中国汉族人银屑病外显子测序发现3个新的易感位点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景银屑病是一种慢性的多因素的皮肤疾病,该病以界限清楚的红色斑块附着银色的鳞片为特征。目前该病的病因及发病机制尚不清楚,炎症介质的异常产生在银屑病发病中发挥重要作用。多数学者认为银屑病的发生是遗传与环境相互作用的结果,其中遗传因素在银屑病的发病中起到重要作用,并且该病是由多个易感基因共同参与的复杂性疾病。银屑病的患病率在世界各地差异较大,与种族、地理位置、环境等因素有关。总体上,高加索人群的患病率约为2-3%,而日本人的患病率较低且绝大多数银屑病患者为散发。我国银屑病的患病率约为0.123%,总患病人数接近1,000万例,分布趋势表现为男性患病率高于女性,北方高于南方,城市高于农村。国内1043例寻常型银屑病患者及其家族成员的遗传流行病学调查,发现一、二级亲属的发病率明显高于一般人群,一、二级亲属的遗传度分别为67.04%和46.59%,且随亲缘系数的增加呈现降低的趋势。随着遗传学研究技术的发展和研究方法的更新,国内外学者在银屑病遗传学领域研究方面作出了大量的工作,发现了一批有价值的疾病易感基因/区域。“定位克隆”和“定位候选克隆”的方法是研究孟德尔遗传模式疾病遗传学基础、发现疾病致病基因的主要方法。在上个世纪末,科学家们尝试着把遗传连锁分析研究的方法应用到银屑病的易感基因研究中。目前,通过连锁分析方法运用定位克隆和全基因组扫描的方法共计在全基因组范围内发现了10个银屑病易感位点:1q21、1p、3q21、4q、4q31-q34、6p21.33、16q、17q25、18p11.23和19p13。随着分型技术的迅速发展和分型成本的不断降低、覆盖整个人类基因组的高通量商业化SNP检测芯片的出现和不断更新,全基因组关联研究(Genome Wide Association Study,GWAS)得到发展。国内外研究团队通过大规模GWAS发现了超过40个银屑病易感基因或位点。然而,目前发现的风险变异大多数可能仅是标签单核苷酸多态性(SNP),这些易感基因的功能性编码变异,尤其是低频和罕见的变异在GWAS研究中被忽略,因此没有进行系统性研究。
     目的本研究主要是评估功能性编码变异在整个银屑病遗传度上的贡献,并试图发现银屑病的其他关联信号。
     方法我们在两个独立中国汉族人群(包括21,309例样本)中对功能性编码变异进行大规模测序分析研究。首先,我们对781例患者和676例对照样本的全基因组外显子测序数据进行全基因非同义单核苷酸变异(SNVs)分析,并在9,946例患者和9,906例对照的1,326个候选基因的靶向测序数据进行验证分析。对于非编码区域SNVs,我们进行深入的数据分析并在大规模测序数据的基础上对22个提示SNVs在另外一个独立中国汉族人群(4,480例患者和6,521例对照)中进行验证实验,以发现银屑病的其他关联信号。
     结果对于非同义SNVs,我们发现6个常见和低频SNVs在两个独立的测序样本(全基因组外显子测序和靶向测序)中关联性一致,并在联合分析中达到全基因组显著水平,包括IL23R基因上的chr1:67421184(c.G530A)(P_(exome-target)=1.94×10~(-11),OR=0.72)、GJB2基因上的rs72474224(c.G324A)(P_(exome-target)=7.46×10~(-11),OR=1.34)、LCE3D基因上的rs512208(c.C185A)(P_(exome-target)=2.92×10~(-23),OR=1.24)、ERAP1基因上的rs27044(c.C2535G)(P_(exome-target)=2.16×10~(-14),OR=0.86)和rs26653(c.G727C)(P_(exome-target)=5.27×10~(-12),OR=0.87)以及ZNF816A基因上的rs12459008(c.T590A)(P_(exome-target)=2.25×10~(-9),OR=0.88)。在FUT2基因上,我们发现一个常见错义变异rs1047781(c.A418T)(P_(exome-target)=2.78×10~(-6),OR=1.10)和两个罕见错义变异(chr19:53898296/c.C271T和chr19:53898541/c.C516G)(P_(exome-target)=5.51×10-5,OR=3.61和P_(exome-target)=2.92×10-3,OR=6.92)具有提示相关性。对于非编码SNVs,我们验证了既往报道的4个银屑病易感基因,包括IL12B(rs2288831,P_(exome-target)=2.30×10-20,OR=0.83)、IFIH1(rs13431841,P_(exome-target)=2.96×10~(-09),OR=0.83)、ERAP1(rs27043,P_(exome-target)=6.50×10~(-12),OR=0.87)和RNF114(rs4647954,Pcombined=2.41×10~(-07),OR=1.09),并发现了3个新的易感位点达到全基因组显著水平,包括NFKB1(rs1020760,P_(exome-target)=2.19×10~(-08),OR=1.12;rs1609798,P_(exome-target)=9.87×10~(-08),OR=1.12),12p13.3(rs758739,Pcombined=4.08×10~(-08),OR=0.91;rs2243750,Pcombined=4.38×10~(-08),OR=0.91)和17q12(rs10852936,Pcombined=1.96×10~(-08),OR=1.10;rs12936231,Pcombined=5.02×10~(-08),OR=1.10)。此外,我们还发现了两个位点具有提示意义,分别是3p21.31(rs1863837,Pcombined=3.91×10~(-07),OR=0.90)和17q25(rs3744017,Pcombined=5.83×10~(-07),OR=1.12)。
     结论本研究结果提示编码区变异,至少是低频或者罕见非同变异对银屑病的整体遗传度贡献非常有限,此外,本研究增加了银屑病确定的风险位点数量。
Background Psoriasis is a chronic and multifactorial skin diseasecharacterized by sharply demarcated erythematous plaques with adherentsilvery scales. Currently, the etiology and pathogenesis of psoriasis arenot fully understood, abnormal production of inflammatory mediators playan important role in the pathogenesis of this disease. Most scholars believethat psoriasis is the result of genetic and environmental interactions,and genetic factors are essential to psoriasis risk. Furthermore, psoriasisis one of the complex diseases caused by a number of common susceptibilitygene. The prevalence of psoriasis varies between different ethnic andgeographical populations, and ethnicity, geographic location, environmentand other factors are relative to the difference. Overall, the prevalenceof the Caucasian population is about2-3%, while low rate is observed inJapanese with the majority of patients with psoriasis are sporadic. In China,the prevalence of psoriasis is approximately0.123%with the total numberof patients close to10million, the distribution trends showed that theprevalence of male is higher than that of women, the prevalence in northand urban areas is higher than that in south and raral areas. Data for1043patients with psoriasis vulgaris suggests that the prevalence of psoriasisin first-and second-degree relatives of the proband with psoriasis was higher than that in the general population and the heritability of psoriasisin first-and second-degree relatives was67.04and46.59%, respectively.With the development of genetics research technologies and research methods,great progress have been made and a number of valuable diseasesusceptibility genes/regions have been identified."Positional cloning"and "positional candidate cloning" approachs are important methods usedto evaluate the genetic basis of Mendelian diseases and identify the causalgenes. In the end of last century, the genetic linkage analysis methodswere applied to the genetic susceptibility research of psoriasis. So far,10susceptibility loci were identified via the use of positional cloningand genome-wide linkage analysis, such as1q21,1p,3q21,4q,4q31-q34,6p21.33,16q,17q25,18p11.23and19p13. With the rapid development oftechnologies and genotyping costs continue to decrease, high-throughputcommercial SNP detection chip appears and constantly update, which makesgenome-wide association studies (GWAS) to develop. Currently, more than40susceptibility genes/loci have been identified through large-scaleassociation studies, particularly GWAS; however, most of the identifiedrisk variants are expected to be tagging SNPs, and the functional codingvariants of these susceptibility genes, particularly those that are of lowfrequency and rare, are largely refractory to the interrogation by GWASand have therefore not been systematically investigated.
     Objective This study aimed to investigate the contribution of functionalcoding variants and noncoding variants to the genetic susceptibility ofpsoriasis and identifiy additional association with the disease.
     Method We carried out a large-scale sequencing analysis of functionalcoding variants in two independent samples comprising21,309individualsof Chinese Han. First, we analyzed whole genome nonsynonymoussingle-nucleotide variants (SNVs) by exome sequencing in781cases and676controls, and following validation on1,326candidate genes by targetedsequencing in9,946cases and9,906controls of Chinese population. Forthe noncoding SNVs, we performed in-depth data analysis and a replicationstudy for22SNVs in an independent cohort of Chinese Han consisting of4,480cases and6,521controls based on the large-scale sequencing data(10,727cases and10,582controls) to find additional association with thedisease.
     Result For the nonsynonymous SNVs, we discovered6common and low frequencymissense SNVs that showed consistent association in the two independentsamples of exome and targeted sequencing analyses and achieved genome-widesignificance in combined analysis: chr1:67421184(c.G530A) at IL23R(P_(exome-target)=1.94×10~(-11), OR=0.72), rs72474224(c.G324A) at GJB2(P_(exome-target)=7.46×10~(-11), OR=1.34), rs512208(c.C185A) at LCE3D (P_(exome-target)=2.92×10~(-23), OR=1.24), rs27044(c.C2535G) and rs26653(c.G727C) at ERAP1(P_(exome-target) =2.16×10~(-14), OR=0.86and P_(exome-target)=5.27×10~(-12), OR=0.87), and rs12459008(c.T590A) at ZNF816A (P_(exome-target)=2.25×10~(-9), OR=0.88). One common missenseSNV rs1047781(c.A418T) and two rare missense SNVs (chr19:53898296/c.C271Tand chr19:53898541/c.C516G) in FUT2were also identified with suggestiveassociation evidence (P_(exome-target)=2.78×10~(-6), OR=1.10, P_(exome-target)=5.51×10-5, OR=3.61and P_(exome-target)=2.92×10-3, OR=6.92, respectively). Forthe noncoding SNVs, we confirmed4previously reported psoriasissusceptibility genes: IL12B (rs2288831, P_(exome-target)=2.30×10-20, OR=0.83), IFIH1(rs13431841, P_(exome-target)=2.96×10~(-09), OR=0.83), ERAP1(rs27043, P_(exome-target)=6.50×10~(-12), OR=0.87) and RNF114(rs4647954, Pcombined=2.41×10~(-07), OR=1.09),and identified3new susceptibility loci exceeded the genome-widesignificance threshold: NFKB1(rs1020760, P08exome-target=2.19×10-, OR=1.12;rs1609798, P_(exome-target)=9.87×10~(-08), OR=1.12),12p13.3(rs758739, Pcombined=4.08×10~(-08), OR=0.91; rs2243750, P08combined=4.38×10-, OR=0.91) and17q12(rs10852936, Pcombined=1.96×10~(-08), OR=1.10, rs12936231, Pcombined=5.02×10~(-08),OR=1.10). We also identified2additional loci exhibiting suggestiveevidence of an association:3p21.31(rs1863837, P7combined=3.91×10-0, OR=0.90) and17q25(rs3744017, P-07combined=5.83×10, OR=1.12).
     Conclusion The results of this study indicated that coding variants, atleast nonsynonymous ones with low and rare frequency might have limitedcontribution to the overall genetic risk of psoriasis and increase thenumber of confirmed psoriasis risk loci.
引文
1. Schafer T (2006) Epidemiology of psoriasis. Review and the Germanperspective. Dermatology (Basel, Switzerland).212:327-337.
    2. Yip SY (1984) The prevalence of psoriasis in the Mongoloid race.Journal of the American Academy of Dermatology.10:965-968.
    3.全国银屑病流行调查组(1986)全国1984年银屑病流行调查报告.中华皮肤科杂志.19:253.
    4.邵长庚(1996)我国银屑病的流行与防治现状.中华皮肤科杂志.29:75.
    5. Zhang X, Wang H, Te-Shao H et al (2002) The genetic epidemiology ofpsoriasis vulgaris in Chinese Han. International journal of dermatology.41:663-669.
    6. Elder JT, Nair RP, Guo SW et al (1994) The genetics of psoriasis.Archives of dermatology.130:216-224.
    7. Wuepper KD, Coulter SN and Haberman A (1990) Psoriasis vulgaris: agenetic approach. The Journal of investigative dermatology.95:2s-4s.
    8. Duffy DL, Spelman LS and Martin NG (1993) Psoriasis in Australian twins.Journal of the American Academy of Dermatology.29:428-434.
    9. Farber EM, Nall ML and Watson W (1974) Natural history of psoriasisin61twin pairs. Archives of dermatology.109:207-211.
    10. Elder JT, Nair RP, Henseler T et al (2001) The genetics of psoriasis2001: the odyssey continues. Archives of dermatology.137:1447-1454.
    11. Tysk C, Lindberg E, Jarnerot G et al (1988) Ulcerative colitis andCrohn's disease in an unselected population of monozygotic and dizygotictwins. A study of heritability and the influence of smoking. Gut.29:990-996.
    12. Butler MG (2010) Genetics of hypertension. Current status. Le Journalmedical libanais The Lebanese medical journal.58:175-178.
    13. Newton JL, Harney SM, Wordsworth BP et al (2004) A review of the MHCgenetics of rheumatoid arthritis. Genes and immunity.5:151-157.
    14.杨森,魏生才,张学军,等。(2000)寻常型银屑病诱因流行病学分析.中国麻风皮肤病杂志.16:159-162.
    15. Capon F, Semprini S, Chimenti S et al (2001) Fine mapping of the PSORS4psoriasis susceptibility region on chromosome1q21. The Journal ofinvestigative dermatology.116:728-730.
    16. de Cid R, Riveira-Munoz E, Zeeuwen PL et al (2009) Deletion of thelate cornified envelope LCE3B and LCE3C genes as a susceptibility factorfor psoriasis. Nature genetics.41:211-215.
    17. Veal CD, Clough RL, Barber RC et al (2001) Identification of a novelpsoriasis susceptibility locus at1p and evidence of epistasis betweenPSORS1and candidate loci. Journal of medical genetics.38:7-13.
    18. Samuelsson L, Enlund F, Torinsson A et al (1999) A genome-wide searchfor genes predisposing to familial psoriasis by using a stratificationapproach. Human genetics.105:523-529.
    19. Enlund F, Samuelsson L, Enerback C et al (1999) Psoriasissusceptibility locus in chromosome region3q21identified in patientsfrom southwest Sweden. European journal of human genetics: EJHG.7:783-790.
    20. Matthews D, Fry L, Powles A et al (1996) Evidence that a locus forfamilial psoriasis maps to chromosome4q. Nature genetics.14:231-233.
    21. Zhang XJ, He PP, Wang ZX et al (2002) Evidence for a major psoriasissusceptibility locus at6p21(PSORS1) and a novel candidate region at4q31by genome-wide scan in Chinese hans. The Journal of investigativedermatology.119:1361-1366.
    22. Enlund F, Samuelsson L, Enerback C et al (1999) Analysis of threesuggested psoriasis susceptibility loci in a large Swedish set of families:confirmation of linkage to chromosome6p (HLA region), and to17q, butnot to4q. Human heredity.49:2-8.
    23. Nair RP, Henseler T, Jenisch S et al (1997) Evidence for two psoriasissusceptibility loci (HLA and17q) and two novel candidate regions (16qand20p) by genome-wide scan. Human molecular genetics.6:1349-1356.
    24. Capon F, Novelli G, Semprini S et al (1999) Searching for psoriasissusceptibility genes in Italy: genome scan and evidence for a new locuson chromosome1. The Journal of investigative dermatology.112:32-35.
    25. Chen H, Poon A, Yeung C et al (2011) A genetic risk score combiningten psoriasis risk loci improves disease prediction. PloS one.6: e19454.
    26.(2003) The International Psoriasis Genetics Study: assessing linkageto14candidate susceptibility loci in a cohort of942affected sib pairs.American journal of human genetics.73:430-437.
    27. Tomfohrde J, Silverman A, Barnes R et al (1994) Gene for familialpsoriasis susceptibility mapped to the distal end of human chromosome17q.Science (New York, NY).264:1141-1145.
    28. Speckman RA, Wright Daw JA, Helms C et al (2003) Novel immunoglobulinsuperfamily gene cluster, mapping to a region of human chromosome17q25,linked to psoriasis susceptibility. Human genetics.112:34-41.
    29. Asumalahti K, Laitinen T, Lahermo P et al (2003) Psoriasissusceptibility locus on18p revealed by genome scan in Finnish familiesnot associated with PSORS1. The Journal of investigative dermatology.121:735-740.
    30. Goring HH, Terwilliger JD and Blangero J (2001) Large upward bias inestimation of locus-specific effects from genomewide scans. Americanjournal of human genetics.69:1357-1369.
    31. Lander E and Kruglyak L (1995) Genetic dissection of complex traits:guidelines for interpreting and reporting linkage results. Naturegenetics.11:241-247.
    32. Sabatti C, Service S and Freimer N (2003) False discovery rate inlinkage and association genome screens for complex disorders. Genetics.164:829-833.
    33. Risch N and Merikangas K (1996) The future of genetic studies ofcomplex human diseases. Science (New York, NY).273:1516-1517.
    34. Holm SJ, Carlen LM, Mallbris L et al (2003) Polymorphisms in the SEEK1and SPR1genes on6p21.3associate with psoriasis in the Swedishpopulation. Experimental dermatology.12:435-444.
    35. Capon F, Allen MH, Ameen M et al (2004) A synonymous SNP of thecorneodesmosin gene leads to increased mRNA stability and demonstratesassociation with psoriasis across diverse ethnic groups. Human moleculargenetics.13:2361-2368.
    36. Helms C, Cao L, Krueger JG et al (2003) A putative RUNX1binding sitevariant between SLC9A3R1and NAT9is associated with susceptibility topsoriasis. Nature genetics.35:349-356.
    37. Young HS, Summers AM, Bhushan M et al (2004) Single-nucleotidepolymorphisms of vascular endothelial growth factor in psoriasis of earlyonset. The Journal of investigative dermatology.122:209-215.
    38. Frazer KA, Ballinger DG, Cox DR et al (2007) A second generation humanhaplotype map of over3.1million SNPs. Nature.449:851-861.
    39. Hattersley AT and McCarthy MI (2005) What makes a good geneticassociation study? Lancet.366:1315-1323.
    40. Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor Hpolymorphism in age-related macular degeneration. Science (New York, NY).308:385-389.
    41. Tsoi LC, Spain SL, Knight J et al (2012) Identification of15newpsoriasis susceptibility loci highlights the role of innate immunity.Nature genetics.44:1341-1348.
    42. Zhang XJ, Huang W, Yang S et al (2009) Psoriasis genome-wideassociation study identifies susceptibility variants within LCE genecluster at1q21. Nature genetics.41:205-210.
    43. Strange A, Capon F, Spencer CC et al (2010) A genome-wide associationstudy identifies new psoriasis susceptibility loci and an interactionbetween HLA-C and ERAP1. Nature genetics.42:985-990.
    44. Ellinghaus E, Stuart PE, Ellinghaus D et al (2012) Genome-widemeta-analysis of psoriatic arthritis identifies susceptibility locus atREL. The Journal of investigative dermatology.132:1133-1140.
    45. Sun LD, Cheng H, Wang ZX et al (2010) Association analyses identifysix new psoriasis susceptibility loci in the Chinese population. Naturegenetics.42:1005-1009.
    46. Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan revealsassociation of psoriasis with IL-23and NF-kappaB pathways. Naturegenetics.41:199-204.
    47. Ellinghaus D, Ellinghaus E, Nair RP et al (2012) Combined analysisof genome-wide association studies for Crohn disease and psoriasisidentifies seven shared susceptibility loci. American journal of humangenetics.90:636-647.
    48. Cargill M, Schrodi SJ, Chang M et al (2007) A large-scale geneticassociation study confirms IL12B and leads to the identification of IL23Ras psoriasis-risk genes. American journal of human genetics.80:273-290.
    49. Huffmeier U, Uebe S, Ekici AB et al (2010) Common variants at TRAF3IP2are associated with susceptibility to psoriatic arthritis and psoriasis.Nature genetics.42:996-999.
    50. Ellinghaus E, Ellinghaus D, Stuart PE et al (2010) Genome-wideassociation study identifies a psoriasis susceptibility locus at TRAF3IP2.Nature genetics.42:991-995.
    51. Capon F, Bijlmakers MJ, Wolf N et al (2008) Identification ofZNF313/RNF114as a novel psoriasis susceptibility gene. Human moleculargenetics.17:1938-1945.
    52. Liu Y, Helms C, Liao W et al (2008) A genome-wide association studyof psoriasis and psoriatic arthritis identifies new disease loci. PLoSgenetics.4: e1000041.
    53. Knight J, Spain SL, Capon F et al (2012) Conditional analysisidentifies three novel major histocompatibility complex loci associatedwith psoriasis. Human molecular genetics.21:5185-5192.
    54. Feng BJ, Sun LD, Soltani-Arabshahi R et al (2009) Multiple Loci withinthe major histocompatibility complex confer risk of psoriasis. PLoSgenetics.5: e1000606.
    55. Stuart PE, Nair RP, Ellinghaus E et al (2010) Genome-wide associationanalysis identifies three psoriasis susceptibility loci. Nature genetics.42:1000-1004.
    56. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set forwhole-genome association and population-based linkage analyses. Americanjournal of human genetics.81:559-575.
    57. Barrett JC, Fry B, Maller J et al (2005) Haploview: analysis andvisualization of LD and haplotype maps. Bioinformatics (Oxford, England).21:263-265.
    58. Wang K, Li M and Hakonarson H (2010) ANNOVAR: functional annotationof genetic variants from high-throughput sequencing data. Nucleic acidsresearch.38: e164.
    59. Cooper GM, Stone EA, Asimenos G et al (2005) Distribution and intensityof constraint in mammalian genomic sequence. Genome research.15:901-913.
    60. Kumar P, Henikoff S and Ng PC (2009) Predicting the effects of codingnon-synonymous variants on protein function using the SIFT algorithm.Nature protocols.4:1073-1081.
    61. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and serverfor predicting damaging missense mutations. Nature methods.7:248-249.
    62. Li R, Li Y, Kristiansen K et al (2008) SOAP: short oligonucleotidealignment program. Bioinformatics (Oxford, England).24:713-714.
    63. Li R, Yu C, Li Y et al (2009) SOAP2: an improved ultrafast tool forshort read alignment. Bioinformatics (Oxford, England).25:1966-1967.
    64. Li R, Li Y, Fang X et al (2009) SNP detection for massively parallelwhole-genome resequencing. Genome research.19:1124-1132.
    65. Li H and Durbin R (2010) Fast and accurate long-read alignment withBurrows-Wheeler transform. Bioinformatics (Oxford, England).26:589-595.
    66. McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data.Genome research.20:1297-1303.
    67. Wallenstein S and Wittes J (1993) The power of the Mantel-Haenszeltest for grouped failure time data. Biometrics.49:1077-1087.
    68. Purcell S, Cherny SS and Sham PC (2003) Genetic Power Calculator:design of linkage and association genetic mapping studies of complextraits. Bioinformatics (Oxford, England).19:149-150.
    69.Siepel A, Pollard, K.&Haussler, D.(Springer Berlin Heidelberg,2006)New Methods for Detecting Lineage-Specific Selection. in Research inComputational Molecular Biology, Vol.3909(eds. Apostolico, A., Guerra,C., Istrail, S., Pevzner, P.&Waterman, M.)190-205.
    70. Han F and Pan W (2010) A data-adaptive sum test for disease associationwith multiple common or rare variants. Human heredity.70:42-54.
    71. Madsen BE and Browning SR (2009) A groupwise association test for raremutations using a weighted sum statistic. PLoS genetics.5: e1000384.
    72. Dering C, Hemmelmann C, Pugh E et al (2011) Statistical analysis ofrare sequence variants: an overview of collapsing methods. Geneticepidemiology.35Suppl1: S12-17.
    73. Li B and Leal SM (2008) Methods for detecting associations with rarevariants for common diseases: application to analysis of sequence data.American journal of human genetics.83:311-321.
    74. Wu MC, Lee S, Cai T et al (2011) Rare-variant association testing forsequencing data with the sequence kernel association test. Americanjournal of human genetics.89:82-93.
    75. Price AL, Kryukov GV, de Bakker PI et al (2010) Pooled associationtests for rare variants in exon-resequencing studies. American journalof human genetics.86:832-838.
    76. Neale BM, Rivas MA, Voight BF et al (2011) Testing for an unusualdistribution of rare variants. PLoS genetics.7: e1001322.
    77. Kochan G, Krojer T, Harvey D et al (2011) Crystal structures of theendoplasmic reticulum aminopeptidase-1(ERAP1) reveal the molecularbasis for N-terminal peptide trimming. Proceedings of the NationalAcademy of Sciences of the United States of America.108:7745-7750.
    78. Maeda S, Nakagawa S, Suga M et al (2009) Structure of the connexin26gap junction channel at3.5A resolution. Nature.458:597-602.
    79. Jordan CT, Cao L, Roberson ED et al (2012) Rare and common variantsin CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis.American journal of human genetics.90:796-808.
    80. Nair RP, Ruether A, Stuart PE et al (2008) Polymorphisms of the IL12Band IL23R genes are associated with psoriasis. The Journal ofinvestigative dermatology.128:1653-1661.
    81. Momozawa Y, Mni M, Nakamura K et al (2011) Resequencing of positionalcandidates identifies low frequency IL23R coding variants protectingagainst inflammatory bowel disease. Nature genetics.43:43-47.
    82. Rivas MA, Beaudoin M, Gardet A et al (2011) Deep resequencing of GWASloci identifies independent rare variants associated with inflammatorybowel disease. Nature genetics.43:1066-1073.
    83. Franke A, McGovern DP, Barrett JC et al (2010) Genome-widemeta-analysis increases to71the number of confirmed Crohn's diseasesusceptibility loci. Nature genetics.42:1118-1125.
    84. Nguyen TT, Chang SC, Evnouchidou I et al (2011) Structural basis forantigenic peptide precursor processing by the endoplasmic reticulumaminopeptidase ERAP1. Nature structural&molecular biology.18:604-613.
    85. Tanaka T, Scheet P, Giusti B et al (2009) Genome-wide association studyof vitamin B6, vitamin B12, folate, and homocysteine blood concentrations.American journal of human genetics.84:477-482.
    86. Hazra A, Kraft P, Selhub J et al (2008) Common variants of FUT2areassociated with plasma vitamin B12levels. Nature genetics.40:1160-1162.
    87. Jordan CT, Cao L, Roberson ED et al (2012) PSORS2is due to mutationsin CARD14. American journal of human genetics.90:784-795.
    88. Maurano MT, Humbert R, Rynes E et al (2012) Systematic localizationof common disease-associated variation in regulatory DNA. Science (NewYork, NY).337:1190-1195.
    89. Bernstein BE, Birney E, Dunham I et al (2012) An integratedencyclopedia of DNA elements in the human genome. Nature.489:57-74.
    90. Gerstein MB, Kundaje A, Hariharan M et al (2012) Architecture of thehuman regulatory network derived from ENCODE data. Nature.489:91-100.
    91. Hunt KA, Mistry V, Bockett NA et al (2013) Negligible impact of rareautoimmune-locus coding-region variants on missing heritability. Nature.498:232-235.
    92. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missingheritability of complex diseases. Nature.461:747-753.
    93. Eichler EE, Flint J, Gibson G et al (2010) Missing heritability andstrategies for finding the underlying causes of complex disease. Naturereviews Genetics.11:446-450.
    94. Sun J, Matthias G, Mihatsch MJ et al (2003) Lack of the transcriptionalcoactivator OBF-1prevents the development of systemic lupuserythematosus-like phenotypes in Aiolos mutant mice. Journal ofimmunology (Baltimore, Md:1950).170:1699-1706.
    95. Cunninghame Graham DS, Morris DL, Bhangale TR et al (2011) Associationof NCF2, IKZF1, IRF8, IFIH1, and TYK2with systemic lupus erythematosus.PLoS genetics.7: e1002341.
    96. Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide associationstudy of nonsynonymous SNPs identifies a type1diabetes locus in theinterferon-induced helicase (IFIH1) region. Nature genetics.38:617-619.
    97. Sutherland A, Davies J, Owen CJ et al (2007) Genomic polymorphism atthe interferon-induced helicase (IFIH1) locus contributes to Graves'disease susceptibility. The Journal of clinical endocrinology andmetabolism.92:3338-3341.
    98. Lin L, DeMartino GN and Greene WC (1998) Cotranslational biogenesisof NF-kappaB p50by the26S proteasome. Cell.92:819-828.
    99. Kaufman CK and Fuchs E (2000) It's got you covered. NF-kappaB in theepidermis. The Journal of cell biology.149:999-1004.
    100. Kawashima K, Doi H, Ito Y et al (2004) Evaluation of cell deathand proliferation in psoriatic epidermis. Journal of dermatologicalscience.35:207-214.
    101. Gudjonsson JE, Ding J, Johnston A et al (2010) Assessment of thepsoriatic transcriptome in a large sample: additional regulated genes andcomparisons with in vitro models. The Journal of investigativedermatology.130:1829-1840.
    102. Hendriks J, Gravestein LA, Tesselaar K et al (2000) CD27isrequired for generation and long-term maintenance of T cell immunity.Nature immunology.1:433-440.
    103. Borst J, Hendriks J and Xiao Y (2005) CD27and CD70in T cell andB cell activation. Current opinion in immunology.17:275-281.
    104. Agematsu K, Hokibara S, Nagumo H et al (1999) Plasma cellgeneration from B-lymphocytes via CD27/CD70interaction. Leukemia&lymphoma.35:219-225.
    105. O'Shaughnessy A and Hendrich B (2013) CHD4in the DNA-damageresponse and cell cycle progression: not so NuRDy now. Biochemical Societytransactions.41:777-782.
    106. Bruniquel D, Borie N, Hannier S et al (1998) Regulation ofexpression of the human lymphocyte activation gene-3(LAG-3) molecule,a ligand for MHC class II. Immunogenetics.48:116-124.
    107. Workman CJ, Cauley LS, Kim IJ et al (2004) Lymphocyte activationgene-3(CD223) regulates the size of the expanding T cell populationfollowing antigen activation in vivo. Journal of immunology (Baltimore,Md:1950).172:5450-5455.
    108. Andreae S, Piras F, Burdin N et al (2002) Maturation and activationof dendritic cells induced by lymphocyte activation gene-3(CD223).Journal of immunology (Baltimore, Md:1950).168:3874-3880.
    109. McGovern DP, Gardet A, Torkvist L et al (2010) Genome-wideassociation identifies multiple ulcerative colitis susceptibility loci.Nature genetics.42:332-337.
    110. Anderson CA, Boucher G, Lees CW et al (2011) Meta-analysisidentifies29additional ulcerative colitis risk loci, increasing thenumber of confirmed associations to47. Nature genetics.43:246-252.
    111. Stahl EA, Raychaudhuri S, Remmers EF et al (2010) Genome-wideassociation study meta-analysis identifies seven new rheumatoidarthritis risk loci. Nature genetics.42:508-514.
    112. Lessard CJ, Adrianto I, Ice JA et al (2012) Identification of IRF8,TMEM39A, and IKZF3-ZPBP2as susceptibility loci for systemic lupuserythematosus in a large-scale multiracial replication study. Americanjournal of human genetics.90:648-660.
    113. Romero F, Martinez AC, Camonis J et al (1999) Aiolos transcriptionfactor controls cell death in T cells by regulating Bcl-2expression andits cellular localization. The EMBO journal.18:3419-3430.
    114. Wang JH, Avitahl N, Cariappa A et al (1998) Aiolos regulates B cellactivation and maturation to effector state. Immunity.9:543-553.
    1. Raychaudhuri SP and Farber EM (2001) The prevalence of psoriasis inthe world. Journal of the European Academy of Dermatology and Venereology:JEADV.15:16-17.
    2. Schafer T (2006) Epidemiology of psoriasis. Review and the Germanperspective. Dermatology (Basel, Switzerland).212:327-337.
    3. Yip SY (1984) The prevalence of psoriasis in the Mongoloid race. Journalof the American Academy of Dermatology.10:965-968.
    4.全国银屑病流行调查组(1986)全国1984年银屑病流行调查报告.中华皮肤科杂志.19:253.
    5.邵长庚(1996)我国银屑病的流行与防治现状.中华皮肤科杂志.29:75.
    6. Zhang X, Wang H, Te-Shao H et al (2002) The genetic epidemiology ofpsoriasis vulgaris in Chinese Han. International journal of dermatology.41:663-669.
    7. Elder JT, Nair RP, Guo SW et al (1994) The genetics of psoriasis.Archives of dermatology.130:216-224.
    8. Di Cesare A, Di Meglio P and Nestle FO (2009) The IL-23/Th17axis inthe immunopathogenesis of psoriasis. The Journal of investigativedermatology.129:1339-1350.
    9. Bowcock AM and Krueger JG (2005) Getting under the skin: theimmunogenetics of psoriasis. Nature reviews Immunology.5:699-711.
    10. Wagner EF, Schonthaler HB, Guinea-Viniegra J et al (2010) Psoriasis:what we have learned from mouse models. Nature reviews Rheumatology.6:704-714.
    11. Henseler T and Christophers E (1985) Psoriasis of early and late onset:characterization of two types of psoriasis vulgaris. Journal of theAmerican Academy of Dermatology.13:450-456.
    12. Henseler T (1998) Genetics of psoriasis. Archives of dermatologicalresearch.290:463-476.
    13. Enerback C, Martinsson T, Inerot A et al (1997) Significantly earlierage at onset for the HLA-Cw6-positive than for the Cw6-negative psoriaticsibling. The Journal of investigative dermatology.109:695-696.
    14. Enerback C, Nilsson S, Enlund F et al (2000) Stronger association withHLA-Cw6than with corneodesmosin (S-gene) polymorphisms in Swedishpsoriasis patients. Archives of dermatological research.292:525-530.
    15. Queiro R, Torre JC, Gonzalez S et al (2003) HLA antigens may influencethe age of onset of psoriasis and psoriatic arthritis. The Journal ofrheumatology.30:505-507.
    16. Fan X, Yang S, Sun LD et al (2007) Comparison of clinical featuresof HLA-Cw*0602-positive and-negative psoriasis patients in a Han Chinesepopulation. Acta dermato-venereologica.87:335-340.
    17. Kim TG, Lee HJ, Youn JI et al (2000) The association of psoriasis withhuman leukocyte antigens in Korean population and the influence of ageof onset and sex. The Journal of investigative dermatology.114:309-313.
    18. Romphruk AV, Romphruk A, Choonhakarn C et al (2004) Majorhistocompatibility complex class I chain-related gene A in Thai psoriasispatients: MICA association as a part of human leukocyte antigen-B-Cwhaplotypes. Tissue antigens.63:547-554.
    19. Bowcock AM and Cookson WO (2004) The genetics of psoriasis, psoriaticarthritis and atopic dermatitis. Human molecular genetics.13Spec No1:R43-55.
    20. Wuepper KD, Coulter SN and Haberman A (1990) Psoriasis vulgaris: agenetic approach. The Journal of investigative dermatology.95:2s-4s.
    21.Duffy DL, Spelman LS and Martin NG (1993) Psoriasis in Australian twins.Journal of the American Academy of Dermatology.29:428-434.
    22. Farber EM, Nall ML and Watson W (1974) Natural history of psoriasisin61twin pairs. Archives of dermatology.109:207-211.
    23. Elder JT, Nair RP, Henseler T et al (2001) The genetics of psoriasis2001: the odyssey continues. Archives of dermatology.137:1447-1454.
    24. Butler MG (2010) Genetics of hypertension. Current status. Le Journalmedical libanais The Lebanese medical journal.58:175-178.
    25. Tysk C, Lindberg E, Jarnerot G et al (1988) Ulcerative colitis andCrohn's disease in an unselected population of monozygotic and dizygotictwins. A study of heritability and the influence of smoking. Gut.29:990-996.
    26. Newton JL, Harney SM, Wordsworth BP et al (2004) A review of the MHCgenetics of rheumatoid arthritis. Genes and immunity.5:151-157.
    27.杨森,魏生才,张学军,等。(2000)寻常型银屑病诱因流行病学分析.中国麻风皮肤病杂志.16:159-162.
    28. Capon F, Semprini S, Chimenti S et al (2001) Fine mapping of the PSORS4psoriasis susceptibility region on chromosome1q21. The Journal ofinvestigative dermatology.116:728-730.
    29. de Cid R, Riveira-Munoz E, Zeeuwen PL et al (2009) Deletion of thelate cornified envelope LCE3B and LCE3C genes as a susceptibility factorfor psoriasis. Nature genetics.41:211-215.
    30. Veal CD, Clough RL, Barber RC et al (2001) Identification of a novelpsoriasis susceptibility locus at1p and evidence of epistasis betweenPSORS1and candidate loci. Journal of medical genetics.38:7-13.
    31. Samuelsson L, Enlund F, Torinsson A et al (1999) A genome-wide searchfor genes predisposing to familial psoriasis by using a stratificationapproach. Human genetics.105:523-529.
    32. Enlund F, Samuelsson L, Enerback C et al (1999) Psoriasissusceptibility locus in chromosome region3q21identified in patientsfrom southwest Sweden. European journal of human genetics: EJHG.7:783-790.
    33. Matthews D, Fry L, Powles A et al (1996) Evidence that a locus forfamilial psoriasis maps to chromosome4q. Nature genetics.14:231-233.
    34. Zhang XJ, He PP, Wang ZX et al (2002) Evidence for a major psoriasissusceptibility locus at6p21(PSORS1) and a novel candidate region at4q31by genome-wide scan in Chinese hans. The Journal of investigativedermatology.119:1361-1366.
    35. Enlund F, Samuelsson L, Enerback C et al (1999) Analysis of threesuggested psoriasis susceptibility loci in a large Swedish set of families:confirmation of linkage to chromosome6p (HLA region), and to17q, butnot to4q. Human heredity.49:2-8.
    36. Nair RP, Henseler T, Jenisch S et al (1997) Evidence for two psoriasissusceptibility loci (HLA and17q) and two novel candidate regions (16qand20p) by genome-wide scan. Human molecular genetics.6:1349-1356.
    37. Capon F, Novelli G, Semprini S et al (1999) Searching for psoriasissusceptibility genes in Italy: genome scan and evidence for a new locuson chromosome1. The Journal of investigative dermatology.112:32-35.
    38. Chen H, Poon A, Yeung C et al (2011) A genetic risk score combiningten psoriasis risk loci improves disease prediction. PloS one.6: e19454.
    39.(2003) The International Psoriasis Genetics Study: assessing linkageto14candidate susceptibility loci in a cohort of942affected sib pairs.American journal of human genetics.73:430-437.
    40. Tomfohrde J, Silverman A, Barnes R et al (1994) Gene for familialpsoriasis susceptibility mapped to the distal end of human chromosome17q.Science (New York, NY).264:1141-1145.
    41. Speckman RA, Wright Daw JA, Helms C et al (2003) Novel immunoglobulinsuperfamily gene cluster, mapping to a region of human chromosome17q25,linked to psoriasis susceptibility. Human genetics.112:34-41.
    42. Asumalahti K, Laitinen T, Lahermo P et al (2003) Psoriasissusceptibility locus on18p revealed by genome scan in Finnish familiesnot associated with PSORS1. The Journal of investigative dermatology.121:735-740.
    43. Nair RP, Stuart P, Henseler T et al (2000) Localization ofpsoriasis-susceptibility locus PSORS1to a60-kb interval telomeric toHLA-C. American journal of human genetics.66:1833-1844.
    44. Orru S, Giuressi E, Carcassi C et al (2005) Mapping of the majorpsoriasis-susceptibility locus (PSORS1) in a70-Kb interval around thecorneodesmosin gene (CDSN). American journal of human genetics.76:164-171.
    45. Zheng J, Jin S and Shi R (2003) Confirmation of PSORS psoriasissusceptibility loci in a Chinese population. Archives of dermatologicalresearch.295:14-18.
    46. Rani R, Narayan R, Fernandez-Vina MA et al (1998) Role of HLA-B andC alleles in development of psoriasis in patients from North India. Tissueantigens.51:618-622.
    47. Kastelan M, Gruber F, Cecuk E et al (2000) Analysis of HLA antigensin Croatian patients with psoriasis. Acta dermato-venereologicaSupplementum.12-13.
    48. Kundakci N, Oskay T, Olmez U et al (2002) Association of psoriasisvulgaris with HLA class I and class II antigens in the Turkish population,according to the age at onset. International journal of dermatology.41:345-348.
    49. Ohkawara A, Yasuda H, Kobayashi H et al (1996) Generalized pustularpsoriasis in Japan: two distinct groups formed by differences in symptomsand genetic background. Acta dermato-venereologica.76:68-71.
    50. Zhang XJ, Zhang AP, Yang S et al (2003) Association of HLA class Ialleles with psoriasis vulgaris in southeastern Chinese Hans. Journal ofdermatological science.33:1-6.
    51. Mielants H, Veys EM, De Vos M et al (1995) The evolution ofspondyloarthropathies in relation to gut histology. I. Clinical aspects.The Journal of rheumatology.22:2266-2272.
    52. Elkayam O, Segal R and Caspi D (2004) Human leukocyte antigendistribution in Israeli patients with psoriatic arthritis. Rheumatologyinternational.24:93-97.
    53. Gonzalez S, Brautbar C, Martinez-Borra J et al (2001) Polymorphismin MICA rather than HLA-B/C genes is associated with psoriatic arthritisin the Jewish population. Human immunology.62:632-638.
    54. Schmitt-Egenolf M, Boehncke WH, Stander M et al (1993) Oligonucleotidetyping reveals association of type I psoriasis with the HLA-DRB1*0701/2,-DQA1*0201,-DQB1*0303extended haplotype. The Journal of investigativedermatology.100:749-752.
    55. Zhang Q, Zhai N, Feng H et al (1999) The relationship of HLA-DRB1*0701allele with the psoriasis vulgaris. Chinese medical sciences journal=Chung-kuo i hsueh k'o hsueh tsa chih/Chinese Academy of MedicalSciences.14:70.
    56. Jee SH, Tsai TF, Tsai WL et al (1998) HLA-DRB1*0701and DRB1*1401areassociated with genetic susceptibility to psoriasis vulgaris in aTaiwanese population. The British journal of dermatology.139:978-983.
    57. Ikaheimo I, Silvennoinen-Kassinen S, Karvonen J et al (1996)Immunogenetic profile of psoriasis vulgaris: association with haplotypesA2,B13,Cw6,DR7,DQA1*0201and A1,B17,Cw6,DR7,DQA1*0201. Archives ofdermatological research.288:63-67.
    58. Zhang X, Wei S, Yang S et al (2004) HLA-DQA1and DQB1alleles areassociated with genetic susceptibility to psoriasis vulgaris in ChineseHan. International journal of dermatology.43:181-187.
    59. Pyo CW, Hur SS, Kim YK et al (2003) Association of TAP and HLA-DM geneswith psoriasis in Koreans. The Journal of investigative dermatology.120:616-622.
    60. Fakler JW, Schmitt-Egenolf M, Vejbaesya S et al (1994) Analysis ofTAP2and HLA-DP gene polymorphism in psoriasis. Human immunology.40:299-302.
    61. Hohler T, Kruger A, Schneider PM et al (1997) A TNF-alpha promoterpolymorphism is associated with juvenile onset psoriasis and psoriaticarthritis. The Journal of investigative dermatology.109:562-565.
    62. Jenisch S, Westphal E, Nair RP et al (1999) Linkage disequilibriumanalysis of familial psoriasis: identification of multipledisease-associated MHC haplotypes. Tissue antigens.53:135-146.
    63. Schmitt-Egenolf M, Eiermann TH, Boehncke WH et al (1996) Familialjuvenile onset psoriasis is associated with the human leukocyte antigen(HLA) class I side of the extended haplotypeCw6-B57-DRB1*0701-DQA1*0201-DQB1*0303: a population-and family-basedstudy. The Journal of investigative dermatology.106:711-714.
    64. Capon F, Munro M, Barker J et al (2002) Searching for the majorhistocompatibility complex psoriasis susceptibility gene. The Journal ofinvestigative dermatology.118:745-751.
    65. Holm SJ, Carlen LM, Mallbris L et al (2003) Polymorphisms in the SEEK1and SPR1genes on6p21.3associate with psoriasis in the Swedishpopulation. Experimental dermatology.12:435-444.
    66. Foerster J, Nolte I, Junge J et al (2005) Haplotype sharing analysisidentifies a retroviral dUTPase as candidate susceptibility gene forpsoriasis. The Journal of investigative dermatology.124:99-102.
    67. Capon F, Allen MH, Ameen M et al (2004) A synonymous SNP of thecorneodesmosin gene leads to increased mRNA stability and demonstratesassociation with psoriasis across diverse ethnic groups. Human moleculargenetics.13:2361-2368.
    68. Helms C, Cao L, Krueger JG et al (2003) A putative RUNX1binding sitevariant between SLC9A3R1and NAT9is associated with susceptibility topsoriasis. Nature genetics.35:349-356.
    69. Capon F, Helms C, Veal CD et al (2004) Genetic analysis of PSORS2markers in a UK dataset supports the association between RAPTOR SNPs andfamilial psoriasis. Journal of medical genetics.41:459-460.
    70. Huffmeier U, Traupe H, Burkhardt H et al (2005) Lack of evidence forgenetic association to RUNX1binding site at PSORS2in different Germanpsoriasis cohorts. The Journal of investigative dermatology.124:107-110.
    71. Sagoo GS, Tazi-Ahnini R, Barker JW et al (2004) Meta-analysis ofgenome-wide studies of psoriasis susceptibility reveals linkage tochromosomes6p21and4q28-q31in Caucasian and Chinese Hans population.The Journal of investigative dermatology.122:1401-1405.
    72. Young HS, Summers AM, Bhushan M et al (2004) Single-nucleotidepolymorphisms of vascular endothelial growth factor in psoriasis of earlyonset. The Journal of investigative dermatology.122:209-215.
    73. Yan KL, Zhang XJ, Wang ZM et al (2006) A novel MGST2non-synonymousmutation in a Chinese pedigree with psoriasis vulgaris. The Journal ofinvestigative dermatology.126:1003-1005.
    74. Villadsen LS, Schuurman J, Beurskens F et al (2003) Resolution ofpsoriasis upon blockade of IL-15biological activity in a xenograft mousemodel. The Journal of clinical investigation.112:1571-1580.
    75. Zhang XJ, Yan KL, Wang ZM et al (2007) Polymorphisms in interleukin-15gene on chromosome4q31.2are associated with psoriasis vulgaris inChinese population. The Journal of investigative dermatology.127:2544-2551.
    76. Foerster J, Nolte I, Schweiger S et al (2004) Evaluation of the IRF-2gene as a candidate for PSORS3. The Journal of investigative dermatology.122:61-64.
    77. Parkinson J, Charon C, Baker BS et al (2004) Variation at the IRF2gene and susceptibility to psoriasis in chromosome4q-linked families.The Journal of investigative dermatology.122:640-643.
    78. Samuelsson L, Stiller C, Friberg C et al (2004) Association analysisof cystatin A and zinc finger protein148, two genes located at thepsoriasis susceptibility locus PSORS5. The Journal of investigativedermatology.122:1399-1400.
    79. Hewett D, Samuelsson L, Polding J et al (2002) Identification of apsoriasis susceptibility candidate gene by linkage disequilibriummapping with a localized single nucleotide polymorphism map. Genomics.79:305-314.
    80. Giardina E, Capon F, De Rosa MC et al (2004) Characterization of theloricrin (LOR) gene as a positional candidate for the PSORS4psoriasissusceptibility locus. Annals of human genetics.68:639-645.
    81. Shimizu T, Nishihira J, Mizue Y et al (2001) High macrophage migrationinhibitory factor (MIF) serum levels associated with extended psoriasis.The Journal of investigative dermatology.116:989-990.
    82. Donn RP, Plant D, Jury F et al (2004) Macrophage migration inhibitoryfactor gene polymorphism is associated with psoriasis. The Journal ofinvestigative dermatology.123:484-487.
    83. Wu J, Chen F, Zhang X et al (2009) Association of MIF promoterpolymorphisms with psoriasis in a Han population in northeastern China.Journal of dermatological science.53:212-215.
    84. Rahman P, Bartlett S, Siannis F et al (2003) CARD15: a pleiotropicautoimmune gene that confers susceptibility to psoriatic arthritis.American journal of human genetics.73:677-681.
    85. Giardina E, Novelli G, Costanzo A et al (2004) Psoriatic arthritisand CARD15gene polymorphisms: no evidence for association in the Italianpopulation. The Journal of investigative dermatology.122:1106-1107.
    86. Young C, Allen MH, Cuthbert A et al (2003) A Crohn's disease-associatedinsertion polymorphism (3020insC) in the NOD2gene is not associated withpsoriasis vulgaris, palmo-plantar pustular psoriasis or guttatepsoriasis. Experimental dermatology.12:506-509.
    87. Plant D, Lear J, Marsland A et al (2004) CARD15/NOD2single nucleotidepolymorphisms do not confer susceptibility to type I psoriasis. TheBritish journal of dermatology.151:675-678.
    88. Luszczek W, Manczak M, Cislo M et al (2004) Gene for the activatingnatural killer cell receptor, KIR2DS1, is associated with susceptibilityto psoriasis vulgaris. Human immunology.65:758-766.
    89. Williams F, Meenagh A, Sleator C et al (2005) Activating killer cellimmunoglobulin-like receptor gene KIR2DS1is associated with psoriaticarthritis. Human immunology.66:836-841.
    90. Hensen P, Asadullah K, Windemuth C et al (2003) Interleukin-10promoter polymorphism IL10.G and familial early onset psoriasis. TheBritish journal of dermatology.149:381-385.
    91. Reich K, Mossner R, Konig IR et al (2002) Promoter polymorphisms ofthe genes encoding tumor necrosis factor-alpha and interleukin-1beta areassociated with different subtypes of psoriasis characterized by earlyand late disease onset. The Journal of investigative dermatology.118:155-163.
    92. Sa SM, Valdez PA, Wu J et al (2007) The effects of IL-20subfamilycytokines on reconstituted human epidermis suggest potential roles incutaneous innate defense and pathogenic adaptive immunity in psoriasis.Journal of immunology (Baltimore, Md:1950).178:2229-2240.
    93. Koks S, Kingo K, Ratsep R et al (2004) Combined haplotype analysisof the interleukin-19and-20genes: relationship to plaque-typepsoriasis. Genes and immunity.5:662-667.
    94. Relle M and Schwarting A (2012) Role of MHC-linked susceptibilitygenes in the pathogenesis of human and murine lupus. Clinical&developmental immunology.2012:584374.
    95. Oka A, Mabuchi T, Ozawa A et al (2012) Current understanding of humangenetics and genetic analysis of psoriasis. The Journal of dermatology.39:231-241.
    96. Capon F, Bijlmakers MJ, Wolf N et al (2008) Identification ofZNF313/RNF114as a novel psoriasis susceptibility gene. Human moleculargenetics.17:1938-1945.
    97. Liu Y, Helms C, Liao W et al (2008) A genome-wide association studyof psoriasis and psoriatic arthritis identifies new disease loci. PLoSgenetics.4: e1000041.
    98. Strange A, Capon F, Spencer CC et al (2010) A genome-wide associationstudy identifies new psoriasis susceptibility loci and an interactionbetween HLA-C and ERAP1. Nature genetics.42:985-990.
    99. Ellinghaus E, Ellinghaus D, Stuart PE et al (2010) Genome-wideassociation study identifies a psoriasis susceptibility locus at TRAF3IP2.Nature genetics.42:991-995.
    100. Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan revealsassociation of psoriasis with IL-23and NF-kappaB pathways. Naturegenetics.41:199-204.
    101. Huffmeier U, Uebe S, Ekici AB et al (2010) Common variants at TRAF3IP2are associated with susceptibility to psoriatic arthritis and psoriasis.Nature genetics.42:996-999.
    102. Ellinghaus E, Stuart PE, Ellinghaus D et al (2012) Genome-widemeta-analysis of psoriatic arthritis identifies susceptibility locus atREL. The Journal of investigative dermatology.132:1133-1140.
    103. Zhang XJ, Huang W, Yang S et al (2009) Psoriasis genome-wideassociation study identifies susceptibility variants within LCE genecluster at1q21. Nature genetics.41:205-210.
    104. Feng BJ, Sun LD, Soltani-Arabshahi R et al (2009) Multiple Loci withinthe major histocompatibility complex confer risk of psoriasis. PLoSgenetics.5: e1000606.
    105. Knight J, Spain SL, Capon F et al (2012) Conditional analysisidentifies three novel major histocompatibility complex loci associatedwith psoriasis. Human molecular genetics.21:5185-5192.
    106. Capon F, Bijlmakers MJ, Wolf N et al (2008) Identification ofZNF313/RNF114as a novel psoriasis susceptibility gene. Human moleculargenetics.17:1938-1945.
    107. Liu Y, Helms C, Liao W et al (2008) A genome-wide association studyof psoriasis and psoriatic arthritis identifies new disease loci. PLoSgenetics.4: e1000041.
    108. Zhang XJ, Huang W, Yang S et al (2009) Psoriasis genome-wideassociation study identifies susceptibility variants within LCE genecluster at1q21. Nature genetics.41:205-210.
    109. Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan revealsassociation of psoriasis with IL-23and NF-κB pathways. Nature genetics.41:199-204.
    110. Ellinghaus E, Ellinghaus D, Stuart PE et al (2010) Genome-wideassociation study identifies a psoriasis susceptibility locus at TRAF3IP2.Nature genetics.42:991-995.
    111. Strange A, Capon F, Spencer CC et al (2010) A genome-wideassociation study identifies new psoriasis susceptibility loci and aninteraction between HLA-C and ERAP1. Nature Genetics.42:985-990.
    112. Hüffmeier U, Uebe S, Ekici AB et al (2010) Common variants atTRAF3IP2are associated with susceptibility to psoriatic arthritis andpsoriasis. Nature genetics.42:996-999.
    113. Nair RP, Ruether A, Stuart PE et al (2008) Polymorphisms of theIL12B and IL23R genes are associated with psoriasis. The Journal ofinvestigative dermatology.128:1653-1661.
    114. Hayden MS and Ghosh S (2008) Shared principles in NF-kappaBsignaling. Cell.132:344-362.
    115. Oyamada A, Ikebe H, Itsumi M et al (2009) Tyrosine kinase2playscritical roles in the pathogenic CD4T cell responses for the developmentof experimental autoimmune encephalomyelitis. Journal of immunology(Baltimore, Md:1950).183:7539-7546.
    116. Chen G, Zhou D, Zhang Z et al (2012) Genetic variants in IFIH1playopposite roles in the pathogenesis of psoriasis and chronic periodontitis.International journal of immunogenetics.39:137-143.
    117. Sun LD, Cheng H, Wang ZX et al (2010) Association analyses identifysix new psoriasis susceptibility loci in the Chinese population. Naturegenetics.42:1005-1009.
    118. Kamal M, Shaaban AM, Zhang L et al (2010) Loss of CSMD1expressionis associated with high tumour grade and poor survival in invasive ductalbreast carcinoma. Breast cancer research and treatment.121:555-563.
    119. Djalilian AR, McGaughey D, Patel S et al (2006) Connexin26regulates epidermal barrier and wound remodeling and promotespsoriasiform response. The Journal of clinical investigation.116:1243-1253.
    120. Meyer-Hoffert U (2009) Reddish, scaly, and itchy: how proteases andtheir inhibitors contribute to inflammatory skin diseases. Archivumimmunologiae et therapiae experimentalis.57:345-354.
    121. Sun LD, Cheng H, Wang ZX et al (2010) Association analyses identifysix new psoriasis susceptibility loci in the Chinese population. Naturegenetics.42:1005-1009.
    122. Ellinghaus E, Stuart PE, Ellinghaus D et al (2011) Genome-widemeta-analysis of psoriatic arthritis identifies susceptibility locus atREL. Journal of Investigative Dermatology.132:1133-1140.
    123. Stuart PE, Nair RP, Ellinghaus E et al (2010) Genome-wide associationanalysis identifies three psoriasis susceptibility loci. Nature genetics.42:1000-1004.
    124. Ellinghaus D, Ellinghaus E, Nair RP et al (2012) Combined analysisof genome-wide association studies for Crohn disease and psoriasisidentifies seven shared susceptibility loci. American journal of humangenetics.90:636-647.
    125. Tsoi LC, Spain SL, Knight J et al (2012) Identification of15newpsoriasis susceptibility loci highlights the role of innate immunity.Nature genetics.44:1341-1348.
    126. Jordan CT, Cao L, Roberson ED et al (2012) PSORS2is due to mutationsin CARD14. American journal of human genetics.90:784-795.
    127. Jordan CT, Cao L, Roberson ED et al (2012) Rare and common variantsin CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis.American journal of human genetics.90:796-808.
    128. Tsoi LC, Spain SL, Knight J et al (2012) Identification of15newpsoriasis susceptibility loci highlights the role of innate immunity.Nature Genetics.44:1341-1348.
    129. Ellinghaus D, Ellinghaus E, Nair RP et al (2012) Combined analysisof genome-wide association studies for Crohn disease and psoriasisidentifies seven shared susceptibility loci. The American Journal ofHuman Genetics.90:636-647.
    130. Stuart PE, Nair RP, Ellinghaus E et al (2010) Genome-wide associationanalysis identifies three psoriasis susceptibility loci. Nature genetics.42:1000-1004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700