基于WRF大气模式的大风过程波浪模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确获取极端天气条件下近岸海域的波浪要素是保障港口与海岸工程设计安全的前提条件,因此研究台风、温带气旋和寒潮等大风过程中波浪的生成与演化具有重要意义。近年来,海浪数值模拟已成为研究近岸波浪的重要手段,而风场数据的合理性直接影响着波浪模拟结果的合理性。另外,近岸海域波浪模拟还需要考虑潮流的影响。为此,本文采用中尺度大气模式WRF来模拟风场以获取高精度风场数据,采用FVCOM二维潮流模式模拟近岸流场,采用SWAN海浪模式模拟波浪场,建立了大气-海洋-海浪模型系统,对台风及温带风暴过程中的近岸波浪进行模拟。论文的主要研究内容和结论如下:
     1、通过对比分析,合理确定了台风及温带风暴风况下WRF模式的各种参数,并对两种风况下大气数据同化的效果进行了分析。结果表明数据同化对台风的结果影响较大,对温带风暴过程的结果影响较小。为了使数据同化的效果更明显,需要更多的实测数据来进行同化。
     2、将WRF模型计算数据与QSCAT/NCEP混合风场数据及QSCAT/NCEP与台风模型合成风场数据进行了比较,结果表明WRF模型的计算结果明显优于其它两种风场数据,WRF模型计算值较其它数据更接近实测数据,可以比较合理地描述台风和温带风暴大风过程的风速、风向,可为近岸波浪场的模拟提供高精度风速。
     3、利用FVCOM二维潮流模式和SWAN海浪模式模拟2007年韦帕台风及2007年3月温带风暴潮流和波浪过程,将模拟结果与实测值进行对比验证,结果表明数值模型能很好地模拟台风和温带风暴过程的潮流和波浪。
     4、对台风风场作用下波浪变化规律进行了分析,结果表明在台风旋转风场的作用下波浪的传播方向会发生改变,波向逐渐变为与台风风向一致,并形成旋转的波浪场,但波浪场漩涡的位置相对风场漩涡的位置存在一定的滞后性。
     5、对浅水区域潮流对波浪的影响进行了分析,结果验证了近岸区域潮流对波浪作用的显著性,在近岸波浪计算时需要考虑潮流的作用。
Accurate nearshore wave data in extreme weather is a prerequisite for design safety of port and coastal engineering. It is of great significance to investigate the wave generation and propagation during strong wind processes of typhoon, extratropical storm and cold wave. In recent years, the numerical simulation of waves has become a very important method for sea wave research. However, the reasonability of wave results directly depends on the reasonability of wind data. In addition, the effects of current should be taken into accout in nearshore wave simulation. Therefore, an atmosphere-ocean-wave system was developed to simulate the typhoon and extratropical storm wave process based on the mesoscale atmospheric model of WRF, the two-dimensional tidal current model of FVCOM and the wave model of SWAN. The main contents and results are as follows.
     (1) Various parameters of WRF under strong wind actions of typhoon and extratropical storm were determined by comparative analysis. The effects of data assimilation under two wind conditions were analyzed. It was indicated that data assimilation had great influence on typhoon wind results while having little influence on extratropical storm wind results. More observation data should be considered to improve data assimilation effects.
     (2) Comparisons among winds from WRF, QSCAT/NCEP Blended Ocean Winds, and mixed winds of QSCAT/NCEP and typhoon model showed that the WRF simulation data agree with the observation data more satisfactorily than the other data. WRF model can well simulate the wind speeds and directions in typhoon and extratropical storm and can provide high-precision wind data for wave simulation.
     (3) The two-dimensional tidal current model of FVCOM and SWAN wave model were applied to simulate the current and wave processes for the WIPHA typhoon in 2007 and the extratropical storm occurred in March, 2007. It is shown that the numerical models could well simulate the current and wave process of WIPHA typhoon and the extratropical storm.
     (4) The analysis of wave propagation under typhoon wind conditions indicated that the wave direction varied and was gradually consistent with wind direction with a circular wave field, but the center of wave field had a time delay compared to typhoon wind center.
     (5) The effects of tidal current on wave in shallow water were analyzed. It is verified that the tidal current had a remarkable effect on wave height in shallow water of nearshore zone. It is suggested that the effects of tidal current should not be neglected in nearshore wave simulation.
引文
[1]包澄澜.海洋灾害及预报[M].北京:海洋出版社, 1991, 103.
    [2]中国国家海洋局. 2010年中国海洋灾害公报[R].北京:中国国家海洋局, 2011.
    [3]陈端伟.区域空气污染预报的风场数值模拟[D].上海:华东师范大学, 2005.
    [4]唐永明,吴辉碇等.渤海风场诊断分析和风潮数值模拟[J],海洋预报,1990, 7(4): 55-62.
    [5]高山红,张新玲,吴增茂.渤海海面风场的一种动力诊断方法[J].海洋学报, 2001, 23(6): 51-58.
    [6]李杰.风浪要素数值模拟[D].南京:河海大学, 2005.
    [7]陈德文.台湾岛周边海域台风海面风场及其模型化研究[D].厦门:厦门大学, 2006.
    [8]汤海涛.厦门地区台风风场模型初步研究[D].重庆:重庆大学, 2008.
    [9]肖玉凤,段忠东,肖仪清等.基于数值模拟的台风危险性分析综述(Ⅰ)——台风风场模型[J].自然灾害学报, 2011, 20(2): 82-89.
    [10]李明悝,侯一筠.利用QuikSCAT/NCEP混合风场及WAVEWATCH模拟东中国海风浪场[J].海洋科学, 2005, 29(6): 9-12.
    [11]徐艳清.东中国海海浪数值模拟及波候统计分析[D].青岛:中国科学院海洋研究所, 2005.
    [12]周科.西北太平洋风浪数值模拟和统计分析[D].上海:上海交通大学, 2009.
    [13] Yang X C, Zhang Q H. Hindcast of Design Waves in the Bohai Bay through Wave Simulation of Extreme Wind Processes for 20 Years[A]. Proceedings of 9th International Conference on Hydroinformatics[C], 2010, 352-357.
    [14]杨洋.西北太平洋台风浪后报[D].上海:上海交通大学, 2009.
    [15]孙斌. SWAN模型在风浪场预报中的应用研究[D].天津:天津大学, 2010.
    [16]陈华伟,葛建忠.丁平兴.波浪对台风风暴潮过程的影响分析[J].华东师范大学学报(自然科学版), 2010, (4): 16-25.
    [17]凌铁军,张蕴斐,杨学联等.中尺度数值预报模式(MM5)在海面风场预报中的应用[J].海洋预报, 2004, (4): 1-9.
    [18]孙健,赵平.用WRF与MM5模拟1998年三次暴雨过程的对比分析[J].气象学报, 2003, 61(6): 692-701.
    [19]赵洪,杨学联,邢建勇. WRF与MM5对2007年3月初强冷空气数值预报结果的对比分析[J].海洋预报, 2007, 24(2): 1-8.
    [20]刘斌.大气-海浪耦合模式的物理基础及数值研究[D].青岛:中国海洋大学, 2007.
    [21]程麟生.中尺度大气数值模式发展现状和应用前景[J].高原气象, 1999, 18(3) : 350-360.
    [22]章国材.美国wrf模式的进展和应用前景[J].气象, 2004, 30(12): 27-31.
    [23]张金善,钟中,黄瑾.中尺度大气模式MM5简介[J].海洋预报, 2005, 22(1): 31-40.
    [24]林行,高山红,黄容.大气数据同化方法的研究与应用进展[J].山东气象, 2004, 24(4): 16-18.
    [25] Robinson A R, Lermusiaux P F J. Overview of Data Assimilation[R]. Cambridge: Harvard Reports in Physical/Interdisciplinary Ocean Science, 2000.
    [26]马寨璞,井爱芹.动态最优插值方法及其同化应用研究[J].河北大学学报(自然科学版), 2004, 24(6): 574-580.
    [27]官元红,周广庆,陆维松等.资料同化方法的理论发展及应用综述[J].气象与减灾研究, 2007, 30(4): 1-8.
    [28]高山红,吴增茂,谢红琴. Kalman滤波在气象数据同化中的发展与应用[J].地球科学进展, 2000, 15(5): 571-575.
    [29]孔令梅.三维变分同化并行计算研究及实现[D]. 2005,长沙:国防科学技术大学, 2005.
    [30]朱小谦.四维变分同化关键技术研究与并行计算[D]. 2007,长沙:国防科学技术大学, 2007.
    [31] Ou S H, Liau J M, Hsu T W, et al. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan [J]. Ocean Engineering, 2002, 29(8): 947-971.
    [32]王殿志,张庆河,时钟.渤海湾风浪场的数值模拟[J].海洋通报, 2004, 23(5): 10-17.
    [33] Rogers W E, Hwang P A, Wang D W. Investigation of wave growth and decay in the SWAN model: three regional-scale applications[J]. Journal of Physical Oceanography, 2003, 33: 366-389.
    [34]徐福敏,黄云峰,宋志尧.东中国海至长江口海域台风浪特性的数值模拟研究[J].水动力学研究与进展, 2008, 23(6): 604-611.
    [35]赵海涛,张亦飞,郝春玲等.应用SWAN模型分析航道对波浪传播的影响[J].海洋学研究, 2008, 26(3): 44-52.
    [36]夏波,张庆河,杨华.水动力时空变化对近岸风浪演化的影响—以渤海湾西南岸为例[J].海洋通报, 2006, 25(5):1-8.
    [37]于亮.考虑波流耦合作用的渤海湾风暴潮三维数值模拟[D].天津:天津大学, 2010.
    [38]刘春霞,齐义泉,梁建菌. WRF与海浪模式耦合及其对台风的影响[A]中国气象学会2005年年会[C], 2005, 2300-2307.
    [39]刘春霞,齐义泉.海浪对台风―伊布都‖风场结构影响的数值模拟[A].第十五届全国热带气旋科学讨论会[C], 2005, 187-205.
    [40] Yoshiaki M, Hirohiko I, Tetsuya T. Modeling The Air-Sea-Wave Interaction Under Typhoon Conditions: Model Development And A Preliminary Result For Typhoon Ioke (2006)[A]. WRF User's Workshop[C], 2007.
    [41]刘磊,费建芳,郑静等.海浪和海洋飞沫对“珊珊”台风影响的数值研究[A].第27届中国气象学会年会[C], 2010.
    [42]关皓.南海中尺度大气-海浪耦合模式的初步研究[D].南京:解放军理工大学, 2006.
    [43]丁亚梅,董克慧,周林等.大气-海浪耦合模式对台风“碧利斯”的数值模拟[J].海洋预报, 2009, 26(2): 15-26.
    [44] Doyle J D. Coupled Atmosphere–Ocean Wave Simulations under High Wind Conditions[J]. Monthly Weather Review, 2002, 130: 3087-3099.
    [45]赵伟,徐幼平,程锐等. AREM中尺度大气模式与海浪模式双向耦合预报试验[J].暴雨灾害, 2008, 27(2): 114-120.
    [46]于卫东, Li L Z,袁业立.全球大气-海浪耦合模式对海面气压场模拟的改善[J].科学通报, 2005, 50(23): 2686-2688.
    [47]林惠娟,钱永甫,张耀存.区域气候与海浪耦合模式研制及海浪对1998年东亚夏季风的影响研究[A].首届长三角气象科技论坛[C], 2004, 300-303.
    [48] Chen S S, Price J F, Zhao W et al. The CBLAST-Hurricane Program and the Next-Generation Fully Coupled Atmosphere-Wave-Ocean Models for Hurricane Research and Prediction[J]. Bulletin of the American Meteorological Society, 2007, 88: 311-317.
    [49]文元桥,黄立文,余胜生.基于移动代理技术的海-气-浪耦合模拟系统[J].武汉理工大学学报, 2006, 28(3):125-127.
    [50]邓健.中尺度海-气-浪耦合模式系统的研究及应用[D].武汉:武汉理工大学, 2007.
    [51]宋振亚,乔方利,雷晓燕等.大气-海浪-海洋环流耦合数值模式的建立及北太平洋SST模拟[J].水动力学研究与进展, 2007, 22(5): 543-548.
    [52]张进峰.区域海-气-浪耦合模式改进及航海仿真应用试验研究[D].武汉:武汉理工大学, 2009.
    [53] Xie L, Liu B, Liu H Q et al. Numerical Simulation of Tropical Cyclone Intensity using an Air-Sea-Wave Coupled Prediction System[J]. Advance in Geosciences, 2008, 18: 19-43.
    [54] Liu B, Liu H Q, Xie L. A Coupled Atmosphere–Wave–Ocean Modeling System: Simulation of the Intensity of an Idealized Tropical Cyclone[J]. Monthly Weather Review, 2010, 139: 132-152.
    [55] Warner J C, Armstrong B, and He R et al. Development of a coupled ocean-atmosphere-wave-sediment transport(COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3):230-244.
    [56] Wang W, Bruyère C, Duda M et al. ARW Version 3 Modeling System User’s Guide[R]. Mesoscale and Microscale Meteorology Division, National Center for Atmosphere Research, 2011.
    [57] Laprise R. The Euler Equations of motion with hydrostatic pressure as an independent variable[J], Monthly Weather Review, 1992, 120: 197–207.
    [58] Skamarock W C, Klemp J B, Dudhia J. A Description of the Advanced Research WRF Version 3[R]. Mesoscale and Microscale Meteorology Division, National Center for Atmosphere Research, NCAR Technical Note, 2008.
    [59] Barker D M, Huang W, Guo Y R et al. A Three-Dimensional(3DVAR) Data Assimilation System For Use With MM5: Implementation and Initial Results[J]. Monthly Weather Review, 2004, 132: 897-914.
    [60] Ide K, Courtier P, Ghil M et al. Unified notation for data assimilation: Operational, sequential and variational[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 75:181–189.
    [61] Courtier P, The′paut J N, Hollingsworth A. A strategy for operational implementation of 4D-Var using an incremental approach[J]. Quarterly Journal of the Royal Meteorological Society. 1994, 120: 1367–1387.
    [62] Parrish D F, Derber J C. The National Meteorological Center’s Spectral Statistical Interpolation analysis system[J]. Monthly Weather Review, 1992, 120: 1747–1763.
    [63] Lorenc A C, Coauthors. The Met. Office global three-dimensional variational data assimilation scheme[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126: 2991-3012.
    [64]杨毅. Doppler雷达资料同化技术研究[D].兰州:兰州大学, 2007.
    [65]臧士文.基于FVCOM模型的二维海上溢油数值模拟研究[D].大连:大连理工大学, 2011.
    [66]徐福敏,张长宽,陶建峰.浅水波浪数值模型SWAN的原理及应用综述[J].水科学进展, 2004, 15(4): 538-542.
    [67] Booij N, Haagsma I J G, Hilthuijsen LH et al. SWAN User Manuals, SWAN Cycle III version 40.81[R]. Delft University of Technology, 2011.
    [68] Justin E S, Cheung K F, Chen Y L. Assessment of wave energy resources in Hawaii[J]. Renewable Energy, 2011, (36): 554-567.
    [69]第13号强台风―韦帕‖影响我国中东部6省(直辖市)[J].中国减灾, 2007, (11): 62-63.
    [70]赵德显,沈桐立,徐海明.台风韦帕的数值模拟和诊断分析[J].科技信息(学术研究), 2008, (30): 38-41.
    [71]赵群.―韦帕‖台风浪数值模拟的研究快报[A]. 2007年学术年会[C], 2007, 551-554.
    [72]邹兰军,刘晓波,漆梁波,等.超强台风韦帕(0713)引发的台风浪数值模拟分析[A].第六届长三角气象科技论坛[C], 2009, 327-330.
    [73]赵鑫,姚炎明,黄世昌等.超强台风“桑美”及“韦帕”风暴潮预报分析[J].海洋预报, 2009, 26(1): 19-28.
    [74]陈华伟,葛建忠,丁平兴.波浪对台风风暴潮过程的影响分析[J].华东师范大学学报(自然科学版), 2010, (4): 16-25.
    [75]李燕,张彩凤,赵惠芳.大连地区寒潮强风天气的数值模拟研究[J].安徽农业科学, 2010, 38(4): 1893-1901.
    [76]闫丽凤,孙兴池“.0703”强风暴潮成因及数值模拟分析[A].中国气象学会2007年年会[C], 2007, 1981-1989.
    [77]周玉兰,山义昌,杨付津.一次莱州湾温带气旋风暴潮的成因分析[J].山东气象, 2007, 27(3): 30-32.
    [78]胡向军,陶健红,郑飞等. WRF模式物理过程参数化方案简介[J].甘肃科技, 2008, 24(20): 73-75.
    [79]吴林,王刚,沈晗等.积云参数化对0613号台风―珊珊‖数值模拟的影响研究[J].气象研究与应用, 2008, 29(4): 14-16.
    [80]卢晶晶,徐迪峰.台风―罗莎‖的WRF积云对流参数化数值实验[A].第26届中国气象学会年会热带气旋科学研讨会[C], 2009, 523-529.
    [81]河惠卿,王振会,金正润等.积云参数化和微物理方案不同组合应用对台风路径模拟效果的影响[J].热带气象学报, 2009, 25(4): 435-441.
    [82]林惠娟,冀春晓. WRF参数化方案对台风路径和强度模拟的影响[A].第七届长三角气象科技论坛[C], 2010, 137-142.
    [83] Hong S Y, Dudhia J, Chen S H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitationp [J]. Monthly Weather Review, 2004, 132: 103–120.
    [84] Hong S Y, Lim J O J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)[J]. Journal of the Korean Meteorological Society, 2006, 42: 129–151.
    [85] Thompson G, Field P R., Rasmussen R M et al. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization [J]. Monthly Weather Review, 2008, 136(12): 5095–5115.
    [86] Garratt J R. The Atmospheric Boundary Layer[M]. Cambridge, England: Cambridge University Press, 1992.
    [87] Pollard R T, Rhines P B, Thompson R O R Y. The deepening of the wind-mixed layer[J]. Geophysical and Astrophysical Fluid Dynamics, 1973, 4(1):381-404.
    [88] Xue Y G, Sha W Y, Li S J et al. Numerical simulation of a typhoon wave and development of a wave visualization system[A], Asian and Pacific Coasts[C], 2007, 21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700