3-dipolar cycloaddition approach to the tricyclic core of martinelline and martinellic acid [J]. Tetrahedron Lett, 2000, 41(41): 7951-7954. f) Hadden M, Nieuwenhuyzen M, Potts D, et al. Synthesis and reactivity of hexahydropyrroloquinolines [J]. Tetrahedron, 2001, 57(26): 5615-5624. g) Batey R A, Powell D A, Multi-component coupling reactions: synthesis of a guanidine containing analog of the hexahydropyrrolo [3, 2-c]quinoline alkaloid martinelline [J]. Chem Commun, 2001, (22): 2362-2363. h) Hara O, Sugimoto K, Makino K, et al. New Synthesis of a Pyrroloquinoline Skeleton, the Martinelline Core, Using a Tandem Michael-Aldol Strategy [J]. Synlett, 2004, (9): 1625-1627. i) Yadav J S, Subba R B V, Sunitha V, et al. Montmorillonite KSF-catalyzed one-pot synthesis of hexahydro-1H-pyrrolo[3, 2-c]quinoline derivatives [J]. Tetrahedron Lett, 2004, 45(42): 7947-7950. j) Shaw J T, Masse C E, Ng P Y, Cycloaddition Reactions of Imines with 3-Thiosuccinic Anhydrides: Synthesis of the Tricyclic Core of Martinellic Acid [J]. Org Lett, 2006, 8(18): 3999-4002. k) Testa M L, Lamartina L, Mingoia F, A new entry to the substituted pyrrolo[3, 2-c]quinoline derivatives of biological interest by intramolecular heteroannulation of internal imines [J]. Tetrahedron, 2004, 60(28): 5873-5880. l) Nyerges M, Construction of Pyrrolo [3, 2-c] quinolines-Recent Advences in the Synthesis of the Martinelline Alkaloids [J]. Heterocycles, 2004, 63(7): 1685-1721.
    [189] Selected examples of total synthesis of martinellic acid and/or martinelline: [187], a) Snider B B, Ahn Y, O’Hare S M, Total Synthesis of (±)-Martinellic Acid [J]. Org Lett, 2001, 3(26): 4217-4220. b) Powell D A, Batey R A, Total Synthesis of the Alkaloids Martinelline and Martinellic Acid via a Hetero Diels?Alder Multicomponent Coupling Reaction [J]. Org Lett, 2002, 4(17): 2913-2916. c) Miyata O, Shirai A, Yoshino S, et al. An Improved Synthesis of (-)-Martinellic Acid via Radical Addition-Cyclization-Elimination Reaction of Chiral Oxime Ether [J]. Synlett, 2006, (6): 893-896. d) Takeda Y, Nakabayashi T, Shirai A, et al. A formal synthesis of martinelline via a combination of two types of radical reactions [J]. Tetrahedron Lett, 2004, 45(17): 3481-3484. e) Hadden M, Nieuwenhuyzen M, Potts D, et al. Synthesis of the heterocyclic core of martinelline and martinellic acid [J]. Tetrahedron, 2006, 62(17): 3977-3984. f) He Y, Mahmud H, Moningka R, et al. Cyclization reactions of N-acryloyl-2-aminobenzaldehyde derivatives: formal total synthesis of martinellic acid [J]. Tetrahedron, 2006, 62(37): 8755-8769. h) Ikeda S, Shibuya M, Iwabuchi Y, Asymmetric total synthesis of martinelline and martinellic acid [J]. Chem Commun, 2007, (5): 504-506.
    [190] a) Hadden M, Stevenson P J, Regioselective synthesis of pyrroloquinolines-Approaches to Martinelline [J]. Tetrahedron Lett, 1999, 40(6): 1215-1218. b) Batey R A, Simoncic P D, Lin D, et al. A three-component coupling protocol for the synthesis of substituted hexahydropyrrolo[3, 2-c]quinolines [J]. Chem Commun, 1999, (7): 651-652. c) Zhou J, Xu B, Three-component one-pot synthesis of 1,2,3,4-tetrahydroquinoline derivatives in hexafluoroisopropanol [J]. Chin Chem Lett, 2008, 19(8): 921-924. d) Malassene R, Sanchez-Bajo L, Toupet L, et al. Stereoselective Approach to the Pyrroloquinoline Core of Martinelline [J]. Synlett, 2002, (9): 1500-1504. e) Hoemann M Z, Xie R L, Rossi R F, et al. Potent In vitro methicillin-resistant Staphylococcus aureus activity of 2-(1H-indol-3-yl)tetrahydroquinoline derivatives [J]. Bioorg Med Chem Lett, 2002, 12(2): 129-132. f)Hadden M, Nieuwenhuyzen M, Osborne D, et al. Synthesis of the heterocyclic core of the alkaloids martinelline and martinellic acid [J]. Tetrahedron Lett, 2001, 42(36): 6417-6419.
    [191] a) Hadden M, Stevenson P J, Facile Synthesis of Methyl 2-amino-3-(2-methyl-3-quinolyl)propanoate [J]. J Chem Res (S), 1998, (12): 796-797. b) Neuschl M, Bogdal D, Potacek M, Microwave-Assisted Synthesis of Substituted Hexahydro-pyrrolo[3, 2-c]quinolines [J]. Molecules, 2007, 12(1): 49-59. c) Nyerges M, Fejes I, T?ke L, A Convenient Synthesis of the Pyrrolo[3, 2-c]quinoline Core of Martinelline Alkaloids [J]. Synthesis, 2002, (13): 1823-1828. d) Martin S F, Cheavens T H, Synthesis of polycyclic lactams via intramolecular dipolar cycloadditions of stabilized azomethine ylides [J]. Tetrahedron Lett, 1989, 30(50): 7017-7020. e) He Y, Mahmud H, Wayland B R, et al. An intramolecular cycloaddition approach to pyrrolo[3, 2-c] quinolones [J]. Tetrahedron Lett, 2002, 43(7): 1171-1174. f) Badarinarayana V, Lovely C J, Total synthesis of (-)-martinellic acid [J]. Tetrahedron Lett, 2007, 48(14): 2607-2610. g) Mahmud H, Lovely C J, Dias H V R, An intramolecular azomethine ylide-alkene cycloaddition approach to pyrrolo[3, 2-c]quinolines-synthesis of a C2-truncated martinelline model [J]. Tetrahedron, 2001, 57(19): 4095-4105.
    [192] Yum E K, Kang S K, Kim S S, et al. Synthesis and pharmacological profile of 1-aryl-3-substituted pyrrolo[3, 2-c]quinolines [J]. Bioorg Med Chem Lett, 1999, 9(19): 2819-2822.
    [193] a) Miyata O, Shirai A, Yoshino S, et al. Development of radical addition-cyclization-elimination reaction of oxime ether and its application to formal synthesis of (±)-martinelline [J]. Tetrahedron, 2007, 63(40): 10092-10117. b) Shirai A, Miyata O, Tohnai N, et al. Total Synthesis of (?)-Martinellic Acid via Radical Addition?Cyclization?Elimination Reaction [J]. J Org Chem, 2008, 73(12): 4464-4475. c) Jones K, Ho T C T, Wilkinson J, Aryl Radical Cyclisation on to a Pyrrole Nucleus [J]. Tetrahedron Lett, 1995, 36(37): 6743-6744. d) Cossy J, Cases M, Pardo D G, A convenient route to spiropyrrolidinyl-oxindole alkaloids via C-3 substituted ene-pyrrolidine carbamate radical cyclization [J]. Tetrahedron Lett, 1998, 39(16): 2331-2332.
    [194] a) Parrick J, Wilcox R, Convenient routes to pyrrolo[3, 2-b]-, pyrrolo[3, 2-c]-, and pyrrolo[2, 3-c]-quinolines, and a study of the pyrolysis of 2-quinolylhydrazones [J]. J Chem Soc Perkin Trans 1, 1976, (19): 2121-2125. b) Park K K, Rapoport H, Synthesis of substituted 1H-pyrrolo[3, 2-c]quinolines [J]. J Heterocycl Chem, 1992, 29(4): 1031-1032. c) Heidempergher F, Pevarello P, Pillan A, et al. Pyrrolo[3, 2-c]quinoline derivatives: a new class of kynurenine-3-hydroxylase inhibitors [J]. Il Farmaco, 1999, 54(3): 152-160. d)Dudouit F, Houssin R, Hénichart J P, A synthesis of new pyrrolo[3, 2-c]quinolines [J]. J Heterocycl Chem, 2001, 38(3): 755-758.
    [195] a) H?rlein H U, Andersag H, Timmler H, U.S. 1954, 2,691,023 (Chem. Abstr., 1955, 49, 14813). b) Ozawa T, Nagaoka S, Studies on New Utilization of 2-Acetyl-γ-butyrolactone. III A New Synthesis of Quinaldine Derivatives. (3). A Synthesis of 4-Chloro-3-(2-chloroethyl) quinaldine Derivatives [J]. J Pharm Soc Jpn, 1957, 77(1): 85-89. (Chem. Abstr., 1957, 51, 8749). c) Nagaoka S, Studies on the Synthesis of Quinoline Compounds. X Condensation Reaction of 4-Chloroquinaldine Compounds and Aminophenols [J]. J Pharm Soc Jpn, 1961, 81(3): 363-369 (Chem. Abstr., 1961, 55, 15490). d) Badawey E, Kappe T, Potential antineoplastics. Synthesis and cytotoxicity of certain 4-chloro-3-(2-chloroethyl)-2-methylquinolines and related derivatives [J]. Eur J Med Chem Chim Ther, 1997, 32(10): 815-822. e) Tapia R A, López C, Morello A, et al. A Convenient Synthesis of Benzo[g]pyrrolo[3, 2-c]quinoline-6,11-diones [J]. Synthesis, 2005, (6): 903-906. f) Nagaoka S, Studies on the Synthesis of Quinoline Compounds. XI Bromination Reaction of 4-Chloroquinaldine Compounds. (1) [J]. J Pharm Soc Jpn, 1961, 81(4): 479-483. (Chem. Abstr., 1961, 55, 19922). g) Mekheimer R A, Fused Quinoline Heterocycles III: Synthesis of First Annulated 1,4,5,6,6a-Pentaazabenzo[a]indacenes, 1, 3,5,6-tetraazaaceanthrylenes and 5,7,9,11-Tetraazabenzo [a]fluorenes [J]. Synthesis, 2000, (14): 2078-2084. h) Donald B G M, Proctor G R, Conversion of 2-chloroallylamines into heterocyclic compounds. Part I. 2-Methylindoles,1,5,6,7-tetrahdyro-3- methylindol-4-ones, and related heterocycles [J]. J Chem Soc Perkin Trans 1, 1975, (15): 1446-1450. i)Richter H J, Rustad N E, The Reaction between 4-Nitroquinoline 1-Oxide and Diethyl Sodiomalonate. An Unexpected Nucleophilic Substitution [J]. J Org Chem, 1964, 29(11): 3381-3383.
    [196] Yoshitomi Y, Arai H, Makino K, et al. Enantioselective synthesis of martinelline chiral core and its diastereomer using asymmetric tandem Michael-aldol reaction [J]. Tetrahedron, 2008, 64(51): 11568-11579.
    [197] Ikeda S, Shibuya M, Kanoh N, et al. Efficient Entry to the Pyrroloquinoline Core of Martinella Alkaloids via Novel Base-catalyzed Mukaiyama-Mannich Reaction [J]. Chem Lett, 2008, 37(9): 962-963.
    [198] Uchiyama K, Ono A, Hayashi Y, et al. Regioselective Synthesis of Quinolin-8-ols and 1,2,3,4-Tetrahydroquinolin-8-ols by the Cyclization of 2-(3-Hydroxyphenyl)ethyl Ketone O-2,4-Dinitrophenyloximes [J]. Bull Chem Soc Jpn, 1998, 71(12): 2945-2955.
    [199] Anastasiou D, Campi E M, Chaouk H, et al. The Stereochemistry of Organometallic Compounds. LX. Rhodium-Catalyzed Reactions of Hydrogen and Carbon Monoxide With Alkenylanilines [J]. Aust J Chem, 1994, 47(6): 1043-1059.
    [200] Comesse S, Sanselme M, Da?ch A, New and Expeditious Tandem Sequence Aza-Michael/ Intramolecular Nucleophilic Substitution Route to Substitutedγ-Lactams: Synthesis of the Tricyclic Core of (±)-Martinellines [J]. J Org Chem, 2008, 73(14): 5566-5569.
    [201] a) Grundon M F, Corkindale M N J. The Preparation of a pyrrolo(3’:2’-3:4)quinolone from (2-ethoxyethy1)malondianilide [J]. J Chem Soc, 1957, 3448-3450. b) Brown T H, Ife R J, Keeling D J, et al. Reversible inhibitors of the gastric (H+/K+)-ATPase. 2. 1-Arylpyrrolo[3, 2-c]quinolines: effect of the 4-substituent [J]. J Med Chem, 1992, 35(10): 1845-1852.
    [202] Masse C E, Ng P Y, Fukase Y, et al. Divergent Structural Complexity from a Linear Reaction Sequence: Synthesis of Fused and Spirobicyclicγ-Lactams from Common Synthetic Precursors [J]. J Comb Chem, 2006, 8(3): 293-296.
    [203] Demir A S, Emrullahoglu M, Ardahan G, New approaches to polysubstituted pyrroles and pyrrolinones fromα-cyanomethyl-β-ketoesters [J]. Tetrahedron, 2007, 63(2): 461-468.
    [204] The constitution of aqueous Tin (IV) chloride has been studied in detail, please see: Taylor M J, Coddinfton J M, The constitution of aqueous tin(IV) chloride and bromide solutions and solvent extracts studied by 119Sn NMR and vibrational spectroscopy [J]. Polyhedron, 1992, 11(12): 1531-1544 and references cited therein.
    [205] Kakeya H, Kageyama S I, Nie L, et al. Lucilactaene, a new cell cycle inhibitor in p53-transfected cancer cells, produced by a Fusarium sp. [J]. J Antibiot, 2001, 54(10): 850-854.
    [206] a) Sparey T, Abeywickrema P, Almond S, et al. The discovery of fused pyrrole carboxylic acids as novel, potent d-amino acid oxidase (DAO) inhibitors [J]. Bioorg Med Chem Lett, 2008, 18(11): 3386-3391. b) Krutosikova A, Kovac J, Dandarova M, et al. Furan-derivatives. 163. Synthesis And Reactions of Substituted Furo[3, 2-b]pyrrole Derivatives [J]. Collect Czech Chem Commun, 1981, 46(10): 2564-2572. c) Stokes B J, Dong H, Leslie B E, et al. Intramolecular C?H Amination Reactions: Exploitation of the Rh2(II)-Catalyzed Decomposition of Azidoacrylates [J]. J Am Chem Soc, 2007, 129(24): 7500-7501. d) Foucaud A, Razorilalana-Rabearivony C, Loukakou E, et al. The [1+4] cycloaddition of isocyanides with 1-aryl-2-nitro-1-propenes. Methyl 2-nitro-3-arylpropenoates and methyl 2-nitro-2,4-pentadienoates. Synthesis of 1-hydroxyindoles and 1-hydroxypyrroles [J]. J Org Chem, 1983, 48(21): 3639?3644. e) Gairns R S, Moody C J, Rees C W, et al. Photochemical rearrangement of fused 14,2-thiazines (2-azathiabenzenes); rapid migration of methylthio and phenylthio groups [J]. J Chem Soc Perkin Trans 1, 1986, 497-499. f) Paolucci C, Musiani L, Venturelli F, et al. Hydroxylatedα-Vinylpyrrolidines from Sugar-Derived 2,5-Dihydrofurans. Synthesis of (1S, 2S, 8aR)-1,2-Dihydroxyindolizidine by Ring Closing Olefin Metathesis [J]. Synthesis, 1997, (12): 1415-1419. g) Reymond J L, Vogel P, A highly stereoselective total synthesis of (±)castanospermine [J]. Tetrahedron Lett, 1989, 30(6): 705-706. h) Paolucci C, Venturelli F, Fava A, Chiral building blocksfrom 1,4:3,6-dianhydrohexitols. iii. An expeditious enantiospecific synthesis of the geissman-waiss lactone [J]. Tetrahedron Lett, 1995, 36(44): 8127-8128. i) Francisco C G, Herrera A J, Martíná, et al. Intramolecular 1,5-hydrogen atom transfer reaction promoted by phosphoramidyl and carbamoyl radicals: synthesis of 2-amino-C-glycosides [J]. Tetrahedron Lett, 2007, 48(36): 6384-6388. j) Beccalli I E M, Broggini G, Michela M, et al. Microwave-Assisted Intramolecular Cyclization of Electron-Rich Heterocycle Derivatives by a Palladium-Catalyzed Coupling Reaction [J]. Synthesis, 2008, (1): 136-140.
    [207] a) Pranck R W, Miyano K, Approaches to the Mitomycins: 4,4a-Secodeiminoquinones [J]. Heterocycles, 1978, 9(7): 807-812. b) Ryu Y, Kim G, A Practical and Divergent Way to Trihydroxylated Pyrrolidine Derivatives as Potential Glycosidase Inhibitors via Stereoselective Intermolecular cis-Amidoalkylations [J]. J Org Chem, 1995, 60(1): 103-108. c) Ayad T, Génisson Y, Baltas M, et al. A New Access to Polyhydroxylated Pyrrolidines from Epoxyaldehydes [J]. Synlett, 2001, (6): 866-868. d) Lin G, Shi Z, Enantiomerically pure cage-shaped (1S,4S,5R)-4-hydroxy-2, 6-diazabicyclo[3.3.0]octane and (1S,4R,5R)-4-hydroxy-2-oxa-6-azabicyclo[3.3.0]octane: Synthesis and test for enantioselective catalysis [J]. Tetrahedron, 1997, 53(4): 1369-1382. e) Jury J C, Swamy N K, Yazici A, et al. Metal-Catalyzed Cycloisomerization Reactions of cis-4-Hydroxy-5- alkynylpyrrolidinones and cis-5-Hydroxy-6-alkynylpiperidinones: Synthesis of Furo[3, 2-b]pyrroles and Furo[3, 2-b]pyridines [J]. J Org Chem, 2009, 74(15): 5523-5527. f) Williams R M, Esslinger C S, Synthesis of tri-substituted furans: mild Ti(IV)-mediated couplings to acetals. Construction of the epoxy hemi-amido ketal of fusarin C [J]. Tetrahedron Lett, 1991, 32(30): 3635-3638. g) Coleman R S, Walczak M C, Campbell E L, Total Synthesis of Lucilactaene, A Cell Cycle Inhibitor Active in p53-Inactive Cells [J]. J Am Chem Soc, 2005, 127(46): 16038-16039. h) Yamaguchi J, Kakeya H, Uno T, et al. Determination by Asymmetric Total Synthesis of the Absolute Configuration of Lucilactaene, a Cell-Cycle Inhibitor in p53-Transfected Cancer Cells [J]. Angew Chem Int Ed, 2005, 44(20): 3110-3115.
    [208] a) 1, 3-dipolar cycloaddition chemistry. New York: Wiley. 1984, ISBN 978-0-471-08364-1. b) Kobayashi S, J?rgensen K A, Cycloaddition Reaction in Organic Synthesis, Wiley-VCH, Weinheim 2002
    [209] a) Huisgen R, Grashey R, Gotthardt H, et al. 1, 3-Dipolar Additions of Sydnones to Alkynes. A New Route into the Pyrazole Series [J]. Angew Chem Int Ed, 1962, 1(1): 48-49. b) Huisgen R, 1, 3-Dipolar Cycloadditions. Past and Future [J]. Angew Chem Int Ed, 1963, 2(10): 565-598; Kinetics and Mechanism of 1, 3-Dipolar Cycloadditions, 2(11): 633-645.
    [210] a) Ess D H, Houk K N, Activation Energies of Pericyclic Reactions: Performance of DFT, MP2, and CBS-QB3 Methods for the Prediction of Activation Barriers and Reaction Energetics of 1, 3-Dipolar Cycloadditions, and Revised Activation Enthalpies for a Standard Set of Hydrocarbon Pericyclic Reactions [J]. J Phys Chem A, 2005, 109(42): 9542-9553. b) Ess D H, Houk K N, Distortion/Interaction Energy Control of 1, 3-Dipolar Cycloaddition Reactivity [J]. J Am Chem Soc, 2007, 129(35): 10646-10647. c) Ess D H, Houk K N, Theory of 1, 3-Dipolar Cycloadditions: Distortion/Interaction and Frontier Molecular Orbital Models [J]. J Am Chem Soc, 2008, 130(31): 10187-10198. d) Xu L, Doubleday C E, Houk K N, Dynamics of 1, 3-Dipolar Cycloaddition Reactions of Diazonium Betaines to Acetylene and Ethylene: Bending Vibrations Facilitate Reaction [J]. Angew Chem, 2009, 121(15): 2784-2786. [J]. Angew Chem Int Ed, 2009, 48(15): 2746-2748.
    [211] a) Stanley L M, Sibi M P, Enantioselective Copper-Catalyzed 1, 3-Dipolar Cycloadditions [J]. Chem Rev, 2008, 108(8): 2887-2902. b) Gothelf K V, J?rgensen K A, Asymmetric 1, 3-Dipolar Cycloaddition Reactions [J]. Chem Rev, 1998, 98(2): 863-910. c) Pellissier H, Asymmetric 1, 3-dipolar cycloadditions [J]. Tetrahedron, 2007, 63(16): 3235-3285. d) Namboothiri I N N, Hassner A, Stereoselective Intramolecular 1, 3-Dipolar Cycloadditions [J]. Top Curr Chem, 2001, 216, 1-49. e) Kanesama S, Metal-Assisted Stereocontrol of 1, 3-Dipolar Cycloaddition Reactions [J]. Synlett, 2002,(9): 1371-1387. f) Nair V, Suja T D, Intramolecular 1, 3-dipolar cycloaddition reactions in targeted syntheses [J]. Tetrahedron, 2007, 63(50): 12247-12275. g) Lautens M, Klute W, Tam W, Transition Metal-Mediated Cycloaddition Reactions [J]. Chem Rev, 1996, 96(1): 49-92. AmblardF, Cho J H, Schinazi R F, Cu(I)-Catalyzed Huisgen Azide?Alkyne 1, 3-Dipolar Cycloaddition Reaction in Nucleoside, Nucleotide, and Oligonucleotide Chemistry [J]. Chem Rev, 2009, 109(9): 4207-4220. h) Welker M E, 3+2 Cycloaddition reactions of transition-metal 2-alkynyl and .eta.1-allyl complexes and their utilization in five-membered-ring compound syntheses [J]. Chem Rev, 1992, 92(1): 97-112. i) Pandey G, Banerjee P, Gadre S R, Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3+2]-Cycloaddition of Azomethine Ylides [J]. Chem Rev, 2006, 106(11): 4484-4517. j) Tranmer G K, Tam W, Intramolecular 1, 3-Dipolar Cycloadditions of Norbornadiene-Tethered Nitrones [J]. J Org Chem, 2001, 66(15): 5113-5123. k) Yip C, Handerson S, Tranmer G K, et al. Intramolecular 1, 3-Dipolar Cycloadditions of Norbornadiene-Tethered Nitrile Oxides [J]. J Org Chem, 2001, 66(1): 276-286. l) Michael E. Jung, Binh T. Vu, Complete Diastereocontrol in Intramolecular 1, 3-Dipolar Cycloadditions of 2-Substituted 5-Hexenyl and 5-Heptenyl Nitrones: Application to the Synthesis of theβ-Lactam Antibiotic 1β-Methylthienamycin [J]. J Org Chem, 1996, 61(13): 4427-4433. m) Kim S, Lee Y M, Lee J, et al. Expedient Syntheses of Antofine and Cryptopleurine via Intramolecular 1, 3-Dipolar Cycloaddition [J]. J Org Chem, 2007, 72(13): 4886-4891. n) Kim N, Kim Y, Park W, et al. Gold-Catalyzed Cycloisomerization of o-Alkynylbenzaldehydes with a Pendant Unsaturated Bond: [3+2] Cycloaddition of Gold-Bound 1, 3-Dipolar Species with Dipolarophiles [J]. Org Lett, 2005, 7(23): 5289-5291.
    [212] a) Yamago S, Nakamura E, Yamago S, et al. [3+2] Cycloaddition of Trimethylenemethane and its Synthetic Equivalents [M]. Org React, 2002, 61, 1-217. b) Bertozzi F, Gustafsson M, Olsson R, A Novel Metal Iodide Promoted Three-Component Synthesis of Substituted Pyrrolidines [J]. Org Lett, 2002, 4(18): 3147-3150. c) Pohlhaus P D, Johnson J S, Enantiospecific Sn(II)- and Sn(IV)-Catalyzed Cycloadditions of Aldehydes and Donor-Acceptor Cyclopropanes [J]. J Am Chem Soc, 2005, 127(46): 16014-16015. d) Pohlhaus P D, Johnson J S, Highly Diastereoselective Synthesis of Tetrahydrofurans via Lewis Acid-Catalyzed Cyclopropane/Aldehyde Cycloadditions [J]. J Org Chem, 2005, 70(3): 1057-1059.
    [213] Trost B M, [3+2] Cycloaddition Approaches to Five-Membered Rings via Trimethylenemethane and Its Equivalents [J]. Angew Chem In Ed, 1986, 25(1): 1-20.
    [214] Trost B M, Matelich M C, Synthesis and Palladium-Catalyzed Cycloaddition of the Bifunctional Conjunctive Reagent Methyl (Z)-1-Methyl-2-trimethylsilylmethyl-2-butenyl Carbonate [J]. Synthesis, 1992, (1/2): 151-156.
    [215] a) Mukawa T, Shiraishi S, Palladium-catalyzed [3+2] cycloaddition of trimethylenemethane with p-benzoquinones [J]. Nippon Kagaku Kaishi, 2000, (1): 75-77. b) Trost B M, Mignani S M, Nanninga T N, 2-[(Trimethylsilyl)methyl]-1-(trimethylsilyl)propen-3-yl carboxylates in cycloaddition. Novel approach for substitutive cyclopentannulation [J]. J Am Chem Soc, 1988, 110(5): 1602-1608. c) Wang H J H, Jaquinod L, Nurco D J, et al.β,β`-Fused metallocenoporphyrins [J]. Chem Commun, 2001, (24): 2646-2647. d) Harrity J P A, Provoost O, [3 + 3] Cycloadditions and related strategies in alkaloid natural product synthesis [J]. Org Biomol Chem, 2005, (3): 1349-1358. e) Kimura M, Tamaki T, Nakata M, et al. Convenient Synthesis of Pyrrolidines by Amphiphilic Allylation of Imines with 2-Methylenepropane-1, 3-diols [J]. Angew Chem Int Ed, 2008, 47(31): 5803-5805. f) TakahashiY, Tanino K, Kuwajima I, Methylenecyciopentane Annulation via Formal [3+2] Cycloaddition Reaction [J]. Tetrahedron Lett, 1996, 37(33): 5943-5946.
    [216] Trost B M, McDougall P J, Access to a Welwitindolinone Core Using Sequential Cycloadditions [J]. Org Lett, 2009, 11(16): 3782-3785.
    [217] Tanaka M, Ubukata M, Matsuo T, et al. One-Step Synthesis Heteroaromatic-Fused Pyrrolidines via Cyclopropane Ring-Opening Reaction: Application to the PKCβInhibitor JTT-010 [J]. Org Lett, 2007,9(17): 3331-3334.
    [218] Sapeta K, Kerr M A, The Cycloaddition of Nitrones with Homochiral Cyclopropanes [J]. J Org Chem, 2007, 72(22): 8597-8599.
    [219] Boger D L, Brotherton C E, An effective, thermal three-carbon + two-carbon cycloaddition for cyclopentenone formation: formal 1, 3-dipolar cycloaddition of cyclopropenone ketals [J]. J Am Chem Soc, 1984, 106 (3): 805-807.
    [220] a) Inoue Y, Hibi T, Kawashima Y, et al. Transposition of CO2 Group In 2-Furanones Catalyzed By Palladium (0) [J]. Chem Lett, 1980, 9(12): 1521-1522. b) Inoue Y, Hibi T, Satake M, et al. Reaction of methylenecyclopropanes with carbon dioxide catalysed by palladium(0) complexes. Synthesis of five-membered lactones [J]. J Chem SOC, Chem Commun, 1979, 22, 982-982. c) ?hler E, Reininger K, Schmidt U, A Simple Synthesis ofα-Methyleneβ-Lactones [J]. Angew Chem 1970, 82(12): 480-481; Angew Chem Int Ed Engl, 1970, 9(6): 457-458.
    [221] a) Dudding T, Kwon O, Mercier E, Theoretical Rationale for Regioselection in Phosphine-Catalyzed Allenoate Additions to Acrylates, Imines, and Aldehydes [J]. Org Lett, 2006, 8(17): 3643-3646. b) Zhang C, Lu X, Phosphine-Catalyzed Cycloaddition of 2,3-Butadienoates or 2-Butynoates with Electron-Deficient Olefins. A Novel [3 + 2] Annulation Approach to Cyclopentenes [J]. J Org Chem, 1995, 60(9): 2906-2908. c) Xu Z, Lu X, Phosphine-catalyzed [3+2] cycloaddition reaction of methyl 2,3-butadienoate and N-tosylimines. A novel approach to nitrogen heterocycles [J]. Tetrahedron Lett, 1997, 38(19): 3461-3464. d) Zhu X, Henry C, Kwon O, A highly diastereoselective synthesis of 3-carbethoxy-2,5-disubstituted-3-pyrrolines by phosphine catalysis [J]. Tetrahedron, 2005, 61(26): 6276-6282. e) Lu X, Lu Z, Zhang X, Phosphine-catalyzed one-pot synthesis of cyclopentenes from electron-deficient allene, malononitrile and aromatic aldehydes [J]. Tetrahedron, 2006, 62(2-3): 457-460.
    [222] Asymmetric [3+2] Cycloadditions see: a) Zhu G, Chen Z, Jiang Q, et al. Asymmetric [3+2] Cycloaddition of 2,3-Butadienoates with Electron-Deficient Olefins Catalyzed by Novel Chiral 2,5-Dialkyl-7-phenyl-7- phosphabicyclo[2.2.1]heptanes [J]. J Am Chem Soc, 1997, 119(16): 3836-3837. b) Jean L, Marinetti A, Phosphine-catalyzed enantioselective [3+2] annulations of 2,3-butadienoates with imines [J]. Tetrahedron Lett, 2006, 47(13): 2141-2145. c) Wilson J E, Fu G C, Synthesis of Functionalized Cyclopentenes through Catalytic Asymmetric [3+2] Cycloadditions of Allenes with Enones [J]. Angew Chem Int Ed, 2006, 45(9): 1426-1429. d) Scherer A, Gladysz J A, A promising new catalyst family for enantioselective cycloadditions involving allenes and imines: chiral phosphines with transition metal-CH2-P: linkages [J]. Tetrahedron Lett, 2006, 47(36): 6335-6337. e) Wang J C, Ng S S, Krische M J, Catalytic Diastereoselective Synthesis of Diquinanes from Acyclic Precursors [J]. J Am Chem Soc, 2003, 125(13): 3682-3683. f) Wang J C, Krische M J, Intramolecular Organocatalytic [3+2] Dipolar Cycloaddition: Stereospecific Cycloaddition and the Total Synthesis of (±)-Hirsutene [J]. Angew Chem Int Ed, 2003, 42(47): 5855-5857.
    [223] Danheiser R L, Carini D J, Basak A, (Trimethylsilyl)cyclopentene annulation: a regiocontrolled approach to the synthesis of five-membered rings [J]. J Am Chem Soc, 1981, 103(6): 1604-1606.
    [224] Shapiro N D, Shi Y, Toste F D, Gold-Catalyzed [3+3]-Annulation of Azomethine Imines with Propargyl Esters [J]. J Am Chem Soc, 2009, 131(33): 11654-11655.
    [225] Binder J T, Crone B, Haug T T, et al. Direct Carbocyclization of Aldehydes with Alkynes: Combining Gold Catalysis with Aminocatalysis [J]. Org Lett, 2008, 10(5): 1025-1028.
    [226] For reviews, see: [211h], [212a], [213], a) Lu X, Zhang C, Xu Z, Reactions of Electron-Deficient Alkynes and Allenes under Phosphine Catalysis [J]. Acc Chem Res, 2001, 34(7): 535-544. b) Beak P, Burg D A, An anionic 3+2 cyclization-elimination route to cyclopentenes [J]. J Org Chem, 1989, 54(7): 1647-1654. c) Masse C E, Panek J S, Diastereoselective Reactions of Chiral Allyl and Allenyl Silanes with Activated C:X .pi.-Bonds [J]. Chem Rev, 1995, 95(5): 1293-1316. d) Danheiser R L, Carini D J, Fink D M, et al. Scope and stereochemical course of the (trimethylsilyl)cyclopentene annulations [J].Tetrahedron, 1983, 39(6): 935-947. e) Methot J L, Roush W R, Nucleophilic Phosphine Organocatalysis [J]. Adv Synth Catal, 2004, 346(9-10): 1035-1050.
    [227] Selected examples: [212c], [214e], [214f], [215e], [225], a) Zhang G, Zhang L, Au-Containing All-Carbon 1, 3-Dipoles: Generation and [3+2] Cycloaddition Reactions [J]. J Am Chem Soc, 2008, 130(38): 12598-12599. b) Huang X, Zhang L, Two-Step Formal [3+2] Cycloaddition of Enones/Enals and Allenyl MOM Ether: Gold-Catalyzed Highly Diastereoselective Synthesis of Cyclopentanone Enol Ether Containing an All-Carbon Quaternary Center [J]. J Am Chem Soc, 2007, 129(20): 6398-6399. c) Yadav V K, Sriramurthy V, Formal [3+2] Addition of Acceptor-Substituted Cyclopropylmethylsilanes with Aryl Acetylenes [J]. Angew Chem Int Ed, 2004, 43(20): 2669-2671. d) Guo H, Xu Q, Kwon O, Phosphine-Promoted [3+3] Annulations of Aziridines With Allenoates: Facile Entry Into Highly Functionalized Tetrahydropyridines [J]. J Am Chem Soc, 2009, 131(18): 6318-6319.
    [228] a) Tan J, Xu X, Zhang L, et al. Tandem Double-Michael-Addition/Cyclization/Acyl Migration of 1,4-Dien-3-ones and Ethyl Isocyanoacetate: Stereoselective Synthesis of Pyrrolizidines [J]. Angew Chem Int Ed, 2009, 48(16): 2868-2872. b) Zhang Q, Zhang Z, Yan Z, et al. A New Efficient Synthesis of Pyranoquinolines from 1-Acetyl N-Aryl Cyclopentanecarboxamides [J]. Org Lett, 2007, 9(18): 3651-3653. c) Zhang Z, Zhang Q, Yan Z, et al. One-Step Synthesis of the Tricyclic Core of Martinellic Acid from 2-(Cyanomethyl)-3-oxo-N-arylbutanamides [J]. J Org Chem, 2007, 72(25): 9808-9810. d) Meng J, Zhao Y, Ren C, et al. Highly Efficient Access to Bi- and Tricyclic Ketals through Gold-Catalyzed Tandem Reactions of 4-Acyl-1,6-diynes [J]. Chem Eur J, 2009, 15(8): 1830-1834.
    [229] a) Savard M E, Miller J D, Characterization of Fusarin F, a New Fusarin from Fusarium moniliforme [J]. J Nat Prod, 1992, 55(1): 64-70. b) Agatsuma T, Akama T, Nara S, et al. UCS1025A and B, New Antitumor Antibiotics from the Fungus Acremonium Species [J]. Org Lett, 2002, 4(25): 4387-4390.
    [230] a)álvarez-Corral M, Mu?oz-Dorado M, Rodírguez-García I, Silver-Mediated Synthesis of Heterocycles [J]. Chem Rev, 2008, 108(8): 3174-3198. b) Patil N T, Yamamoto Y, Coinage Metal-Assisted Synthesis of Heterocycles [J]. Chem Rev, 2008, 108(8): 3395-3442. c) Weibel J M, Blanc A, Pale P, Ag-Mediated Reactions: Coupling and Heterocyclization Reactions [J]. Chem Rev, 2008, 108(8): 3149-3173. d) Naodovic M, Yamamoto H, Asymmetric Silver-Catalyzed Reactions [J]. Chem Rev, 2008, 108(8): 3132-3148.
    [231] Wei L L, Xiong H, Hsung R P, The Emergence of Allenamides in Organic Synthesis [J]. Acc Chem Res, 2003, 36(10): 773-782.
    [232] Mori Y, Mihashi S, Ohta T, 4-Methyl-2:3-dihydrofuro[2:3-b]quinolines [J]. Chemistry & Industry (London, United Kingdom), 1959, (37): 1160-1161.
    [233] Ashrof M A, Raman P S, Facile Rearrangement of a Furoquinoline [J]. Journal of the Indian Chemical Society, 1992, 69(10): 690-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700