基于复色共焦法的透明材料厚度检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,随着光学加工、光纤、医药行业的快速发展,透明材料制品如玻璃管、玻璃容器的需求量迅速增长,由于国内企业生产工艺与设备相对落后,其质量与发达国家同类产品相比差距较大,严重影响高端产品生产。透明材料制品特别是精密小型容器对壁厚等参数的精度要求较高,在生产过程中对测量速度的要求也很高,同时这些产品在生产过程中具有高温、红热、脆性大和不易采用接触法检测的特点,因此必须研究非接触在线检测技术实现各参数的测量。采用光电非接触检测技术可以解决透明材料生产质量检测问题,对保证产品的质量、提高产品的国际竞争力有重要意义。
     复色共焦技术具有多表面层析的特点,以其高质量的尺寸测量性能成为当前光学、光电检测领域最新的研究内容之一。本论文是针对平板玻璃生产、光学零件加工等透明材料相关行业对厚度检测的需求而开展的研究,采用特殊光学系统、高速数据采集技术、先进光谱分析及处理技术,解决透明材料厚度高精度检测的问题。其主要依据光学系统对不同波长光谱产生轴向色散的特性,将连续光谱的轴向色散回波信号由探测器接收,通过上下两个表面返回的波长数据来实现透明材料厚度的检测,该方法克服了以往测量方法只能得到相对结果的现象,可实现透明材料厚度的绝对测量。本文主要研究内容包括四个方面,首先研究复色共焦测量原理,基于复色照明光束,利用光束聚焦的轴向色散特性,分析复色光谱共焦面所产生信号的特点,推导连续光谱中波长信号与透明材料厚度的尺寸模型;然后进行共焦光学系统设计,利用光学设计理论,研究轴向色散光学系统光学参数之间的关系,从理论上对光学系统进行优化;接着研究光谱信号采集原理,在此基础上设计基于CCD的光谱信号采集系统;采集的光谱信号转换成数字信号后经接口电路由采集卡传送给上位机,上位机采用虚拟仪器LabVIEW实现光谱分析软件的设计,将上下表面对应的峰值波长找出来后代入数学模型换算成厚度值;最后采用复色共焦光学系统,结合光纤传输与分光系统以及光谱信号采集系统与分析系统构建原理实验样机装置。根据实验结果,形成完备的透明材料共焦测量原理方案。
     本文所提出的复色共焦厚度检测方法,通过引入复色照明光束,利用光束聚焦的轴向色散特性,使测量范围扩展到20mm,测量精度达到±0.005mm,配合先进的电子学系统,使测量速度提高至2000次/秒。使用实验样机所测得的一系列数据表明,使用复色共焦法进行较大范围透明材料厚度的高速、高精度在线检测完全可行,具有一定的现实意义和较好的实用价值。
In recent years, with the rapid development of optical fabrication, optical fiber and Pharmaceuticals industry, the demand for transparent materials productions such as small glass tube and glass container increases rapidly. Because of the productive technology and equipments lags in domestic companies, the qualities of their products are worse than the similar products of developed countries. It is deeply affecting the high-end product. The transparent materials productions need high precise parameters of small precise glass containers, especially the containers'wall thickness and demand for the measure velocity seriously in the producing process. Meanwhile, there are characteristics of hyperthermia, red heat, brittleness and difficult to use contact measurement, so we must research for the non-contact online detecting technology to achieve the parameters'measuring. Using photoelectric can solve the detecting problems of transparent materials productions meanwhile significant to assure the productions'qualities and improve their international competitive abilities.
     Polychromatic confocal technique has characteristics of multiple surface chromatographic.-Because of the performance of high quality measurement, it is the latest research in the field of photoelectric detection. This thesis researches on the thickness detecting of related products of transparent material such as the plate glass manufacture, optical parts processing and so on. It is to solve the high precision detecting problem of transparent material thickness by utilizing especial optical system, high speed data acquisition technology and advanced analysising and processing technology of optical spectrum. Based on the characteristic that different wavelength optical spectrum produce axial dispersion through optical system, detector accepts axial dispersion echo signal of continous spectrum and then it realizes transparent material thickness detecting by analyzing wavelength data returned from the upper and lower two surfaces. This method overcomes the problem that last method could only get the relative result so that the absolute measurement can be realized. The main contents of study include four aspects. Firstly, it researches the theory of polychromatic confocal. Analyzing the signal characteristics of polychromatic confocal surface and then the wavelength signals and the dimension model of thickness for transparent material in the continuous spectrum are derived, which base on the polychromatic illumination beam and make use of the dispersion characteristic on asis. After that, the confocal'optical system is designed to research the relationship of optical parameters in axial dispersion optical system. The design of optical system is optimized theoretically. Then, we research spectral signal differential acquisiting processing principle and design the spectral signal acquisition system based on CCD according to it. The acquisited spectrum signal is converted digital signal and then delivered from acquisiting card to PC by interface circuit. At last, LabVIEW was used to analysis spectrum and construct software system, and after the wavelength peak value correspounding the upper and lower surfaces being found, it is converted to thickness with math model. At last, The principle prototype of transparent material confocal measurement is constructed by polychromatic confocal optical system combination with optical fiber transmission, optical splitting system and acquisiting and analyzing system of spectrum signal. According to experimental result, the principle scheme of the measurement system is put forward completely.
     Polychromatic confocal measurement method, utilizing axial dispersion characteristic of focusing light beam by bringing in polychromatic light beam, extend the range to20mm with absolute distinguishability. Confocal transparent material thickness' measurement method, based on polychromatic lighting, can make distinguishability at±0.005mm. In conclusion, using polychromatic measurement method proposed by this paper to measure extensiveness and successive thickness-changing transparent material at a high speed and high precision online is feasible and meaningful actually and has better practical value.
引文
[1]张佰恒,张景焘.我国玻璃行业近期发展环境及趋势分析[J].中国建材.2008(04)
    [2]刘志海.改革开放30年平板玻璃行业实现大跨越[J].中国建材.2009(04)
    [3]杨福兴.光学零件的超精密加工技术[J].航空制造技术.2004(05)
    [4]Matthias Kunkel. Jochen Schulze. Noncontact measurement of central lens thickness[J]. GLASS SCIENCE AND TECHNOLOGY.2005,78
    [5]徐熙平,张宁.光电检测技术及应用[M].北京:机械工业出版社,2012
    [6]T.Wilson, C.J.Sheppard. Theory and practice of scanning optical microscopy[M], Acadmic Press. London,1984
    [7]M.Gu and C.J.Sheppard.Three-dimensional imageformation in confocal microscope under ultr a-short-laser-pulse illumination[J],J.M.Opt,1995,42(4)
    [8]K.Carlsson.Scanning and detection techniques used in a confocal scanning laser microseope[J]. Journal of Microseopy.1990
    [9]Ruprecht A K,Wiesendanger T F,Tiziani H J.Chromatic confocal microscopy with a finite pinhole size[J]. Optics Letters.2004
    [10]Dobson S L, Sun P, Fainman Y. Diffractive lenses for chromatic confocal imaging[J]. Applied Optics.1997
    [11]Berthold Michelt, Jochen Schulze Contact-Free Thickness Measurement of Container Glass[J]. GLAS INGENIEUR.2006,16
    [12]A. B. Fedortsov. A fast operating laser device for measuring the thickness of transparent solid and liquid films[J]. Rev. Sci. Instrument,1992, Vol.63(10)
    [13]R.P. Shukla, Sanjiva Kumar. Interferometric measurement of thickness of thin films of former deposited on glass plates[J]. Journal of Optics,2000, Vol.29(2)
    [14]Zinser G. Topographic measurements at the fundus with the heidelberg retina tomograph [J].视觉の科学,1992,13(4)
    [15]B. T. Meggitt. Geometrical measurements of fiber-optic starter tubes using a novel optical technique[J]. Optic & Laser Technology,1989, Vol.21(5)
    [16]薛实福,李庆祥等.DMY-1型膜厚测量仪的原理与设计[J].清华大学学报(自然科版).1992(02)
    [17]李东光,李红民,郑义忠.精密电容式动态在线薄膜测厚仪的研制[J].仪表技术与传感器.1999(01)
    [18]李亚标,王宝光,郑义忠,刘力双,卢慧卿.高精度电容式动态薄膜测厚仪的研制[J].现代仪器.2005(03)
    [19]丛赫曦;王书涛,李园园,王玉田.基于光反射的高温玻璃厚度在线检测技术[J].红外与激光工程.2011(07)
    [20]张景超,王玉田,杨程,尚明丽.基于CCD技术的玻璃测厚系统[J].压电与声光.2010(01)
    [21]杜晓强,王伟,王召巴.玻璃厚度在线检测系统的研究[J].红外.2008(12)
    [22]徐熙平等.石英管壁厚激光扫描在线检测系统研究[J].兵工学报.2004,Vol.25(2)
    [23]董萍,徐熙平,林昭珩,徐晓丹.基于CCD的石英玻璃管壁厚在线检测系统研究[J].光学与光电技术.2009(01、
    [24]刘峰,徐熙平,孙向阳,董萍.石英管壁厚光电检测技术研究[J].长春理工大学学报(自然科学版). 2009(01)
    [25]Markku Ylilammi and Timo Ranta-aho.Optical determination of the film thicknesses in multilayer thin film structures[J]. Thin Solid films.1993
    [26]Canan Karaalio-glu,Yani Skarlatos.Measurement of thin fil m thickness by electronic speckle pattern interferometry[J]. Op-tics Communications.2004
    [27]Oguz Kysal,Duygunal,Serhatozder et al.Thickness measurement of dielectric films by wavelength scanning method[J]. Optics Communication.2002
    [28]R.H.Webb, F.J.Rogomentich. Microlaser microscope using self-detection for confocality[J], Opt.Lett,1995,20(6)
    [29]Lee.C.H, Wang.J. Optical measurement of viscoelas-tic and biochemical responses of living cells tomechani-cal perturbation[J], Opt Lett,1998(23)
    [30]D.Holmes, M.G.Somekh. Extend-focus phase imaging with an interferometric confocal micro scope[J], Appl Opt 1994,33(4)
    [31]G.Q.Xiao, T.R.Corel. Real-time confocal scanning optical microscope[J]. Appl.Phys.L ett,1998,53
    [32]J.Tiziani, R.Achi, R.N.Krmenetal. Theoreticalanalysis of confocal microscope with microlenses[J]. Appl Opt.1996.35(1)
    [33]Mitsuhino Ishihara,Hiromi Sasaki. High-speed surfacemeasurement using a nonscanning multiple-beam confocal microscope[J]. Opt Eng.1999,38(6)
    [34]http://www.keyence.com/products/vision/laser/lt9000/lt9000.php
    [35]http://www.micro-epsilon.com.cn/gpgj.htm
    [36]王永红,余晓芬,俞建卫,黄其圣,徐科军,非扫描并行三维共焦检测技术综述[J],仪器仪表学报,2003-12-30
    [37]余晓芬,余卿,刘文文,王永红.数字微镜器件用于并行共焦显微探测的研究[J].光电工程.2010(09)
    [38]刘文文,余晓芬,余卿,毕美华.用于微结构探测的并行共焦光学结构的研究[J].仪器仪表学报.2009(06)
    [39]王海涛,罗秋风,徐欣圻,张振超.用于拼接镜面共焦测量的三种位移传感器[J].传感技术学报.2003(01)
    [40]柳忠尧,闫聚群,张蕊,林德教,殷纯永,叶孝佑,许婕.用于线宽测量的偏振干涉共焦显微测量方法[J].计量学报.2005(02)
    [41]谭久彬,张杰.微型差动式共焦自聚焦光聚焦探测系统[J].光学学报.2003(02)
    [42]王富生,谭久彬.差动共焦式纳米级光聚焦探测系统的研究[J].光学技术.2001(03)
    [43]裘祖荣,江晓芸,李杏华.基于时间差法的共焦测头算法改进[J].电子测量技术.2008(08)
    [44]裘祖荣,魏芳坤,谢利勤,李杏华,肖功剑.基于时间差法的共焦测头信号处理[J].光学精密工程.2010(09)
    [45]任斌,李筱琴,谢泳,胡文云,田中群.共焦显微拉曼光谱在界面研究中的应用[J].光谱学与光谱分析.2000(05)
    [46]孙若端,邱丽荣,杨佳苗,赵维谦.激光差动共焦曲率半径测量系统的研制[J].仪器仪表学报.2011(12)
    [47]沙定国,江琴,赵维谦,邱丽荣.非共轴激光共焦显微技术的研究现状与展望[J].中国激光.2010(05)
    [48]田维坚,丁志华等.一种全场三维共焦检测的新方法[J].光学学报,1998,18(6).
    [49]张薇,田维坚,张宏建.二元变焦内窥镜光学系统设计[J].光子学报.2010(01)
    [50]孔兵,土昭等.基于针孔阵列的多光束共焦三维测量系统[J].中国激光,2002,29(3)
    [51]王昭,朱升成,谭玉山,弥宁.集成光纤束并行共焦测量[J].中国激光.2005(01)
    [52]KIMS, NAJ, K.IMMJ, etal. Simultaneous measurement of refractive index and thickness by combining lowcoherence interferometry and confocal optics[J]. Optics Express,2008.16(8)
    [53]FUKANO T, YAMAGUCHI I. Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope[J]. Applied Optics,1999,38(19)
    [54]CHRISTOF P,AIKO R.Diffractive elements for chromatic confocal sensors[J]. Dgao Proceedings 2005
    [55]McBride J W,Boltryk P J,Zhao Z.The relationship between surface incline and con-focal chromatic aberration sensor response[J]. Proceedings of SPIE the International Society for Optical Engineering.2007
    [56]于晓光.辐射与发光光源与照明光学[J].中国光学与应用光学文摘.2006(01)
    [57]江先进等编著,王惠文主编.光纤传感技术与应用[M].国防工业出版社,2001
    [58]LIN Jie.BROWN C W.Near-IR fiber-optic probe electrolytes aqueous solution[J]. Analytical Chemistry.1993
    [59]隋鑫,徐熙平,徐海峰,孙健,张雷.反射式光纤传感器光纤对强度调制特性分析[J].长春理工大学学报(自然科学版).2009(02)
    [60]郁道银,谈恒英工程光学[M],机械工程出版社
    [61]李士贤等.光学设计手册[M],北京理工大学出版社
    [62]E.Papastathopoulos, K. Krner, W.Osten. Chromatic Confocal Spectral lnterferometry[J]. Applied Optics.2006,45(32)
    [63]Prieto-Blanco X,Montero-Orille Couce Bet al.Analytical design of an Offner imaging spectrometer[J]. Optics Express.2006
    [64]Shafer Arthur B,Megill Lawrence R,Droppleman Leann.Optimization of the Czerny-Turner Spectrometer[J]. Journal of the Optical Society of America.1964
    [65]Remple,T.B.USB on-the-go interface for portable devices[J]. Consumer Electronics,2003.ICCE. 2003 IEEE International Conference on.2003
    [66]Berthold Michelt(DE), Matthias Kunkel(DE), Christoph Dietz(DE), Device and Method for the Contactless Measurement of at Least One Curved SurfacefJ]. United States Patent Application Publication. Pub No.:US 2007/0242279 A1
    [67]徐熙平,张宁,乔杨.透明材料的厚度检测方法和装置[中国专利].长春理工大学.2010-06-30
    [68]乔杨,张宁,刘涛,徐熙平.基于共焦法透镜中心厚度检测的光学系统设计[J].光学技术2010(06)
    [69]乔杨,张宁,徐熙平,刘涛.基于共焦法的透镜厚度测量系统设计[J].仪器仪表学报.2011(07)
    [70]徐熙平;乔杨;刘涛.一种用于玻璃厚度检测的光学系统[P].中国专利:CN201811718U,2011-04-27.
    [71]赖志国,余啸海编著Matlab图像处理与应用[M].国防工业出版社,2004
    [72]史俊锋,惠梅,王东生,毛文炜.光谱仪的微型化及其应用[J].光学技术.2003(01)
    [73]李洪伟,袁斯华.基于QuartusⅡ的FPGA/CPLD设计[M].北京:电子工业出版社,2000
    [74]EDA先锋工作室.Altera FPGA/CPLD设计(高级篇)[M].北京:人民邮电出版社,2005
    [75]王开军.面向CPLD/FPGA的YHDL没计[M].北京:机械工业出版社,2006
    [76]邓兴汉,杨恢东.基于FPGA的视频图像采集系统的设计与实现[J].微计算机信息.2010(08)
    [77]白莹杰,杜建铭,罗一星.基于FPGA的脉冲分频技术研究[J].微计算机应用.2010(03)
    [78]王庆有.CCD应用技术[M].天津大学出版社,2002
    [79]李珺,王云伟,石俊.基于Camera Link标准的图像采集处理系统及其应用[J].西安工程科技学院学报.2007(03)
    [80]袁卫.基于USB 2.0 Slave FIFO模式下软件开发框架[J].渭南师范学院学报.2007(02)
    [81]李威宣,赵静.通用数据采集卡的驱动方法及数据采集[J].2007,29(5)
    [82]李瑞著译Lab VIEW 2009中文版虚拟仪器从入门到精通[M].北京:机械工业出版社.2010.6
    [83]刘胜,张兰勇,章佳荣等LabVIEW 2009程序设计[M]Lab VIEW 2009程序设计.北京:电子工业出版社.2010.11
    [84]周长发.精通VISual C++图像处理编程(第二版)[M].电子工业出版社.2007
    [85]张惠娟等编著Windows环境下的设备驱动程序设计[M].西安电子科技大学出版社,2002
    [86]孙守阁,徐勇编Windows设备驱动程序技术内幕[M].清华大学出版社,2000
    [87]Chandra Mohan, K. Rajan, and R. Srinivasan, Bayesian approach based blind image deconvolution with fuzzy median filter[J], AIP Conf. Proc.1391,464(2011)
    [88]Maurizio Ficocelli and Foued Ben Amara, Control System Design for Retinal Imaging Adaptive Optics Systems Using Orthonormal Basis Functions[J], ASME Conf. Proc.487(2006)
    [89]Capmany, D. Pastor, and B. Ortega, Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe suppression using subnanometre optical spectrum slicing [J],Electron. Lett.35,494 (1999)
    [90]L. K. White and J. R. Matey, Simulation of projection optic lithography images with finite impulse response filters[J], J. Vac. Sci. Technol. B 10,3019 (1992)
    [91]Salazar Angel and G. Lorduy Hector, Frequency Wavelet Filtering Using a Two-Wave Mixing Arrangement in a BSO Crystal[J], AIP Conf. Proc.992,1094 (2008)
    [92]Gabriella Cincotti, Michela Svaluto Moreolo, and Alessandro Neri, Optical Planar Discrete Fourier and Wavelet Transforms[J], AIP Conf. Proc.949,114 (2007)
    [93]Koichi Niijima, Person Authentication Using Learned Parameters of Lifting Wavelet Filters[J], AIP Conf. Proc.860,253 (2006)
    [94]R. Kimball, and M. Nakashima, Optical implementation of the wavelet transform by using a bacteriorhodopsin film as an optically addressed spatial light modulator[J], Appl. Phys. Lett.73, 1484(1998)
    [95]Christopher J. Johnson,Ben B. Shen, Berwyck L. J. Poad, and Robert E. Continetti, Photoelectron-photofragmentcoincidence spectroscopy in a cryogenically cooled linear electrostatic ionbeam trap[J], Rev. Sci. Instrum.82,105105 (2011)
    [96]Y. I. Alexahin, E.Gianfelice-Wendt, V. V. Kashikhin, N. V. Mokhov, A. V. Zlobin, and V. Y. Alexakhin, Muon collider interactionregion design[J], hys. Rev. ST Accel. Beamsl4,061001 (2011)
    [97]S. McEndoo, S. Croke, J. Brophy, and Th. Busch, Phase evolution in spatialdark states[J], Phys. Rev. A 81,043640(2010)
    [98]Daquan Lu and Wei Hu, Theory of multibeaminteractions in strongly nonlocal nonlinear media[J], Phys. Rev. A 80,053818 (2009)
    [99]Barbara Betz and MiklosGyulassy, Examining a reducedjet-medium coupling in Pb+Pb collisions at the Large Hadron Collider[J], Phys. Rev. C 86,024903(2012)
    [100]Joseph N. Tan. Samuel M.Brewer, and Nicholas D. Guise, Penning traps with unitary architect for storage of highly chargedions[J], Rev. Sci. Instrum.83,023103 (2012)
    [101]Xin Tu, Yi-Kuei Wu, and L.Jay Guo. Vertically coupledphotonic molecule laser[J], Appl. Phys. Lett.100,041103(2012)
    [102]R. Schmitz,S-Yordanov,H. J. Butt,K. Koynov,andB. Dunweg, Studyingflow close to an interface by total internal reflection fluorescence cross-correlationspectroscopy:Quantitative data analysis [J], Phys. Rev. E 84,066306 (2011)
    [103]马宏,王金波.误差理论与仪器精度[M].北京:兵器工业出版社,2007
    [104]SHAW G,MANKOLAKIS D.Signal processing for hyperspectral spec-tral image exploitation[J]. IEEE Signal Processing Magazine.2002
    [105]Neville R A,Staenz K,Szeredi T,et al.Automatic endmember extraction from hyperspectral data for mineral exploration[J]. Proc4thlnt Airborne Remote Sens Conf Exhib/21stCan Symp Remote Sens.1999
    [106]曾峰,候亚宁,曾凡雨.印刷电路板设计(PCB)与制作[M].北京:电子工业出版社,2002
    [107]郭佳佳,胡晓菁.使用SignalTapⅡ逻辑分析仪调试FPGA[J]今日电子,2005(5)
    [108]K. i-Hyeon Park,Dong Eon K im,Seong-Hoon Jeong,andBongkoo Kang,M ember,lEEE.Lam inated m agnetic fluxsensor for th ick-steel-p late control[J]. IEEE Transac-tions on Industrial Electron ics.2003
    [109]S.D ixon,C.Edwards,S.B.Palm er.H igh accuracy non-contact u Itrason ic th ickness gauging of alum in ium sheet u-sing electrom agnetic acoustic transducers[J]. Ultrasonics.2001
    [110]钱苏翔,曹坚,周振锋.基于误差动态修正的高精度自动测厚系统[J].机电工程.2006(01)
    [111]蒋敏兰,费业泰.全系统动态误差建模理论分析与应用[J].中国机械工程.2008(22)
    [112]蒋敏兰,费业泰.动态误差分解与溯源理论与方法研究[J].仪器仪表学报.2005(S1)
    [113]胡伍生,孙璐.基于神经网络方法的模型误差补偿(英文)[J]. Journal of Southeast University(English Edition).2009(03)
    [114]G. Yin,V. K.rishnamurthy,C. Ion.Iterate-averaging sign algorithms for adaptive filtering with applications to blind multiuser detection[J]. IEEE Transactions on Information Theory.2003
    [115]G. Yin,V. Krishnamurthy,C. Ion.lterate-averaging sign algorithms for adaptive filtering with applications to blind multiuser detection[J]. IEEE Transactions on Information Theory.2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700