胶州湾温排水数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温排水是指用作电厂凝结器的冷却水,温升约7-10℃后重新排回水体的那部分水。近年来随着沿海核电站、火电站的兴建,大量温排水排入近岸海域,使得海洋热污染问题逐渐突出。水体温度升高会引起水中溶解氧含量降低,影响鱼类和其他水生生物的生存和繁殖,还会带来水体富营养化、水质恶化等环境问题。温排水排入海洋后,在热扩散效应和海水输运的作用下,使影响海域海水的温度场结构发生改变。尽可能准确地预测温排水影响下海水温度的分布,为评估温排水对环境影响、解决海洋热污染问题提供了必要科学依据。
     本文针对胶州湾内地形复杂、岸线曲折并有大面积滩涂存在的特性,建立三维FVCOM水动力模型对其潮流场进行了数值模拟,水位和潮流的模型结果与实测数据吻合较好。模型结果表明:温排水影响的电厂附近海域属于正规半日潮,潮流以往复流为主,涨潮方向为NE,落潮流方向为SW,最大潮流流速可达60cm·s-1。
     在水动力模型的基础上,开发了一个温排水的三维对流扩散模型,并以胶州湾内的青岛电厂的温排水为例,利用此模型对温排水引起的该海域的三维温升场进行了模拟。模型结果表明:海水表层的温升较大,海泊河河口附近海域温升可达4℃以上,表层向下温升迅速减小,尤其是表层到中层,变化尤为剧烈,底层的温升值很小,除海泊河内区域外,其他海域温升很小,温升基本在0.2℃以下。说明由于温差所产生的浮力效应,温排水主要集中在海水的中上层运动扩散,海水温升分布呈现出明显的垂向差异,普遍采用的基于垂向平均的二维温排水数值模型无法模拟这种情况,只有建立三维模型才能对温排水引起的温升场进行更加准确地模拟。同时,本文采用不同的海面综合散热系数,分别取为0、50和100,研究了海面综合散热系数的取值对温升分布的影响。模拟结果表明:随着K s取值的增大,各条温升线的包围面积有较为明显的减小,而且温升值越小,温升线的包围面积减小越显著,说明了K s的取值对温升场分布的重要性。对温升场进行预测时,只有根据所研究海域的实际水文气象条件确定合理的海面综合散热系数,才能得到较为准确的温升场分布情况。
     前人对温排水的研究基本都集中在海水温升场的分布上,而水生生物生存的敏感因子是海水温度。所以,要更加准确地探讨温排水对受纳水体生态环境及水生生物的影响,就要对温排水影响下的海水温度场进行模拟。本文综合考虑海气界面的太阳辐射、海面有效回辐射、潜热通量和感热通量,在模型中嵌入块体公式计算感热和潜热通量,对在温排水影响下胶州湾的温度场进行了数值模拟。计算结果表明:在合理地考虑了海气热通量后,温度场的计算结果和实测结果较为一致。
Cooling water means the water used to cool the condenser in power plants that returns to the sea with a temperature rise of about 7-10℃. With the massive building of nuclear power plants and thermal power plants in the coastal area, plenty of cooling water discharges into the sea .The heat pollution issue becomes more and more notable.The rise of temperature in the water body could cause the decline of dissolved oxygen affecting the living and breeding of the fish and other acquatic organisms and bring on the environmental problems of eutrophication and water quality deterioration et.With the effect of heat diffusion and tranport of sea water, cooling water can change the structure of temperature field. The accurate calculation of the distribution of the water temperature filed provides the necessary scientific basis to evaluate the influence of cooling water on water environment and slove the heat pollution.
     According to the features of Jiaozhou Bay, such as the complex terrain, flexural coastline and the large area of tidal flat, 3-D hydrodynamic numerical model FVCOM is used to simulate the tide of this area. The model results of elevation and current aggree well with the observed data.The model results show that in the sea area affectd by cooling water the type of tide is regular semidiurnal tide and the tidal current is mainly on reciprocating flow with the maximum velocity of 60cm·s-1.The direction of flood current is NE,while the direction of ebb current is SW.
     Based on the hydrodynamic model, a high resolution numerical model of 3-D cooling water is adopted to calculate the three-dimensional temperature rise field caused by cooling water from Qingdao power plant in Jiaozhou Bay.The model results show that the value of temperature rise in the surface is relatively large,which is over 4℃in the area around the mouth of Haibo river. The value of temperature rise decreases rapidly downward the surface,especially from surface to middle layer.In the bottom the value of temperature rise is very small.Besides the area in the Haibo river the value is below 0.2℃in most area.The results show that cooling water diffuses mainly in mid-upper layer.There is a dramatic difference in the veritcal distribution of temperature rise which 2-D cooling water model couldn’t simulate.Only 3-D model can simmulate the temperature rise field more accurate.Meanwhile,this article adopts different values (0,50,100) of the synthetic heat dissipation coefficient in the water surface to study its influence to the distribution of temperature rise.The model resuts show that with the increase of the synthetic heat dissipation coefficient the area enclosed by temperature rise line declines apparently. The smaller the value of temperature rise is ,the more the area enclosed by the temperature rise line decreases.It indicates that the synthetic heat dissipation coefficient affects the distribution of temperature rise greatly.In the practical prediction of cooling water,the rationality of value-taking of the coefficent is essential.
     In the form studies of cooling water, the focus was mostly on the distribution of water temperature rise. But the sensitive factor of living of acquatic organisms is the water temperature.To study the impact of cooling water on ecological environment and acquatic organisms , simulating the temperature field affected by cooling water is necessary.This paper takes solar radiation, effective counter-radiation, latent heat flux and sensible heat flux in the sea surface into account. Incorporated with the bulk formula to calculate the sensible and latent fluxes, the model is used to simulate the temperature filed with the influnce of cooling water in Jiaozhou Bay.The result shows that with regrad of heat flux in the sea surface, the model result agrees well with the measured data.
引文
[1]王丽霞,孙英兰,田晖.热扩散预测方法研究概况I.海洋科学,1997(6):16~17
    [2]蒋爽,端木琳,王树刚.海水热扩散研究进展与新问题.能源环境保护,2006,20(5):5~9
    [3]邓兆青.海-气热通量及其在温排水数模中的应用:[硕士学位论文].青岛:中国海洋大学物理海洋系,2007
    [4]丁德文,孙廷维,于永海.华能营口电厂取水口防冰工程数值模拟与分析.冰川冻土,1995,第17卷增刊
    [5]华祖林.电厂温排水排放对感潮河段环境水体影响预测研究.电力环境保护,1995,11 (4) :17~22
    [6]江洧,林佑金,陆耀辉.潮汐河道冷却水工程试验研究方法及应用.广州大学学报,2001,15(11):43~47
    [7]吴碧君,吴时强.阳宗海电厂改建工程温排水对湖水温度预测及对水生物影响分析.电力环境保护,1996,12(4):25~32
    [8]黄平.汕头港水域温排水热扩散三维数值模拟.海洋环境科学,1996,15(1):11~19
    [9]华祖林.贴体边界下潮汐河口热(核)电厂温排放数值计算.电力环境保护,1997,13(2):37~45
    [10]韩康,张存智,张砚峰,等.三亚电厂温排水数值模拟.清华大学学报,1998,17(2):54~57
    [11]徐啸,匡翠萍,顾杰.漳州后石电厂温排水数学模型.台湾海峡,1998,17(2):195-200
    [12]王丽霞,孙英兰,郑连远.三维热扩散预测模型.青岛海洋大学学报, 1998,28(1):29-35
    [13]郝瑞霞,周力行,陈惠泉.冷却水工程中湍浮力射流的三维数值模拟.水动力学研究与进展,1999,14( 4):485~492
    [14]吴海杰,王志刚,陈淑丰.滨海电站温排水数值模拟.电力环境保护,2005,21(4):
    [15]汪一航,魏泽勋,王勇刚,等.潮汐潮流三维数值模拟在庄河电厂温排水问题中的应用.海洋通报,2006,25(1):53~59
    [16]刘海成,陈汉宝.非结构性网格在印尼亚齐电厂温排水模型中的应用研究.水道港口,2009,10(5):316~319
    [17]曹颖,周政军.基于FVCOM模型的温排水三维数值模拟研究.水动力学研究与进展,2009,24(4):432~429
    [18]周玲玲,孙英兰,张学庆,等.黄骅电厂二期工程温排水排放方案优选.海洋通报,2006,25(5):43~49
    [19]陈新永,朱静,韩龙喜等.水面综合散热系数确定方法及灵敏度分析.水科学与工程技术,2007(5):9~13
    [20]陈慧泉,毛新民.水面蒸发系数全国通用公式的验证.水科学进展,1995,6(2):161~120
    [21]门雅彬.船基系统海-气通量测量方法研究.海洋技术,2004,23(3):51~54
    [22]姚华栋,任雪娟,马开玉. 1998年南海季风试验期间海-气通量的估算.应用气象学报,2003,14(1):87~96
    [23]陈陟,李诗明,吕乃平,等. TOGA-COARE lOP期间的海-气通量观测结果.地球物理学报,1997,4(6):753~762
    [24]官晟,张杰,王岩峰.海气界面大气湍流通量传感系统设计.海洋技术,2004,23(4):10~21
    [25]周明煜,钱粉兰.太平洋海域海-气热通量地理分布和时间变化的研究.海洋学报,2001,23(1):11~18
    [26]王开存,周秀骥,李维亮,等.利用卫星遥感资料反演感热和潜热通量的研究综述.地球科学进展, 2005,20(1):21~28
    [27]陈锦年,王宏娜,吕心艳.南海区域海-气热通量的变化特征分析.水科学进展,2007, l8(3):26~35
    [28]徐静琦,魏皓,顾海涛.西太平洋暖池区海气通量及整体交换系数.气象学报,1997,55(6):704~713
    [29]闫俊岳.中国邻海海-气热量、水汽通量计算和分析.应用气象学报,1999,10(1):9~19
    [30]曲绍厚,胡非,李亚秋. 1998年SCSMEX期间南海夏季风海气交换的主要特征.气候与环境研究,2000,5(4):1~13
    [31]褚健婷,陈锦年,许兰英.海-气界面热通量算法的研究及在中国近海的应用.海洋与湖沼,2006,37(6):481~487
    [32]杨清华,张蕴斐,孙兰涛,等. COARE算法估算海气界面热通量的个例对比分析.海洋预报,2005,22(4):1~13
    [33] Fairall C W, Larsen S E. Inertial-dissipation methods and turbulent fluxes at the air-ocean interface. Boundary-layer Meteorology,1986,34:287~301
    [34] Fairall C W, Bradley E F, Rogers D P, Edson J B, Young G S. Bulk parameterization of air-sea fluxes for Tropical Ocean global Atmosphere Coupled-Ocean Atmosphere Response Experiment. Journal of geophysical research, 1996, 101:3747~3764
    [35] Fairall C W, Bradley E F, EHare J, et al. Bulk Parameterization of Air-Sea Fluxes:Updates and Verification for the COARE Algorithm. JOURNAL OF CLIMATE. 2003,16:571~591
    [36] Brunke M A, C W Fairall, X Zeng, L Eymard and J A Curry. Which Bulk Aerodynamic Algorithms are Least Problematic in Computing Ocean Surface Turbulent Fluxes? JOURNAL OF CLIMATE. 2003, 16:619~635
    [37]张新玲,郭心顺,吴增茂,等.渤海海面太阳辐照强度的观测分析与计算方法研究.海洋学报,2001,23(2):47~51
    [38]周明煜,钱粉兰.中国近海及其邻近海域海-气热通量的模式计算.海洋学报,1998,20(6):21~30
    [39]赵鸣,曾旭斌.热带西太平洋海面通量与气象要素关系的诊断分析.热带气象学报,1995,15:280 ~288
    [40]吴迪生,邓文珍.南海台风状况下海气界面热量交换研究.大气科学,2001,25(3):329~341
    [41]孙即霖,杨旭君.不同时间尺度系统对热带太平洋海-气潜热通量贡献的估计.热带海洋学报,2004,23(6):76~81
    [42]郑静,蒋国荣,费建芳,等.南海西沙海区5~6月份辐射通量研究—整体公式建立.海洋预报,2005,22(4):73~78
    [43]陈锦年,伍玉梅,何宜军.中国近海海气界面热通量的反演.海洋学报,2006,28(4):26~35
    [44]李超,张燕,王东晓. 2004年秋季冷空气活动对南海海表温度的影响.热带海洋学报,2006,25(2):6~11
    [45]盛立芳,郑元鑫,陈静静. 2006~2007年北部湾海-气通量变化特征.中国海洋大学学报,2009,39(4):569~578
    [46]王强,高会旺.青岛沿海风应力和海气交换研究.海洋科学进展,2003,21(1):12~20
    [47]中国海湾志编委会.中国海湾志(第四分册) -山东半岛南部和江苏省海湾[M].北京:海洋出版社,1993
    [48]国家海洋局第一海洋研究所.胶州湾自然环境[M].北京:海洋出版社,1984,278
    [49]郑全安,吴隆业,张欣梅,等.胶州湾遥感研究: I总水域面积和总岸线长度量算.海洋与湖沼,1991,22:193~199
    [50]李善为.从海湾沉积物特征看胶州湾的形成演变.海洋学报,1983,5:328~339
    [51]王文海,王润玉,张书欣.胶州湾的泥沙来源及其自然沉积速率.海岸工程,1982,1(1):83~90
    [52]孙文心,近海环境流体动力学数值模型,科学出版社,北京,2004
    [53] Changsheng Chen, Robert C. Beardsley. An Unstructured Grid, Finite-Volume Coastal Ocean Model FVCOM User Mannual. Second Edition. Draft July 2006.
    [54]朱建荣.海洋数值计算方法和数值模式.北京:海洋出版社,2003
    [55]杨玉玲,吴永成. 90年代胶州湾海域的温、盐结构.黄渤海海洋,1999,17(3):31~36
    [56]王衍明.大气物理学.青岛:青岛海洋大学出版社,1993
    [57]张法高.渤、黄海每日海面热通量的计算.海洋科学,1995,(4):49~51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700